HFBR-3810Z & HFBR-3810MSZ

650 nm Fiber Optics Link for DC to 10Mbaud

Data Sheet

Description

HFBR-3810Z consists of an optic transmitter and receiver operating at 650nm wavelength. Pin to pin distance of 24.96 mm provides transient voltage suppression of 12kV.

Applications

- Drives/Inverters
- Galvanic isolation on one single PCB

Features

- Data transmission at signal rates of DC to 10MBaud
- DC coupled receiver with CMOS/TTL output for easy designs: no data encoding or digitizing circuitry required
- High noise immunity
- RoHS compliant
- Transient voltage suppression of up to 12kV according IEC 60664-1
- Laser class 1 according to IEC-60825: Amendment 2001

HFBR-3810Z & HFBR-3810MSZ DC to 10MBaud Data Link

Absolute Maximum Ratings

Parameter		Symbol	Min.	Max.	Units
Signaling Rate		fs	DC	10	Mbd
Storage and Operating Temperature		T _{S,O}	-40	+85	°C
Receiver supply voltage		V _{CC}	-0.5	+5.5	V
Receiver Average Output Current		I _{O,AVG}	-16	16	mA
Receiver Output Power Dissipation		P _{OD}		80	mW
Transmitter Peak Forward Input Current ^[1]		I _{F,PK}		90	mA
Transmitter Reverse Input Voltage		V _R		3	V
Rated impulse voltage ^[2]		VT		12	kV
Lead Soldering Cycle ^[3, 4] Temp		T _{SOL}		+260	°C
	Time			10	Sec
Nominal Voltage of the supply system ^[2]		Veff		1000	V

Notes:

1. For $I_{F,Pk}>60mA$, the duty cycle factor must maintain $I_{F,AV}\leq 60mA$ and pulse width $\leq 1\mu s$

2. Overvoltage category 4; inhomogeneous field; pollution degree 3; material group 2; altitude up to 4000m above sea level

3. 1.6mm below seating plane; wave soldering only

4. MSL class 3

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units	
Ambient Temperature	T _A	-40	85	°C	
Power Supply Voltage ^[1]	V _{CC}	4.75	5.25	V	
Transmitter Average Forward Current	I _{F,AV}	40	60	mA	

Note:

1. <100m_{p-p} Noise

All the data in this specification refers to the operating conditions above and over lifetime unless otherwise stated.

ATTENTION: Stresses above those listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Electrical Input Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Units
Forward Voltage ^[1]	V _F	1.8	2.1	2.65	V
Forward Voltage Temperature Coefficient	$\Delta V_{\rm F}/$ / ΔT		-1.8		mV/°C
Reverse Input Breakdown Voltage ^[2]	V _{BR}	3.0	13		V
Diode Capacitance ^[3]	C ₀		60		pF

Notes:

1. $I_{F,dc} = 60 \text{mA}$

2. $I_{F,dc} = -10\mu A$ 3. $V_F = 0V; f = 1MHz$

Electrical Output Signal Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Units
Supply Current (without LED current)	Icc		27	45	mA
High Level Output Voltage	V _{OH}	4.2	4.7		V
Low Level Output Voltage	V _{OL}		0.22	0.4	V
Output Risetime (10-90%) [1, 2]	t _r		10	20	ns
Output Falltime (90-10%) ^[1, 2]	t _f		10	20	ns
Power Supply Noise Immunity	PSNI	0.1	0.4		V _{pp}

Notes:

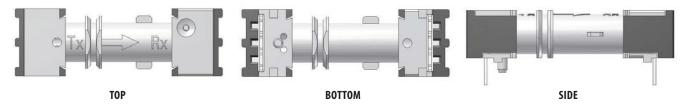
1. $C_L = 10 pF$

2. In the recommended drive circuit

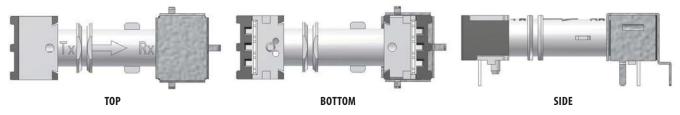
3. Typical Value measured from junction to PC board solder joint for horizontal mount package

Specified Link Performance, $T_A = -40^{\circ}$ to $+85^{\circ}$ C, DC to 10MBaud, unless otherwise noted.

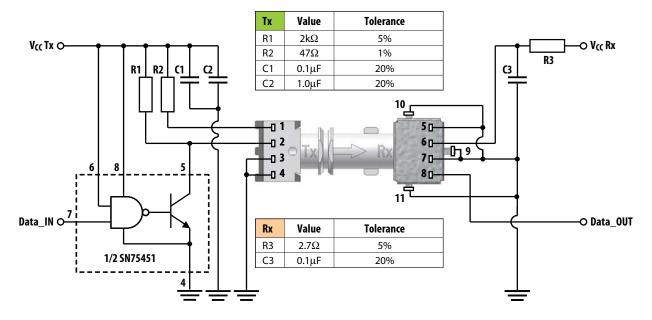
Parameter	Symbol	Min.	Тур	Max.	Unit	Condition
Signaling Rate	fs	DC		10	Mb/s	NRZ
Pulse Width Variation ^[1]	PWV	80		120	ns	10Mbaud
Propagation Delay Time ^[2]	t _D		95		ns	Assuming a delay of 10ns from the application (already included)
Duty Cycle Distortion ^[3]	DCD	-10		+10	ns	10Mbaud


Notes:

1. Minimum/maximum duty cycle distortion +/-10ns

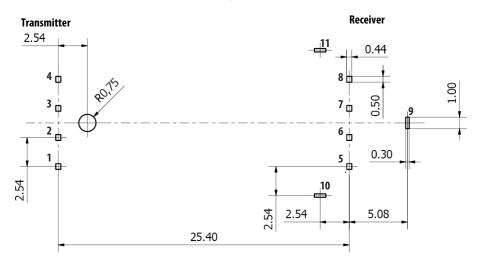

2. Determined from 50% of the rising edge of data_in to 50% of the consecutive falling egde of data_out

3. +/-10% of the nominal pulse width

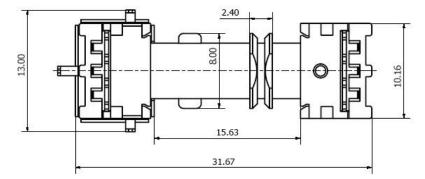

HFBR-3810Z View

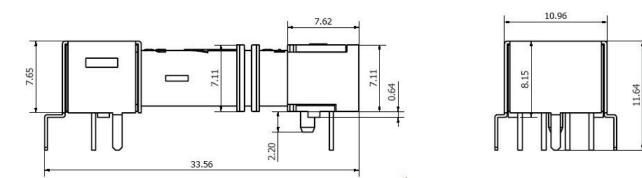
HFBR-3810MSZ View

Mandatory Drive circuit – Top view


Pin description

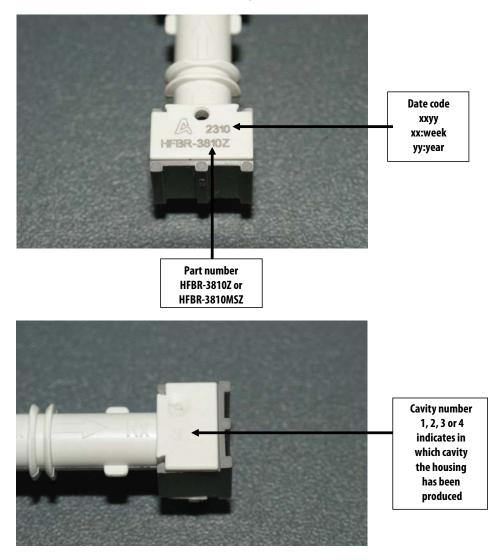
Pin No.	Transmitter	Pin No.	Receiver
1	Anode	5	GND
2	Cathode	6	VCC(5V)
3	GND	7	GND
4	GND	8	Data_OUT
		9, 10, 11	GND (shield option ^[1])


Note:


1. Pin 9,10 and 11 are not available if HFBR-3810Z is used and therefore do not need to be considered.

HFBR-3810Z and HFBR-3810MSZ – Footprint bottom view

HFBR-3810Z^[1] and HFBR-3810MSZ – Mechanical Dimensions



Note:

1. In case HFBR-3810Z is used: a) the dimensions of both ends are identical; b) the total length is reduced to 31.13mm

HFBR-3810Z and HFBR-3810MSZ - Marking

For product information and a complete list of distributors, please go to our web site: www.avagotech.com

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries. Data subject to change. Copyright © 2005-2010 Avago Technologies. All rights reserved. AV02-2510EN - July 7, 2010

