www.solidstateinc.com ## PMD 16K, 17K SERIES ### 225 WATT (20 AMP CONTINUOUS, 40 AMP PEAK) #### **FEATURES** - Electrical specifications guaranteed for operating junction temperature range of 0 - 200°C - Guaranteed and 100% tested for I_{SB} (Secondary Breakdown Current) insuring maximum performance at high energy levels - Low thermal resistance for more useable power and lower operating temperatures - Hermetically sealed ### **DESCRIPTION** The PMD 16K Series of devices are three-terminal NPN Darlington Power Transistors. The PMD 17K Series of devices are PNP Darlington Power Transistors. These devices are monolithic epitaxial base structures with built-in base to emitter shunt resistors. The devices are CVD glass passivated to increase reliability and provide reduced hightemperature reverse leakage current. This important feature enables this series of Darlington devices to meet guaranteed operating junction temperatures of 200°C. Internal diode protection (D1) of the Darlington configuration is built into the structure to limit the device power dissipation during negative overshoot. # ABSOLUTE MAXIMUM RATINGS | PARAMETER | SYMBOL | MAXIMUM | UNITS | |--|------------------------------------|-------------|---------| | Collector Emitter Voltage
PMD16K, 17K80
PMD16K, 17K100 | V _{CEO} | 80
100 | Vdc | | Collector Base Voltage
PMD16K, 17K80
PMD16K, 17K100 | V _{CBO} | 80
100 | Vdc | | Emitter Base Voltage | V _{EBO} | 5 | Vdc | | Collector Current
Continuous
Peak | I _C | 20
40 | Adc | | Base Current | l _B | 0.5 | Adc | | Thermal Resistance | $\theta_{\sf JC}$ | 0.67 | °C/Watt | | Total Internal Power
Dissipation @ T _C = 50°C¹ | P _D | 225 | Watts | | Operating Junction and Storage Temperature | T _J
T _{STG} | -65 to +200 | °C | ⁽¹⁾ For operation above $T_c = 50$ °C, derate @ 1.5 W/°C. ### **DEVICE SELECTION GUIDE** | DEVICE | VOLTAGE
RATING | POLARITY | | |-----------|-------------------|----------|--| | PMD16K80 | 80V | NPN | | | PMD16K100 | 100V | NPN | | | PMD17K80 | 80V | PNP | | | PMD17K100 | 100V | PNP | | Excellent thermal resistance junction to case (θ_{JC}) provides for more useable power at lower operating temperatures. This, coupled with 100% I_{SB} testing, insures optimum performance and durability for DC motor control and other complementary Darlington applications. These Darlington devices are hermetically sealed copper/steel TO-3 packages providing high reliability and low thermal resistance. ### **ELECTRICAL CHARACTERISTICS** All parameters are guaranteed at $T_{J}=0$ to 200°C, unless otherwise specified. | Parameter | Symbol | Test Conditions | Minimum | Maximum | Units | |---|-----------------------|---|-------------|------------------|-------| | ON CHARACTERISTICS | | 4 | | | 1 | | Collector Emitter
Saturation Voltage ¹ | $V_{CE(sat)}$ | $I_C = 10 \text{ Adc}; I_B = 40 \text{ mAdc}$ | | 2.0 | Vdc | | Base Emitter
Turn-on Voltage ¹ | V _{BE(on)} | $I_C = 10 \text{ Adc}; V_{CE} = 3 \text{ Vdc}$ | | 2.8 | Vdc | | Base Emitter
Saturation ¹ | V _{BE(sat)} | $I_C = 10 \text{ Adc}; I_B = 40 \text{ mAdc}$ | | 2.8 | Vdc | | DC Current Gain ¹
PMD16K80, 100
PMD17K80, 100 | h _{FE} | $I_C = 10 \text{ Adc}; V_{CE} = 3 \text{ Vdc}$ $T_J = 25^{\circ}\text{C}$ | 1000
800 | 20,000
20,000 | | | Forward Bias Secondary
Breakdown Current | l _{s/b} | $V_{CE} = 30 \text{ Vdc}; T_A = 25^{\circ}\text{C}$
1 sec non-repetitive pulse | 7.5 | | Adc | | OFF CHARACTERISTICS | | | | | | | Collector Emitter
Breakdown Voltage ¹
(Base Open) | V _{(BR)CEO} | $I_{CE} = 100 \text{ mAdc}; T_{J} = 25^{\circ}\text{C}$ | | | Vdc | | PMD16K, 17K80
PMD16K, 17K100 | | | 80
100 | | | | Collector Emitter
Sustaining Voltage ¹
PMD16K, 17K80
PMD16K, 17K100 | V _{(SUS)CER} | $I_{CE}=100$ mAdc; $R_{BE}=2.2k\Omega$ | 80
100 | | Vdc | | Emitter Base
Leakage Current | I _{EBO} | $V_{EB} = 5 \text{ Vdc}; I_{C} = 0A$ | | 3.0 | mAdc | | Collector Emitter
Leakage Current | I _{CER} | | | | mAdc | | PMD16K, 17K80
PMD16K, 17K100 | | $V_{CE}=54$ Vdc; $R_{BE}=2.2k\Omega$ $V_{CE}=67$ Vdc; $R_{BE}=2.2k\Omega$ | | 7.0
7.0 | | | DYNAMIC CHARACTERISTIC | S | | | ! | · | | Output Capacitance | Соь | $V_{CB} = 10 \text{ Vdc}; I_E = 0 \text{ Adc}$
$f = 1 \text{ MHz}; T_J = 25^{\circ}\text{C}$ | | 400 | pF | | Small Signal
Current Gain | h _{fe} | $I_C = 7$ Adc; $V_{CE} = 3$ Vdc
f = 1 kHz; $T_J = 25^{\circ}$ C | 300 | | | | Common Emitter
Short Circuit
Forward Transfer
Ratio | h _{fe} | $I_C = 7 \text{ Adc}; V_{CE} = 3 \text{ Vdc}$
$f = 1 \text{ MHz}; T_J = 25^{\circ}\text{C}$ | 4 | | | ⁽¹⁾ Pulse tested with pulse width \leq 300 μS and duty cycle \leq 2.0%. #### **OPERATIONAL DATA** ### **OPERATIONAL DATA** VOLTS #### ON VOLTAGE VS COLLECTOR CURRENT (PMD 17K SERIES) # DC COLLECTOR CURRENT GAIN VS COLLECTOR CURRENT (PMD 16K SERIES) #### DC COLLECTOR CURRENT GAIN VS COLLECTOR CURRENT (PMD 17K SERIES) #### **OPERATIONAL DATA** ### COLLECTOR SATURATION REGION (PMD 16K SERIES) ### COLLECTOR SATURATION REGION (PMD 17K SERIES) ### **BLOCK DIAGRAMS** **NPN** #### **PNP** ### **DEVICE OUTLINE** #### **Bottom View** 1 — Base2 — EmitterCase Is Collector