Features

- High-speed access
- Commercial:20/25/35/55/100ns (max.)
- Industrial:25ns(max.)
- Military:25/35/55/100ns(max.)
- Low-power operation
- IDT7132/42SA

Active: 325 mW (typ.)
Standby: 5mW (typ.)

- IDT7132/42LA

Active: 325 mW (typ.)
Standby: 1 mW (typ.)

- MASTERIDT7132 easily expands data bus width to 16-or-more bits using SLAVE IDT7142
- On-chip port arbitration logic (IDT7132 only)
- BUSY output flag on IDT7132; $\overline{\text { BUSY }}$ input on IDT7142
- Battery backup operation -2V data retention (LA only)
- TTL-compatible, single $5 \mathrm{~V} \pm 10 \%$ power supply
- Available in 48-pin DIP, LCC and Flatpack, and 52-pin PLCC packages
- Military product compliant to MIL-PRF-38535 QML
- Industrial temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ is available for selected speeds
- Green parts available, see ordering information

Functional Block Diagram

NOTES:

1. IDT7132 (MASTER): $\overline{\mathrm{BUSY}}$ is open drain output and requires pullup resistor of 270Ω.

IDT7142 (SLAVE): $\bar{B} U S Y$ is input.
2. Open drain output: requires pullup resistor of 270Ω.

Description

The IDT7132/IDT7142 arehigh-speed $2 \mathrm{~K} \times 8$ Dual-PortStatic RAMs. The IDT7132 is designedtobe usedas astand-alone 8-bitDual-PortRAM or as a "MASTER" Dual-Port RAM together with the IDT7142 "SLAVE" Dual-Port in 16-bit-or-more word width systems. Using the IDTMASTER/ SLAVE Dual-Port RAM approach in 16-or-more-bit memory system applications results infull-speed, error-free operation without the needfor additional discrete logic.

Both devices provide two independent ports with separate control, address, andl/O pins that permitindependent, asynchronous access for reads or writes to any location in memory. An automatic power down feature, controlled by $\overline{\mathrm{CE}}$ permits the on-chip circuitry of each portto enter
a very low standby power mode.
Fabricated using IDT's CMOS high-performance technology, these devices typically operate on only 325 mW of power. Low-power (LA) versions offer battery backup data retention capability, with each DualPort typically consuming $200 \mu \mathrm{~W}$ from a 2 V battery.

The IDT7132/7142 devices are packaged in a 48-pin sidebraze or plastic DIPs, 48-pin LCCs, 52-pin PLCCs, and 48-lead flatpacks. Military grade product is manufactured in compliance with the latest revision of MIL-PRF-38535 QML, making it ideally suited to military temperature applications demanding the highest level of performance and reliability.

Pin Configurations ${ }^{(1,2,3)}$

NOTES:

1. All Vcc pins must be connected to the power supply.
2. All GND pins must be connected to the ground supply.
3. P48-1 package body is approximately .55 in $x 2.43$ in $x .18$ in.

C48-2 package body is approximately .62 in $\times 2.43$ in $x .15$ in. L48-1 package body is approximately .57 in $x .57$ in $x .68$ in. F48-1 package body is approximately .75 in $x .75$ in $x .11$ in.
4. This package code is used to reference the package diagram.
5. This text does not indicate orientation of the actual part-marking.

Capacitance ${ }^{(1)}\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$

Symbol	Parameter	Conditions $^{(2)}$	Max.	Unit
CIN	Input Capacitance	$\mathrm{VIN}=3 \mathrm{dV}$	11	pF
CouT	Output Capacitance	Vout $=3 \mathrm{dV}$	11	pF

NOTES:

1. This parameter is determined by device characterization but is not production tested.
2. 3dV represents the interpolated capacitance when the input and output signals switch from 3 V to OV .

Pin Configurations ${ }^{(1,2,3)}$ (con't.)

NOTES:

1. All Vcc pins must be connected to the power supply.
2. All GND pins must be connected to the ground supply.
3. Package body is approximately .75 in $x .75$ in $x .17$ in.
4. This package code is used to reference the package diagram.
5. This text does not indicate orientation of the actual part-marking.

Absolute Maximum Ratings ${ }^{(1)}$

Symbol	Rating	Commercial \& Industrial	Military	Unit
VTERM $^{(2)}$	Terminal Voltage with Respect to GND	-0.5 to +7.0	-0.5 to +7.0	V
TBIAS	Temperature Under Bias	-55 to +125	-65 to +135	${ }^{\circ} \mathrm{C}$
TSTG	Storage Temperature	-65 to +150	-65 to +150	${ }^{\circ} \mathrm{C}$
IOUT	DC Output Current	50	50	mA

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Vterm must not exceed $\mathrm{Vcc}+10 \%$ for more than 25% of the cycle time or 10 ns maximum, and is limited to $\leq 20 \mathrm{~mA}$ for the period of VTERM $\geq \mathrm{Vcc}+10 \%$.

Recommended Operating

 Temperature and Supply Voltage ${ }^{(1,2)}$| Grade | Ambient
 Temperature | GND | Vcc |
| :--- | :---: | :---: | :---: |
| Military | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | OV | $5.0 \mathrm{~V} \pm 10 \%$ |
| Commercial | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | OV | $5.0 \mathrm{~V} \pm 10 \%$ |
| Industrial | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 0 V | $5.0 \mathrm{~V} \pm 10 \%$ |

NOTES:

1. This is the parameter TA. This is the "instant on" case temperature.
2. Industrial temperature: for specific speeds, packages and powers contact your sales office.

Recommended DC Operating Conditions

Symbol	Parameter	Min.	Typ.	Max.	Unit
VCC	Supply Voltage	4.5	5.0	5.5	V
GND	Ground	0	0	0	V
VIH	Input High Voltage	2.2	-	$6.0^{(2)}$	V
VIL	Input Low Voltage	$-0.5^{(1)}$	-	0.8	V

NOTES:

2698 tol 0

1. $\operatorname{VIL}(\min)=.-1.5 \mathrm{~V}$ for pulse width less than 10 ns .
2. Vterm must not exceed Vcc $+10 \%$.

DC Electrical Characteristics Over the Operating
Temperature and Supply Voltage Range ${ }^{(1,5,8)}(\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%)$

Symbol	Parameter	Test Condition	Version		$\begin{aligned} & 7132 \times 20^{(2)} \\ & 7142 \times 20^{(2)} \\ & \text { Com'I Only } \end{aligned}$		$\begin{aligned} & 7132 \times 25^{(7)} \\ & 7142 \times 25^{(7)} \\ & \text { Com'l, Ind } \\ & \text { \& Military } \end{aligned}$		$\begin{aligned} & 7132 \times 35 \\ & 7142 \times 35 \\ & \text { Com'I \& } \\ & \text { Military } \end{aligned}$		Unit
					Typ.	Max.	Typ.	Max.	Typ.	Max.	
ICC	Dynamic Operating Current (Both Ports Active)	$\begin{aligned} & \overline{\mathrm{CE} L}=\overline{\mathrm{CE}} \mathrm{R}=\text { VIL, } \\ & \text { Outputs Disabled } \\ & \mathrm{f}=\mathrm{fMAX} \mathrm{X}^{(3)} \end{aligned}$	COM'L	$\begin{aligned} & \hline \text { SA } \\ & \text { LA } \end{aligned}$	$\begin{aligned} & 110 \\ & 110 \end{aligned}$	$\begin{aligned} & 250 \\ & 200 \end{aligned}$	$\begin{aligned} & 110 \\ & 110 \end{aligned}$	$\begin{aligned} & 220 \\ & 170 \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \end{aligned}$	$\begin{aligned} & 165 \\ & 120 \end{aligned}$	mA
			$\begin{aligned} & \text { MIL \& } \\ & \text { IND } \end{aligned}$	$\begin{aligned} & \text { SA } \\ & \text { LA } \end{aligned}$	-	-	$\begin{aligned} & 110 \\ & 110 \end{aligned}$	$\begin{aligned} & 280 \\ & 220 \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \end{aligned}$	$\begin{aligned} & 230 \\ & 170 \end{aligned}$	
ISB1	Standby Current (Both Ports - TLL Level Inputs)	$\begin{aligned} & \overline{C E} L=\overline{C E} R=V \mathbb{C}, \\ & f=f M A X^{(3)} \end{aligned}$	COM'L	$\begin{aligned} & \text { SA } \\ & \text { LA } \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 65 \\ & 45 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 65 \\ & 45 \end{aligned}$	25 25	65 45	mA
			$\begin{array}{\|l\|} \text { MIL \& } \\ \text { IND } \end{array}$	$\begin{aligned} & \text { SA } \\ & \text { LA } \end{aligned}$	-	-	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 80 \\ & 60 \end{aligned}$	25 25	80 60	
ISB2	Standby Current (One Port - TTL Level Inputs)	$\overline{\mathrm{CE}} \mathrm{AA}^{\prime}=\mathrm{VIL}$ and $\overline{\mathrm{CE}} \mathrm{EBB}^{\prime \prime}=\mathrm{VIH}{ }^{(6)}$ Active Port Outputs Disabled $f=$ fmax ${ }^{(3)}$	COM'L	$\begin{aligned} & \text { SA } \\ & \text { LA } \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 165 \\ & 125 \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 150 \\ & 115 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 125 \\ & 90 \end{aligned}$	mA
			$\begin{array}{\|l\|} \text { MIL \& } \\ \text { IND } \end{array}$	$\begin{aligned} & \text { SA } \\ & \text { LA } \end{aligned}$	-	-	$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 160 \\ & 125 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 150 \\ & 115 \end{aligned}$	
ISB3	Full Standby Current (Both Ports - All CMOS Level Inputs)	$\overline{\mathrm{CE}} \mathrm{L}$ and $\overline{\mathrm{CE}} \mathrm{R} \geq \mathrm{VCC}-0.2 \mathrm{~V}$ $\mathrm{VIN} \geq \mathrm{VCC}-0.2 \overline{\mathrm{~V}}$ or $\mathrm{VIN} \leq 0.2 \mathrm{~V}, f=0^{(4)}$	COM'L	$\begin{aligned} & \text { SA } \\ & \text { LA } \end{aligned}$	$\begin{aligned} & 1.0 \\ & 0.2 \end{aligned}$	$\begin{gathered} 15 \\ 5 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 15 \\ & 5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 02 \end{aligned}$	$\begin{gathered} 15 \\ 4 \end{gathered}$	mA
			$\begin{array}{\|l\|} \mathrm{MIL} \\ \text { IND } \end{array}$	$\begin{aligned} & \text { SA } \\ & \text { LA } \end{aligned}$	-	-	$\begin{aligned} & 1.0 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 30 \\ & 10 \end{aligned}$	1.0	$\begin{aligned} & 30 \\ & 10 \end{aligned}$	
ISB4	Full Standby Current (One Port - All CMOS Level Inputs)	$\begin{aligned} & \overline{\mathrm{CE}} \mathrm{EA}^{\prime \prime} \leq 0.2 \mathrm{~V} \text { and } \overline{\mathrm{CE}} \mathrm{BB}^{\mathrm{B}} \geq \mathrm{VCC}-0.2 \mathrm{~V}^{(6)} \\ & \mathrm{VIN} \geq \mathrm{VCC}-0.2 \mathrm{~V} \text { or VIN } \leq 0.2 \mathrm{~V} \\ & \text { Active Port Outputs Disabled } \\ & \left.\mathrm{f}=\mathrm{fMAX} \mathrm{X}^{3}\right) \end{aligned}$	COM'L	$\begin{aligned} & \text { SA } \\ & \text { LA } \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 155 \\ & 115 \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 145 \\ & 105 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 110 \\ & 85 \end{aligned}$	mA
			$\begin{array}{\|l} \mathrm{MIL} \& \\ \text { IND } \end{array}$	$\begin{aligned} & \text { SA } \\ & \text { LA } \end{aligned}$	-	-	$\begin{aligned} & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 155 \\ & 115 \end{aligned}$	45 45	$\begin{aligned} & 145 \\ & 105 \end{aligned}$	

Symbol	Parameter	Test Condition	Version		$\begin{aligned} & 7132 \times 55 \\ & 7142 \times 55 \\ & \text { Com'l \& } \\ & \text { Military } \end{aligned}$		$\begin{aligned} & \text { 7132X100 } \\ & \text { 7142X100 } \\ & \text { Com'I \& } \\ & \text { Military } \end{aligned}$		Unit
					Typ.	Max.	Typ.	Max.	
ICC	Dynamic Operating Current (Both Ports Active)	$\begin{aligned} & \bar{C} \bar{C}=\overline{C E}=V_{I L}, \\ & \text { Outputs Disabled } \\ & \mathrm{f}=\mathrm{fMAX}{ }^{(\beta)} \end{aligned}$	COM'L	$\begin{aligned} & \text { SA } \\ & \text { LA } \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 155 \\ & 110 \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 155 \\ & 110 \end{aligned}$	mA
			$\begin{array}{\|l\|} \mathrm{MIL} \& \\ \text { IND } \end{array}$	$\begin{aligned} & \text { SA } \\ & \text { LA } \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 190 \\ & 140 \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 190 \\ & 140 \end{aligned}$	
ISB1	Standby Current (Both Ports - TLL Level Inputs)	$\begin{aligned} & \bar{C} \overline{C I}_{1}=\overline{C E} R=V I H, \\ & f=\mathrm{FMAX}{ }^{(3)} \end{aligned}$	COM'L	$\begin{aligned} & \text { SA } \\ & \text { LA } \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 65 \\ & 35 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	55 35	mA
			$\begin{aligned} & \text { MIL \& } \\ & \text { IND } \end{aligned}$	$\begin{aligned} & \text { SA } \\ & \text { LA } \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 65 \\ & 45 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 65 \\ & 45 \end{aligned}$	
ISB2	Standby Current (One Port - TTL Level Inputs)	$\begin{aligned} & \overline{\mathrm{C}} \bar{E}^{\prime \prime} A^{\prime \prime}=\mathrm{VIL} \text { and } \overline{\mathrm{CE}} \overline{\mathrm{E}}^{\prime \prime}{ }^{\text {Active }=\mathrm{V} \mathrm{HH}^{(6)}} \\ & \mathrm{f}=\mathrm{fMAX}^{(3)} \end{aligned}$	COM'L	$\begin{aligned} & \text { SA } \\ & \text { LA } \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 110 \\ & 75 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 110 \\ & 75 \end{aligned}$	mA
			$\begin{array}{\|l\|} \mathrm{MIL} \\ \text { IND } \end{array}$	$\begin{aligned} & \text { SA } \\ & \text { LA } \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 125 \\ & 90 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 125 \\ & 90 \end{aligned}$	
ISB3	Full Standby Current (Both Ports - All CMOS Level Inputs)	$\overline{\mathrm{C}} \overline{\mathrm{E}}$ and $\overline{\mathrm{C}}_{\mathrm{E}}>\mathrm{Vcc}-0.2 \mathrm{~V}$ $\mathrm{VIN} \geq \mathrm{Vcc}-0.2 \overline{\mathrm{~V}}$ or $\mathrm{VIN} \leq 0.2 \mathrm{~V}, \mathrm{f}=0^{(4)}$	COM'L	$\begin{aligned} & \text { SA } \\ & \text { LA } \end{aligned}$	$\begin{aligned} & 1.0 \\ & 0 \end{aligned}$	$\begin{gathered} 15 \\ 4 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 0.2 \end{aligned}$	$\begin{gathered} 15 \\ 4 \end{gathered}$	mA
			$\begin{aligned} & \mathrm{MIL} \& \\ & \text { IND } \end{aligned}$	$\begin{aligned} & \text { SA } \\ & \text { LA } \end{aligned}$	$\begin{aligned} & 1.0 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 30 \\ & 10 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 30 \\ & 10 \end{aligned}$	
ISB4	Full Standby Current (One Port - All CMOS Level Inputs)		COM'L	$\begin{aligned} & \text { SA } \\ & \text { LA } \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 100 \\ & 70 \end{aligned}$	40 40	$\begin{aligned} & 95 \\ & 70 \end{aligned}$	mA
			$\begin{array}{\|l\|} \text { MIL } \& ~ \\ \text { IND } \end{array}$	SA	$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 110 \\ & 85 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 110 \\ & 80 \end{aligned}$	

NOTES:

1. ' X ' in part numbers indicates power rating (SA or LA).
2. PLCC Package only
3. At $f=$ fmax, address and control lines (except Output Enable) are cycling at the maximum frequency read cycle of $1 /$ trc, and using "AC TEST CONDITIONS" of input levels of GND to 3V.
4. $f=0$ means no address or control lines change. Applies only to inputs at CMOS level standby.
5. $\mathrm{V} C \mathrm{C}=5 \mathrm{~V}, \mathrm{~T} A=+25^{\circ} \mathrm{C}$ for Typ and is not production tested. $\mathrm{VCC} D C=100 \mathrm{~mA}$ (Typ)
6. Port "A" may be either left or right port. Port " B " is opposite from port " A ".
7. Not available in DIP packages.
8. Industrial temperature: for specific speeds, packages and powers contact your sales office.

DC Electrical Characteristics Over the Operating
Temperature Supply Voltage Range (Vcc $=5.0 \mathrm{~V} \pm 10 \%$)

Symbol	Parameter	Test Conditions	$\begin{aligned} & 732 S A \\ & 7142 S A \end{aligned}$		$\begin{aligned} & 7132 L A \\ & 7142 L A \end{aligned}$		Unit	
			Min.	Max	Min.	Max.		
\|lL		Input Leakage Current ${ }^{(1)}$	$\begin{aligned} & V c C=5.5 \mathrm{~V}, \\ & \mathrm{VIN}=0 \mathrm{~V} \text { to } \mathrm{Vcc} \end{aligned}$	-	10	-	5	$\mu \mathrm{A}$
\|ILO		Output Leakage Current	$\begin{aligned} & \mathrm{VCC}=5.5 \mathrm{~V}, \\ & \frac{\mathrm{CE}}{}=\mathrm{VIH}, \mathrm{Vout}=0 \mathrm{~V} \text { to } \mathrm{Vcc} \end{aligned}$	-	10	-	5	$\mu \mathrm{A}$
Vol	Output Low Voltage	$1 \mathrm{LL}=4 \mathrm{~mA}$	-	0.4	-	0.4	V	
Vol	Open Drain Output Low Voltage (BUSY)	$\mathrm{lOL}=16 \mathrm{~mA}$	-	0.5	-	0.5	V	
Vor	Output High Voltage	$1 \mathrm{OH}=-4 \mathrm{~mA}$	2.4	-	2.4	-	V	

NOTE:

1. At $\mathrm{Vcc} \leq 2.0 \mathrm{~V}$ leakages are undefined.

Data Retention Characteristics (LA Version Only)

Symbol	Parameter	Test Condition		Min.	Typ. ${ }^{(1)}$	Max.	Unit
VDR	Vcc for Data Retention	$\mathrm{Vcc}=2.0 \mathrm{~V}$		2.0	-	-	V
ICCDR	Data Retention Current	$\begin{aligned} & \overline{\mathrm{CE}} \geq \mathrm{Vcc}-0.2 \mathrm{~V} \\ & \mathrm{VIN} \geq \mathrm{Vcc}-0.2 \mathrm{~V} \text { or } \end{aligned}$	Mil. \& Ind.	-	100	4000	$\mu \mathrm{A}$
			Com'l.	-	100	1500	$\mu \mathrm{A}$
tcon ${ }^{(3)}$	Chip Deselect to Data Retention Time	V IN $\leq 0.2 \mathrm{~V}$		0	-	-	ns
tR ${ }^{(3)}$	Operation Recovery Time			$t C^{(2)}$	-	-	ns

NOTES:
2692 tbl 06

1. $\mathrm{VCC}=2 \mathrm{~V}, \mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, and is not production tested.
2. trC $=$ Read Cycle Time
3. This parameter is guaranteed but not production tested.

Data Retention Waveform

AC Test Conditions

Input Pulse Levels	GND to 3.0V
Input Rise/Fall Times	3ns Max.
Input Timing Reference Levels	1.5 V
Output Reference Levels	1.5 V
Output Load	Figures 1,2, and 3

Figure 1. AC Output Test Load

Figure 3. $\overline{B U S Y}$ AC Output Test Load

Figure 2. Output Test Load (for thz, tlz, twz, and tow) * Including scope and jig

IDT7132SA/LA and IDT 7142SA/LA
High Speed 2K x 8 Dual Port Static RAM

AC Electrical Characteristics Over the

 Operating Temperature and Supply Voltage Range ${ }^{(3,5)}$| Symbol | Parameter | $\begin{aligned} & 7132 \times 20^{(2)} \\ & 7142 \times 20^{(2)} \\ & \text { Com'I Only } \end{aligned}$ | | $\begin{aligned} & 7132 \times 25^{(2)} \\ & 7142 \times 25^{(2)} \\ & \text { Com'l, Ind } \\ & \text { \& Military } \end{aligned}$ | | $\begin{aligned} & 7132 \times 35 \\ & 7142 \times 35 \\ & \text { Com't \& } \\ & \text { Military } \end{aligned}$ | | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Min. | Max. | Min. | Max. | Min. | Max. | |
| READ CYCLE | | | | | | | | |
| trc | Read Cycle Time | 20 | - | 25 | - | 35 | - | ns |
| taA | Address Access Time | - | 20 | - | 25 | - | 35 | ns |
| tace | Chip Enable Access Time | - | 20 | - | 25 | - | 35 | ns |
| taoe | Output Enable Access Time | - | 11 | - | 12 | - | 20 | ns |
| tor | Output Hold from Address Change | 3 | - | 3 | - | 3 | - | ns |
| t.z | Output Low-Z Time ${ }^{(1,4)}$ | 0 | - | 0 | - | 0 | - | ns |
| thz | Output High-Z Time ${ }^{(1,4)}$ | - | 10 | - | 10 | - | 15 | ns |
| tpu | Chip Enable to Power Up Time ${ }^{(4)}$ | 0 | - | 0 | - | 0 | - | ns |
| tPD | Chip Disable to Power Down Time ${ }^{(4)}$ | - | 20 | - | 25 | - | 35 | ns |

Symbol	Parameter	$\begin{aligned} & \text { 7132X55 } \\ & 7142 \times 55 \\ & \text { Com'I \& } \\ & \text { Military } \end{aligned}$		7132X100 7142X100 Com'l \& Military		Unit
		Min.	Max.	Min.	Max.	

READ CYCLE

trC	Read Cycle Time	55	-	100	-	ns
taA	Address Access Time	-	55	-	100	ns
tACE	Chip Enable Access Time	-	55	-	100	ns
taoe	Output Enable Access Time	-	25	-	40	ns
toH	Output Hold from Address Change	3	-	10	-	ns
t.z	Output Low-Z Time ${ }^{(1,4)}$	5	-	5	-	ns
thz	Output High-Z Time ${ }^{(1,4)}$	-	25	-	40	ns
tPu	Chip Enable to Power Up Time ${ }^{(4)}$	0	-	0	-	ns
tPD	Chip Disable to Power Down Time ${ }^{(4)}$	-	50	-	50	ns

NOTES:

1. Transition is measured OmV from Low or High-Impedance Voltage Output Test Load (Figure 2).
2. PLCC package only.
3. 'X' in part numbers indicates power rating (SA or LA).
4. This parameter is guaranteed by device characterization, but is not production tested.
5. Industrial temperature: for specific speeds, packages and powers contact your sales office.

Timing Waveform of Read Cycle No. 1, Either Side ${ }^{(1)}$

Timing Waveform of Read Cycle No. 2, Either Side ${ }^{(1)}$

NOTES:

1. $\mathrm{R} \overline{W_{N}}=\mathrm{V}_{\mathrm{H}}, \overline{\mathrm{CE}}=\mathrm{V}$ IL, and is $\overline{\mathrm{OE}}=\mathrm{V}_{\text {IL }}$. Address is valid prior to the coincidental with $\overline{\mathrm{CE}}$ transition LOW.
2. tBDD delay is required only in the case where the opposite port is completing a write operation to the same address location. For simultaneous read operations, $\bar{B} \operatorname{BSY}$ has no relationship to valid output data.
3. Start of valid data depends on which timing becomes effective last tAOE, tACE, tAA, and tBDD.
4. Timing depends on which signal is asserted last, $\overline{\mathrm{OE}}$ or $\overline{\mathrm{CE}}$.
5. Timing depends on which signal is de-asserted first, $\overline{\mathrm{OE}}$ or $\overline{\mathrm{CE}}$.

AC Electrical Characteristics Over the

 Operating Temperature Supply Voltage Range| Symbol | Parameter | $\begin{aligned} & 7132 \times 20^{(2)} \\ & 7142 \times 20^{(2)} \\ & \text { Com'I Only } \end{aligned}$ | | $7132 \times 25^{(2)}$$7142 \times 55^{(2)}$ 7142X25 \& Military | | $\begin{aligned} & \text { 7132X35 } \\ & 7142 \times 35 \\ & \text { Com'I \& } \\ & \text { Military } \end{aligned}$ | | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Min. | Max. | Min. | Max | Min. | Max. | |

WRITE CYCLE

twc	Write Cycle Time ${ }^{(3)}$	20	-	25	-	35	-	ns
tew	Chip Enable to End-of-Write	15	-	20	-	30	-	ns
taw	Address Valid to End-of-Write	15	-	20	-	30	-	ns
tAS	Address Set-up Time	0	-	0	-	0	-	ns
twp	Write Pulse Width ${ }^{(4)}$	15	-	15	-	25	-	ns
tWR	Write Recovery Time	0	-	0	-	0	-	ns
tDW	Data Valid to End-of-Write	10	-	12	-	15	-	ns
tHZ	Output High-Z Time ${ }^{(1)}$	-	10	-	10	-	15	ns
tDH	Data Hold Time	0	-	0	-	0	-	ns
tWZ	Write Enable to Output in High-Z ${ }^{(1)}$	-	10	-	10	-	15	ns
tow	Output Active from End-of-Write ${ }^{(1)}$	0	-	0	-	0	-	ns

2692 tbl 09

	Parameter	$\begin{aligned} & 7132 \times 55 \\ & 7142 \times 55 \\ & \text { Com'I \& } \\ & \text { Military } \end{aligned}$		$\begin{aligned} & 7132 \times 100 \\ & 7142 \times 100 \\ & \text { Com'I \& } \\ & \text { Military } \end{aligned}$		Unit
Symbol		Min.	Max.	Min.	Max.	

twc	Write Cycle Time ${ }^{(3)}$	55	-	100	-	ns
tEw	Chip Enable to End-of-Write	40	-	90	-	ns
taw	Address Valid to End-of-Write	40	-	90	-	ns
tas	Address Set-up Time	0	-	0	-	ns
twp	Write Pulse Width ${ }^{(4)}$	30	-	55	-	ns
twr	Write Recovery Time	0	-	0	-	ns
tow	Data Valid to End-of-Write	20	-	40	-	ns
thz	Output High-Z Time ${ }^{(1)}$	-	25	-	40	ns
toH	Data Hold Time	0	-	0	-	ns
twz	Write Enable to Output in High-ZZ ${ }^{(1)}$	-	30	-	40	ns
tow	Output Active from End-of-Write ${ }^{(1)}$	0	-	0	-	ns

NOTES:

1. Transition is measured 0 mV from Low or High-impedance voltage with Output Test Load (Figure 2). This parameter is guaranteed by device characterization but is not production tested.
2. PLCC package only.
3. For Master/Slave combination, twc $=t B A A+t w p$, since $R / W=V / L$ must occur after tBAA.
4. If $\overline{O E}$ is LOW during a $R \bar{W}$ controlled write cycle, the write pulse width must be the larger of twp or (twz + tow) to allow the I / O drivers to turn off data to be placed on the bus for the required tow. If $\overline{\mathrm{OE}}$ is High during a $\mathrm{R} \overline{\mathrm{W}}$ controlled write cycle, this requirement does not apply and the write pulse can be as short as the specified twp.
5. 'X' in part numbers indicates power rating ($S A$ or $L A$).
6. Industrial temperature: for specific speeds, packages and powers contact your sales office.

IDT7132SA/LA and IDT 7142SA/LA
High Speed 2K x 8 Dual Port Static RAM
Timing Waveform of Write Cycle No. 1, (R/工्W Controlled Timing) $)^{(1,5,8)}$

Timing Waveform of Write Cycle No. 2, ($\overline{\mathbf{C E}}$ Controlled Timing $)^{(1,5)}$

NOTES:
2692 drw 10

1. $\mathrm{R} \overline{\mathrm{N}}$ or $\overline{\mathrm{CE}}$ must be HIGH during all address transitions.
2. A write occurs during the overlap (tew or twP) of $\overline{C E}=$ VIL and $R \bar{W}=V_{I L}$.
3. twR is measured from the earlier of $\overline{C E}$ or $\mathrm{R} \overline{\mathrm{W}}$ going HIGH to the end of the write cycle.
4. During this period, the I/O pins are in the output state and input signals must not be applied
5. If the $\overline{C E}$ LOW transition occurs simultaneously with or after the R \bar{W} LOW transition, the outputs remain in the High-impedance state.
6. Timing depends on which enable signal (CE or R/W) is asserted last.
7. This parameter is determined be device characterization, but is not production tested. Transition is measured OmV from steady state with the Output Test Load (Figure 2).
8. If $\overline{\mathrm{OE}}$ is LOW during a $\mathrm{R} / \overline{\mathrm{W}}$ controlled write cycle, the write pulse width must be the larger of twp or (twz + tow) to allow the I/O drivers to turn off data to be placed on the bus for the required tDw. If $\overline{O E}$ is HIGH during a R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as the specified twp.

AC Electrical Characteristics Over the

Operating Temperature and Supply Voltage Range ${ }^{(7,8)}$

Symbol	Parameter	$\begin{aligned} & 7132 \times 20^{(1)} \\ & 7142 \times 20^{(1)} \\ & \text { Com'I Only } \end{aligned}$		$\begin{aligned} & 7132 \times 25^{(2)} \\ & 7142 \times 25^{(2)} \\ & \text { Com'l, Ind } \\ & \text { \& Military } \end{aligned}$		$\begin{aligned} & 7132 \times 35 \\ & 7142 \times 35 \\ & \text { Com'I \& } \\ & \text { Military } \end{aligned}$		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
$\overline{\text { BUSY }}$ Timing (For Master IDT7132 Only)								
tBAA	$\overline{\text { BUSY }}$ Access Time from Address	-	20	-	20	-	20	ns
tBDA	$\overline{\text { BUSY }}$ Disable Time from Address	-	20	-	20	-	20	ns
tBAC	$\overline{\text { BUSY }}$ Access Time from Chip Enable	-	20	-	20	-	20	ns
tBDC	$\overline{\text { BUSY }}$ Disable Time from Chip Enable	-	20	-	20	-	20	ns
twDD	Write Pulse to Data Delay ${ }^{(2)}$	-	50	-	50	-	60	ns
twh	Write Hold After $\overline{\mathrm{BUSY}}{ }^{(6)}$	12	-	15	-	20	-	ns
tod	Write Data Valid to Read Data Delay ${ }^{(2)}$	-	35	-	35	-	35	ns
taps	Arbitration Priority Set-up Time ${ }^{(3)}$	5	-	5	-	5	-	ns
tBDD	$\overline{\text { BUSY }}$ Disable to Valid Data ${ }^{(4)}$	-	25	-	35	-	35	ns
$\overline{\text { BUSY }}$ Timing (For Slave IDT7142 Only)								
twB	Write to $\overline{\text { BUSY }}$ Input ${ }^{(5)}$	0	-	0	-	0	-	ns
twh	Write Hold After $\overline{\mathrm{BUSY}}^{(6)}$	12	-	15	-	20	-	ns
twDD	Write Pulse to Data Delay ${ }^{(2)}$	-	40	-	50	-	60	ns
tDD	Write Data Valid to Read Data Delay ${ }^{(2)}$	-	30	-	35	-	35	ns

Symbol	Parameter	7132×55 7142×55 Military		$\begin{gathered} 7132 \times 100 \\ 7142 \times 100 \\ \text { Com'I \& } \\ \text { Military } \end{gathered}$		Unit
		Min.	Max.	Min.	Max.	
$\overline{\text { BUSY }}$ Timing (For Master IDT7132 Only)						
tBAA	$\overline{\text { BUSY }}$ Access Time from Address	-	30	-	50	ns
tBDA	$\overline{\mathrm{B} U S Y}$ Disable Time from Address	-	30	-	50	ns
tBAC	$\overline{\text { BUSY }}$ Access Time from Chip Enable	-	30	-	50	ns
tBDC	$\overline{\text { BUSY }}$ Disable Time from Chip Enable	-	30	-	50	ns
tWDD	Write Pulse to Data Delay ${ }^{(2)}$	-	80	-	120	ns
twh	Write Hold After $\overline{\text { BUSY }}^{(6)}$	20	-	20	-	ns
tod	Write Data Valid to Read Data Delay ${ }^{(2)}$	-	55	-	100	ns
tAPS	Arbitration Priority Set-up Time ${ }^{(3)}$	5	-	5	-	ns
tBDD	$\overline{\text { BUSY }}$ Disable to Valid Data ${ }^{(4)}$	-	50	-	65	ns
$\overline{\text { BUSY }}$ Timing (For Slave IDT7142 Only)						
twB	Write to $\overline{\mathrm{B}} \overline{\mathrm{SY}}$ Input ${ }^{(5)}$	0	-	0	-	ns
twh	Write Hold After $\overline{B U S Y}^{(6)}$	20	-	20	-	ns
twD	Write Pulse to Data Delay ${ }^{(2)}$	-	80	-	120	ns
toDD	Write Data Valid to Read Data Delay ${ }^{(2)}$	-	55	-	100	ns

NOTES:

1. PLCC package only.
2. Port-to-port delay through RAM cells from the writing port to the reading port, refer to "Timing Waveform of Write with Port -to-Port Read and BUSY."
3. To ensure that the earlier of the two ports wins.
4. tBDD is a calculated parameter and is the greater of 0 , twDD - twP (actual) or tDDD - tDW (actual).
5. To ensure that a write cycle is inhibited on port " B " during contention on port " A ".
6. To ensure that a write cycle is completed on port " B " after contention on port " A ".
7. ' X ' in part numbers indicates power rating (SA or LA).
8. Industrial temperature: for specific speeds, packages and powers contact your sales office.

Timing Waveform of Write with Port-to-Port Read and $\mathbf{B U S Y}^{(2,3,4)}$

NOTES:

1. To ensure that the earlier of the two ports wins. taPs is ignored for Slave (IDT7142).
2. $\overline{\mathrm{CE}} \mathrm{L}=\overline{\mathrm{CE}}_{\mathrm{R}}=\mathrm{V} \mathrm{IL}$
3. $\overline{\mathrm{OE}}=$ VIL for the reading port.
4. All timing is the same for the left and right ports. Port "A" may be either the left or right port. Port "B" is opposite from port "A".

Timing Waveform of Write with $\overline{\mathbf{B U S Y}}^{(4)}$

NOTES:

1. twh must be met for both $\bar{B} U S Y$ Input (IDT7142, slave) or Output (IDT7132, master).
2. $\overline{\mathrm{BUSY}}$ is asserted on port " B " blocking R/W"B", until $\overline{\mathrm{BUSY}}$ " B " goes HIGH.
3. twb applies only to the slave version (IDT7142).
4. All timing is the same for the left and right ports. Port 'A' may be either the left or right port. Port " B " is opposite from port " A ".

Timing Waveform of $\overline{\text { BUSY }}$ Arbitration Controlled by $\overline{\mathbf{C E}}$ Timing ${ }^{(1)}$

2692 drw 13
Timing Waveform of BUSY Arbitration Controlled by Address Match Timing ${ }^{(1)}$

2692 drw 14
NOTES:

1. All timing is the same for left and right ports. Port " A " may be either left or right port. Port " B " is the opposite from port " A ".
2. If tAPs is not satisified, the $\overline{\mathrm{BUSY}}$ will be asserted on one side or the other, but there is no guarantee on which side $\overline{\mathrm{BUSY}}$ will be asserted (7132 only).

Truth Tables

Table I. Non-Contention Read/Write Control ${ }^{(4)}$

Left or Right Port ${ }^{(1)}$				Function
R/W	$\overline{\mathrm{C}} \mathrm{E}$	$\overline{O E}$	D0-7	
X	H	X	Z	Port Disabled and in Power-Down Mode, ISB2 or ISB4
X	H	X	Z	$\overline{\mathrm{C} E R}=\overline{\mathrm{C}} \bar{E}^{\text {L }}$ VIH, Power-Down Mode, ISB1 or ISB3
L	L	X	DATAIN	Data on Port Written into Memory ${ }^{(2)}$
H	L	L	DATAOUT	Data in Memory Output on Port ${ }^{(3)}$
X	L	H	Z	High Impedance Outputs

NOTES:

1. $A 0 L-A 10 L \neq A 0 R-A 10 R$
2. If $\overline{B U S Y}=L$, data is not written.
3. If $\overline{\mathrm{BUSY}}=\mathrm{L}$, data may not be valid, see twDD and toDD timing.
4. 'H' = VIH, 'L' = VIL, 'X' = DON'T CARE, 'Z' = HIGH IMPEDANCE

Table II - Address $\overline{\mathbf{B U S Y}}$
 Arbitration

Inputs			Outputs		Function
$\bar{C} \bar{E}$ L	$\overline{\mathrm{C}} \mathrm{E}_{\mathrm{R}}$	Aol-A10L Aor-A10R	$\overline{\mathrm{BUSY}} \mathrm{Y}^{(1)}$	$\overline{B U S Y}^{(1)}$	
X	X	NO MATCH	H	H	Normal
H	X	MATCH	H	H	Normal
X	H	MATCH	H	H	Normal
L	L	MATCH	(2)	(2)	Write Inhibit ${ }^{(3)}$

NOTES:

1. Pins $\overline{B U S Y} L$ and $\overline{B U S Y} R$ are both outputs for IDT7132 (master). Both are inputs for IDT7142 (slave). $\overline{\text { BUSY}} \times$ outputs on the IDT7132 are open drain, not push-pull outputs. On slaves the $\overline{\mathrm{BUSY}} \mathrm{X}$ input internally inhibits writes.
2. 'L'if the inputs to the opposite port were stable prior to the address and enable inputs of this port. 'H' if the inputs to the opposite port became stable after the address and enable inputs of this port. If taps is not met, either $\overline{B U S Y}$ or $\overline{B U S Y} \bar{R}=$ LOW will result. $\overline{B U S Y} \mathrm{~L}$ and $\overline{\mathrm{BUSY}} \mathrm{R}$ outputs can not be LOW simultaneously.
3. Writes to the left port are internally ignored when BUSYL outputs are driving LOW regardless of actual logic level on the pin. Writes to the right port are internally ignored when BUSYR outputs are driving LOW regardless of actual logic level on the pin.

Functional Description

The IDT7132/IDT7142 provides two ports with separate control, address and I/O pins that permit independent access for reads or writes to any location in memory. The IDT7132/IDT7142 has an automatic power down feature controlled by $\overline{\mathrm{CE}}$. The $\overline{\mathrm{CE}}$ controls onchip power down circuitry that permits the respective port to go into a standby mode when not selected $(\overline{\mathrm{CE}}=\mathrm{VIH})$. When a port is enabled, access to the entire memory array is permitted.

Busy Logic

Busy Logic provides a hardware indication that both ports of the RAM have accessed the same location at the same time. It also allows one of the two accesses to proceed and signals the other side that the RAM is "Busy". The BUSY pin can then be used to stall the access until the operation on the other side is completed. If a write operation has been attempted from the side that receives a busy indication, the write signal is gated internally to prevent the write from proceeding.

The use of BUSY Logic is not required or desirable for all applications. In some cases it may be useful to logically OR the $\overline{B U S Y}$ outputs together and use any $\overline{B U S Y}$ indication as an interrupt source to flag the event of an illegal or illogical operation.

The $\overline{B U S Y}$ outputs on the IDT7132RAM master are totem-pole type outputs and do not require pull-up resistors to operate. Ifthese RAMs are being expanded indepth, thenthe BUSY indicationfor the resulting array does not require the use of an external AND gate.

Width Expansion with Busy Logic Master/Slave Arrays

When expanding an SRAM array in width while using BUSY logic, one master part is used to decide which side of the SRAM array will receive a $\overline{B U S Y}$ indication, and to output that indication. Any number of slaves to be addressed in the same address range as the master, use the $\overline{B U S Y}$ signal as a write inhibit signal. Thus on the IDT7132/ IDT7142SRAMs the $\overline{B U S Y}$ pinis an outputifthe partis Master (IDT7132), and the $\overline{B U S Y}$ pin is an inputif the part is a Slave (IDT7142) as shown in Figure 3.

2692 dw 15
Figure 4. Busy and chip enable routing for both width and depth expansion with IDT7132 (Master) and (Slave) IDT7142 SRAMs.

If two or more master parts were used when expanding in width, a split decision could result with one master indicating BUSY on one side of the array and another master indicating BUSY on one other side of the array. This would inhibit the write operations from one port for part of a word and inhibit the write operations from the other port for the other part of the word.

The $\overline{B U S Y}$ arbitration, on a Master, is based on the chip enable and address signals only. It ignores whether an access is a read or write. In a master/slave array, both address and chip enable must be valid long enough for a $\overline{B U S Y}$ flag to be output from the master before the actual write pulse can be initiated with either the $R \bar{W}$ signal or the byte enables. Failure to observe this timing can result in a glitched internal write inhibit signal and corrupted data in the slave.

Ordering Information

2692 drw 16

NOTES:

1. Industrial temperature range is available.For specific speeds, packages and powers contact your sales office.
2. Green parts available. For specific speeds, packages and powers contact your local sales office.

Datasheet Document History

03/24/99:		Initiated datasheet documenthistory
		Converted to new format
		Cosmetic and typographical corrections
	Pages 2 and 3	Added additional notes to pin configurations
$\begin{aligned} & \text { 06/08/99: } \\ & \text { 08/26/99: } \\ & \text { 11/10/99: } \\ & 01 / 12 / 00 \end{aligned}$		Changeddrawingformat
	Page 14	Changed Busy Logic and Width Expansion copy
		Replaced IDT logo
	Pages 1 and 2	Moved full "Description" to page 2 and adjusted page layouts
	Page 1	Added "(LAonly)" to paragraph
	Page 2	Fixed P48-1 body package description
	Page 3	Increasedstoragetemperature parameters
		Clarified Taparameter
	Page 4	DC Electrical parameters-changed wording from "open" to "disabled"
	Page 6	Added asteriks to Figures 1 and 3 in drw 06
	Page 14	Corrected partnumbers
		Changed $\pm 500 \mathrm{mV}$ to 0 mV in notes
		Datasheet Document History continued on page 16

06/11/04:	Page 6	Corrected errors in Figure 3 by changing 1250Ω to 270Ω and removing "or Int" and Int
	$\begin{aligned} & \text { Page } 4,7,9, \\ & 11 \& 15 \end{aligned}$	Clarified Industrial temp offering for25ns
	Page 5	Removed $\overline{\mathrm{NT}}$ from VoL parameter in DC Electrical Characteristics table
	Page 6	Updated AC Test Conditions Input Rise/Fall Times from 5ns to 3ns
01/17/06:	Page 1	Added green availability to features
	Page 15	Added green indicator to ordering information
	Page 16	Replaced IDT address with new
10/21/08:	Page 15	Removed "IDT" from orderable part number

for SALES:
800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com
for Tech Support:
408-284-2794
DualPortHelp@idt.com

