

P Tol. SPECIFIED	
Dmension rawce	Tol. \pm
$\mathrm{X} \leq 1$	0.15
$1<x \leq 8$	0.20
$8<x \leq 18$	0.30
$18<x<50$	0.50
$50<x \leq 120$	0.70
$120<x \leqslant 250$	0.90
250<x<500	1.00

TABLEC	
Code	Color
01	Black
04	Yellow
08	Yellow(PMS 1225C)
10	Plnk
31	Orange
34	Purple

Monce		NUCLETOL $\pm \mathbf{2}^{*}$	2.000			${ }_{\text {STE }}^{\text {/ }}$
		Tolevice	mm	STECACATION		
		maF	92,05,29		OPTICAL/RCA JACK	1.1
	Desciep				$\begin{aligned} & \text { CLIFF } \\ & \text { FC684206T } \end{aligned}$	

SPECIFICATION

CUSTOMER MODEL NO. / TITLE OPTICAL TRANSMITTER JACK	SPECIFICATION NO PAGE : 1 OF 9 FC684206T DATE : JUN,05,2002
OPTICAL CONNECTOR	
1. Features	Internal equivalent circuit
(1) Uni-directional data transmission using plastic fiber.	
	Vin
(3) Low voltage drive	Drive IC \quad Vcc
Operating voltage: 2.75 to 5.25 V	GND
(4) Minimum input optical power: MIN. -21 dBm (EIAJ)	- - _

2. Applications
(1) CD players
(2) MD players
(3) DVD players
3. Absolute Maximum Ratings

($\mathrm{a}=25^{\circ} \mathrm{C}$)			
Parameter	ymbol	Rating Un	
Supply voltage	Vcc-0	. 5 to +7.0	
Input voltage Vin	-0.5 to	$\mathrm{Vcc}+0.5 \mathrm{Y}$	
Operating temperature	Topr	-20 to +70	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg	-30 to +80	${ }^{\circ} \mathrm{C}$
*Soldering temperature	Tsol	$260{ }^{\circ} \mathrm{C}$	

* For 5s (2 times or less)

SPECIFICATION

SPECIFICATION

Fig. 1 Measuring Method of Optical Output Coupling with Fiber.

Notes: (1) OC-08 Vcc=3.0V (State of operating).
(2) To bundle up the standard fiber optic cable, make it into a loop with the diameter $\mathrm{D}=10 \mathrm{~cm}$ or more. (The standard fiber optic cable will be specified elsewhere.)

Fig. 2 Measuring Method of Input Voltage and Supply Current.

Input conditions and judgement method.

Condition	Judgement method
$\mathrm{V}_{\text {in }}=2.1 \mathrm{~V}$ or more.	$-21 \leqq \mathrm{Pc} \leqq-15 \mathrm{dBm}$, Icc $=13 \mathrm{~mA}$ or less.
$\mathrm{V}_{\text {in }}=0.8 \mathrm{~V}$ or less.	$\mathrm{Pc} \leqq-36 \mathrm{dBm}$, Icc $=13 \mathrm{~mA}$ or less.

Note) Vcc=3.0V (State of operating).

SPECIFICATION

| CUSTOMER MODEL NO. / TITLE | SPECIFICATION NO | PAGE : 4 OF 9 |
| :--- | :---: | :---: | :---: |
| OPTICAL TRANSMITTER JACK | FC684206T | DATE : JUN,05,2002 |

Fig. 3 Measuring Method of Pulse Response and Jitter.

Test item		
Test item Symbol Tes	condition	
Low \rightarrow High pulse delay time	tpla Refer	o the above prescriptions
High \rightarrow Low pulse delay time	tphl Refer	to the above prescriptions
\qquad	$\begin{gathered} \mathrm{w} \Delta \mathrm{tw}= \\ \Delta \mathrm{tjr} \end{gathered}$	tphl-tple Set the trigger on the rise of input signal to measure the
High \rightarrow Low Jitter	$\Delta \mathrm{tjf}$	Set the trigger on the fall of input signal to measure the jitter of the rise of output

Notes(1) The waveform write time shall be 4 seconds. But do not allow the waveform to be distorted by increasing the brightness too much.
(2) $\mathrm{Vcc}=3.0 \mathrm{~V}$ (State of operating)
(3) The probe for the oscilloscope must be more than $1 \mathrm{M} \Omega$ and less than 10 pF .

SPECIFICATION

CUSTOMER MODEL NO. / TITLE	SPECIFICATION NO.	PAGE : 5 OF 9

Mating plug
EIAJ RC-5720A Rectangular type plug (Unit mm)

SPECIFICATION

CUSTOMER MODEL NO．／TITLE SPECIFICATION NO．PAGE ： 6 OF 9

RCA

1．SCOPE
This specification covers the requirements for＂PIN JACK＂．

2．RATED

A）Rated voltage DC／AC 34 V
B）Rated current DC／AC 2 A
C）Temperature range $-25 \sim 70^{\circ} \mathrm{C}$
D）Humidity range $85 \% \mathrm{RH}$ MAX．
E）Test condition
Unless otherwise specified herein，all measurements and tests shall be made at temperature of $5^{\circ} \mathrm{C} \sim 35$ ${ }^{\circ} \mathrm{C}$ and relative humidity of $45 \% \sim 85 \%$ ．

3．ELECTRICAL EFFICIENCY

Item	Condition	Result／Value
3A）Dielectric strength	500 V AC applied between mutual insulated metal parts for one minute．	Not breaking insulation
	（ 500 V DC applied between mutual insulated metal parts．） Initial	$\geqq 100 \mathrm{M} \Omega$
3B）Insulation resistance	After heat test After cold test After resistance to soldering test After life test After temperature cycling test After humidity test	$\geqq 50 \mathrm{M} \Omega$
3C）Contact resistance	（Measure at a current of less than 100 mA 1 KHz ． The Gauge plug used shall be cleaned and free from oxidation film of the surface．） Initial After humidity test After heat test After cold test After resistance to soldering test After life test After temperature cycling test	$\leqq 30 \mathrm{~m} \Omega$

				A	趙	C	許	C	噮	W	胡
				P	91．6．5		91，6， 5	H	91，6， 5	R	91，6， 5
				V	图膰		石姩	K	登鳰	T	
REV．	NAME	DATE R	EMARK	D		D		D		N	

CUSTOMER MODEL NO. / TITLE	SPECIFICATION NO.	PAGE : 7 OF 9
OPTICAL TRANSMITTER JACK	FC684206T	DATE : JUN,05,2002

4. MECHANICAL EFFICIENCY

Item	Condition	Insertion force	Withdrawal force
4A) Insertion force And Withdrawal force	(With the gauge plug as show in 8) Initial After humidity test After heat test After cold test After resistance to soldering test After life test After temperature cycling test		$\begin{aligned} & f \sim 4.0 \mathrm{kgf} \\ & \sim 39.4 \mathrm{~N}) \end{aligned}$

4B. Terminal strength
Every terminal shall be capable of withstand a force of 3 kgf on 0.5 seconds without loosing and breakdown, but deformation of terminal is authorized.
The jack fixed on PCB, then shall be capable of inserted the gauge plug at 150 times, without loosing and breakdown, but force of inserted the gauge plug shall be less than 3 kgf .

4C. Strength of tapping part
The tapping part shall be capable of a torque of $8 \mathrm{kgf}-\mathrm{cm}$ for 5 seconds by $\mathrm{M} 3 \times 8$ tapping tight screw and panel $(\mathrm{t}=1)$, the jack shall not be broken.

5. Construction

5A. Mating limit
Mating limit or range of between the plug and spring of jack shall be not regulated.
5B. Connection timing
The jack shall be permitted with connection timing whether shorting or not between the mutually separated terminals or spring of the pin jack, during the plug inserting and extracting.
5C. Creep age distance and spacing
Creep age distance and spacing between mutually insulated parts be 0.2 mm minimum, these distance and spacing shall be maintained with or without the gauge plug inserted.

6. Environmental

6A. Life test
The life test shall consist of 150 cycles of insertion and withdrawal with gauge plug covered with a thin coat of grease in order to prevent from heating or wearing, at a rate of 20 to 30 cycles per minute under no load. At the conclusion of this test, the jack shall comply with Paragraphs $3 \& 4$, and be in operating condition.
6B. Humidity test
The jack shall be subjected to temperature of $40 \pm 2^{\circ} \mathrm{C}$ and relative humidity of 90% to 95% for a period of 96 hours. Upon completion of the exposure, dewdrops shall be blown out and removed from the jack, after which the jack shall be conditioned at room ambient conditions for 30 minutes. At the conclusion of this test, the jack shall comply with paragraphs $3 \& 4$.
6C. Heat test
The jack shall be subjected to temperature of $70 \pm 2^{\circ} \mathrm{C}$ for a period of 96 hours, then shall be allowed to remain in room ambient conditions for 30 minutes. At the conclusion of this test, the jack shall comply with Paragraph $3 \& 4$.
6D. Cold test
The jack shall be subjected to temperature of $-40 \pm 3^{\circ} \mathrm{C}$ for a period of 96 hours, then shall be allowed to remain in room ambient conditions for 30 minutes. At the conclusion of this test, the jack shall comply with Paragraph $3 \& 4$.
6E. Resistance to soldering heat test
The jack terminal shall be dipped in solder under the condition as specified below. At the conclusion of this test, the jack shall comply with Paragraph $3 \& 4$, and not show remarkable failure.
6E1. The terminal for a printed circuit board.
Temperature of solder: $260 \pm 5^{\circ} \mathrm{C}$; Dip time: 5 ± 1 seconds.
6E2. The terminal for a lead wire
Temperature of solder: $350 \pm 10^{\circ} \mathrm{C}$; Dip time: 3 ± 0.5 seconds.
6 F . Temperature cycling test
The jack shall be subjected to the conditions as shown in fig as follows. And then shall returned and allowed to remain in room ambient condition for 30 minutes. At the conclusion of this test, the jack shall comply with Paragraph $3 \& 4$.

6G. Soldering test
Area of soldering shall be capable of 95% or more of dip terminal area. Condition: Terminal of solder: $235 \pm 5^{\circ} \mathrm{C}$; Time of dip: $5 \pm 0.5 \mathrm{sec}$. Length of dip: $2 \pm 0.5 \mathrm{~mm}$ (from top of terminal)

7. OTHERS

When the amendment of this specification comes into necessity, it shall be made by the mutual consultation and agreement between manufacturer and customer.
8. Mated plug

Surface roughness: Peak-to-valley height of 0.8 micron MAX.
For insertion and drawing force. Material: Stainless steel;
Finish: Chromium plated.
For contact resistance. Material: Brass; Finish: Silver plated.

(Hemispherical)

Document No.	Document name	Rev.	DATE
$01-\mathrm{E}$	Management standards for "Environment-related substances to be controlled"	1.6	OCT,26,2006

1. This part should not contain any substances which are specified in follow .(Except cadmium is less than 5 ppm , Lead is under 90 ppm)
2. In this case, pre-processing methods and measurement methods shall conform to ROHS.
3. List of "Environment-related Substances to be Controlled ('The Controlled Substances')"

	Substances	Allowable concentration
Heavy metals	Cadmium and cadmium compounds	Less 5ppm
	Lead and lead compounds	Less 90ppm
	Lead in the plastic,rubber,paints, ink	Less 50ppm
	Mercury and mercury compounds	
	Hexavalent chromium compounds	
Chlorinated organic compounds	Polychlorinated biphenyls (PCB)	
	Polychlorinated naphthalenes (PCN)	
	Chlorinated paraffins (CP)	
	Mirex (Perchlordecone)	
	Other chlorinated organic compounds	
Brominated organic compounds	Polybrominated biphenyls (PBB)	
	Polybrominated diphenylethers (PBDE)	
	Tetrabromobisphenol-A-bis- (2, 3-dibromopropylether) (TBBP-A-bis)	
	Other brominated organic compounds	
Organic tin compounds (tributy tin compounds, Triphenyl tin compounds)		
Asbestos		
Azo compounds		
Formaldehyde		
Polyvinyl chloride (PVC) and PVC blends		

4. Allowable concentrations:

Less than 90 ppm is determined as an allowable total-concentration of four heavy metals (mercury, cadmium, hexavalent chromium, and lead). Less than 5ppm is determined as an allowable cadmium-concentration in a plastic (including rubber) part.

QMFZ2 Component - Plastics
Wednesday, August 29, 2001
CHI MEI CORPORATION
59-1 SAN CHIA JEN TE TAINAN HSIEN TAIWAN

Material Designation: PA-765A (+)

Product Description: Acrylonitrile Butadiene Styrene (ABS), designated "Polylac" furnished as pellets.

Color	Min. Thick. (mm)	Flame Class	HWI	HAI RTI Elec RTI Imp RTI Str IEC GWIT				
ALL	1.5	V-1	-	-	85	80	85	-
	2.1	V-0, 5V-B	3	0	85	80	85	-
	2.5	5VA	-	0	85	80	85	-
	3.0	V-0	0	0	85	80	85	-
	CTI: 0		HVTR: 0		D495: 7		IEC BP: -	

IEC BP: -

D495: 7
(+) Optional prefix or suffix may be used to denote $0-0.5 \%$ acid scavengers.
(+) Optional prefix or suffix may be used to denote $0-0.5 \%$ acid scavengers.
Underwriters Laboratories Inc®
Z00S6ZL9Z
UL94 small-scale test data does not pertain to building materials, furnishings and related contents. UL 94 small-scale test data is intended solely for determining the
flammability of plastic materials used in components and parts of end-product devices and appliances, where the acceptability of the combination is determined by ULI.

QMFZ2 Component - Plastics

CHI MEI CORPORATION

59-1 SAN CHIA JEN TE TAINAN HSIEN TAIWAN
Material Designation: PA-777D
Product Description: Acrylonitrile Butadiene Styrene/Phenyl Maleimide (ABS/PMI), designated "Polylac" furnished as pellets.

Report Date: 03/10/1993
UL94 small-scale test data does not pertain to building materials, furnishings and related contents. UL 94 small-scale test data is intended solely for determining the
flammability of plastic materials used in components and parts of end-product devices and appliances, where the acceptability of the combination is determined by ULI.
E41938

ENGINEERING POLYMERS CHESTNUT RUN PLAZA PO BOX 80713 WILMINGTON DE 19880									
Material Designation: 70G33L(+)									
Product Description: Polyamide 66 (PA66), glass reinforced, designated "Zytel" furnished as pellets.									
Color	Min. Thick. (mm)	Flame Class	HWI	HA	I Ele	Imp	Str	IT	IEC GWFI
ALL	0.71	HB	4	0	130	120	130	-	-
	1.5	HB	4	0	130	120	130		-
	3.0	HB	4	0	130	120	130		-
CTI: 0			HVTR: 1		D495: 5		IEC BP: -		
(+) Virgin and Regrind up to 50% by weight inclusive, have the same basic material characteristics.									
NOTE	(1) Material designations that are color pigmented may be followed by suffix letters and numbers. (2) Material designations may be prefixed by "ZYT" or								
	"MIN".								
Report Date: 08/06/1996		Underwriters Laboratories Inc®					324299147		
UL94 small-scale test data does not pertain to building materials, furnishings and related contents. UL 94 small-scale test data is intended solely for determining the									

flammability of plastic materials used in components and parts of end-product devices and appliances, where the acceptability of the combination is determined by ULI.

