

Description

The AEDA-3300 series are high performance, cost effective, three-channel optical incremental encoder modules with integrated bearing stage. By using transmissive encoder technology to sense rotary position, the AEDA-3300 series emphasizes high reliability, high resolution and easy assembly. Outputs of the AEDA-3300 encoders are two channel quadrature and a third channel gated index signals. These encoders can be easily mounted to customer specific applications. Wide resolution options are available for the AEDA-3300 series, while keeping the same package size across the whole CPR range. The "One size fits all" package eliminates the need for customers to design different platforms for

Agilent AEDA-3300 Series Ultra Miniature, High Resolution Incremental Kit Encoders
Data Sheet

different resolutions. As the AEDA-3300 encoders are designed for high temperature and high operating frequency range, they are well suited for industrial automation and motion control applications.

Applications

- Motors
- Semiconductor Automation Machine
- Robotics
- Industrial Sewing Machine
- Packaging Machine
- Machine Tools
- Pick and Place Machines

Features

- Three channels output (quadrature A \& B output with index channel)
- Resolution options from 600 to 20000 Cycles Per Revolution (CPR), up to 80000 counts with 4X decoding
- Cost effective
- $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ operating temperature
- Ultra miniature size ($\mathbf{0 1 7 \mathrm { mm } \text {) }}$
- Maximum 1 MHz operating frequency
- Maximum 12000 RPM rotational speed
- Single 5V supply
- Integrated RS 422 differential line driver
- Integrated bearing stage for easy mounting
- Bottom-up or top-down mounting options

Note: Agilent Technologies encoders are not recommended for use in safety critical applications. E.g. ABS braking systems, power steering, life support systems and critical care medical equipment. Please contact sales representative if more clarification is needed.

Package Dimensions. Bottom-up Version

Dimensions in mm unless otherwise stated. Tolerance:
$x . x: \pm 0.1 \mathrm{~mm}$

* Refer to Mechanical Characteristics Table for requirement on the solid shaft diameter.

Isometric Views. Bottom-up Version

Package Dimensions. Top-Down Version (With Coupling Plate)

2X5-1.27mm pitch pin

> Dimensions in mm unless otherwise stated. Tolerance:
> $\mathrm{x.x:} \pm 0.1 \mathrm{~mm}$

* Refer to Mechanical Characteristics Table for requirement on the solid shaft diameter.

Isometric Views. Top-Down Version (With Coupling Plate)

Absolute Maximum Ratings

Storage Temperature	-40 to $125^{\circ} \mathrm{C}$
Operating Temperature	-40 to $125^{\circ} \mathrm{C}$
Supply Voltage	4.5 V to 5.5 V
Output Voltage	-0.5 V to Vcc
Output Current per Channel	20 mA
Max Frequency	1 MHz

Note: Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The tables "Recommended Operating Conditions and Characteristics" provide conditions for actual device operation.

Recommended Operating Conditions

Parameter	Symbol	Minimum	Typical	Maximum	Units	Notes
Temperature	T_{A}	-40	25	125	${ }^{\circ} \mathrm{C}$	
Supply Voltage	V_{cc}	4.5	5	5.5	V	
Frequency	f			1.0	MHz	1

Note 1. Gated by maximum rotational speed of 12000 RPM. Refer to section Maximum Frequency and RPM.

Electrical Characteristics Table

Electrical characteristics over recommended operating conditions. Typical values at $25^{\circ} \mathrm{C}$

Parameter	Symbol	Minimum	Typical	Maximum	Units	Notes
Supply Current	I_{CC}		55	100	mA	
High level Output Voltage	$\mathrm{V}_{\text {OH }}$	2.5	3.4		V	
Low level Output Voltage	V_{OL}		0.3	0.5	V	

Encoding Characteristics

Encoding characteristics over recommended operating conditions. Typical values represent maximum values at $25^{\circ} \mathrm{C}$ and 2000 RPM. This table is only valid for options with CPR ≤ 4096. See Output Waveform for the definitions of the errors.

Parameter	Symbol	Minimum	Typical	Maximum	Units	Notes
Pulse Width Error	$\Delta \mathrm{P}$	30	45	${ }^{\circ} \mathrm{e}$		
State Width Error	$\Delta \mathrm{S}$	25	40	${ }^{\circ} \mathrm{e}$		
Phase Error	$\Delta \phi$	20	20	${ }^{\circ} \mathrm{e}$		
Index Pulse Width Error	$\Delta \mathrm{Po}$	15	20	${ }^{\circ} \mathrm{e}$		

Mechanical Characteristics

$\begin{array}{llll}\hline \text { Parameter } & \text { Dimension/Details } & \text { Tolerance } & \text { Units }\end{array}$ Remarks $\left.\begin{array}{lll}\hline \text { Standard Shaft Diameters } & 1.998 & \begin{array}{l}\mathrm{c} /-.01 \\ (+0 /-.0005)\end{array} \\ \hline \begin{array}{l}\text { Mounting Screw Size: } \\ \text { Bottom-up (threaded mount) } \\ \text { Top-down (coupling plate) }\end{array} & \mathrm{M} 2 \\ \mathrm{M} 2\end{array}\right)$

Note: 1. This value represents the maximum mechanical permissible shaft speed of the kit encoder. However, for options with CPR > 5000, the maximum shaft speed is limited by the maximum electrical frequency. Refer to Table Maximum Frequency and RPM for the comparison of the possible operable frequency and RPM.

Mechanical and Environmental Tests

Test Name	Reference	Conditions
Vibration (non-operating)	IEC 68-2-64	$5-2000 \mathrm{~Hz}$ at 20G for 6-axis
Shock (non-operating)	IEC68-2-27	100 G at 10 ms
ESD	IEC $61000-4-2$	4 kV
Electromagnetic Compatibility	IEC61000-4-4	Spike Frequency $=5 \mathrm{KHz}$, Duration $=15 \mathrm{~ms}$, Repetition $=300 \mathrm{~ms}$, Test Points $= \pm 1000 \& \pm 1500 \mathrm{~V}$ (EMC)
Humidity	IEC-68-2-3	85% RH (Non-condensing)

Note: Any mechanical shock and vibration exceeding the stated values may cause damage to the encoder. The encoder should not be subjected to excessive mechanical shock and vibration either during installation or operation.

Theory of Operation

The AEDA-3300 translates rotary motion of a shaft into three channels of digital output. The AEDA-3300 series consists of the following key parts: a single light emitting diode (LED) light source, a focusing lens, a high-precision codewheel, a photodetector IC with a set of uniquely configured photodiodes, an interpolator IC, and a line driver IC.

The LED emits light that is used to produce modulated by the codewheel to produce a set of analog signals. A high performance compensation and interpolation IC processes the analog signals to produce the digital A, B and index signals. These digital signals are further fed through a line driver IC that produces the final differential outputs for channels $\mathrm{A}, \mathrm{B}, \mathrm{I}$, and their complements $\overline{\mathrm{A}}, \overline{\mathrm{B}}$ and $\overline{\mathrm{I}}$.

In a single size package, the AEDA-3300 is available for wide selection of cycles per revolution (CPR) options, from 600 to 20000 . This translates to a maximum resolution of 80000 counts after quadrature decode (4X), satisfying the ever increasing requirement of higher encoder counts for better motion feedback performance.

Maximum Frequency and RPM

CPR	Maximum Frequency (kHz)	Maximum RPM
600	1000^{1}	12000
1000	1000^{1}	12000
1024	1000^{1}	12000
2000	1000^{1}	12000
2048	1000^{1}	12000
2500	1000^{1}	12000
3000	1000^{1}	12000
4000	1000^{1}	12000
4096	1000^{1}	12000
5000	1000	12000
6000	1000	10000
7200	1000	8300
7500	1000	8000
8000	1000	7500
8192	1000	7300
10000	1000	6000
10240	1000	5850
12000	1000	5000
12500	1000	4800
14400	1000	4150
18000	1000	3300
20000	1000	3000
$N 00$		
10		

Notes:

1. Maximum allowable operating frequency will be lower due to limitation in maximum permissible mechanical shaft speed.

The operable frequency is calculated based on the formula:

$$
\text { Frequency }(\mathrm{kHz})=\mathrm{CPR} \times\left(\mathrm{RPM} / 60 \times 10^{3}\right)
$$

As an example, for the 1000 CPR option, the operable frequency is up to 200 kHz , i.e.:

Maximum operable frequency for 1000 CPR option $=1000 \times\left(12000 / 60 \times 10^{3}\right)=200 \mathrm{KHz}$

Output Waveforms

Definitions

Count (N): N refers to the cycles per revolution (CPR) of the encoder output.

One Cycle (C): 360 electrical degrees (${ }^{\circ}$ e).

One Shaft Rotation: 360 mechanical degrees, N cycles (rotary motion only).

Phase (ϕ): The number of electrical degrees between the center of the high state on the channel A and the center of the high state of channel B. This value is nominally $90^{\circ} \mathrm{e}$.

Pulse Width (P): The number of the electrical degrees that an output is a high-level during one cycle, nominally $180^{\circ} \mathrm{e}$ or $1 / 2$ a cycle.

Pulse Width Error ($\Delta \mathbf{P}$): The deviation in electrical degrees of the pulse width from its ideal value of $180{ }^{\circ} \mathrm{e}$.

Index Pulse Width (Po): The number of electrical degrees that an index is high during one full shaft rotation. This value is nominally $180^{\circ} \mathrm{e}$ or $1 / 2$ cycle.

State Width (S): The number of the electrical degrees between transitions in the output of the channel B. There are 4 states per cycle, each nominally $90{ }^{\circ} \mathrm{e}$.

State Width Error ($\Delta \mathbf{S}$): The deviation in electrical degrees of each state width from its ideal value of $90^{\circ} \mathrm{e}$.

Direction of Motor Rotation

When the codewheel rotates in a counter-clockwise direction, channel A will lead channel B (Figure 1 illustrates the definition of clockwise direction of codewheel rotation). When the codewheel rotates in a clockwise direction, channel B will lead channel A.

Figure 1. As viewed from the top PCB end of the encoder

Pin Assignments

Pin	Signal	Description
Pin 1	A+	Digital Output
Pin 2	A-	Digital Output
Pin 3	Gnd	Ground Pin
Pin 4	Gnd	Ground Pin
Pin 5	B+	Digital Output
Pin 6	B-	Digital Output
Pin 7	Vcc	Input Voltage
Pin 8	Vcc	Input Voltage
Pin 9	I+	Digital Output
Pin 10	I-	Digital Output
Note:		
1. Both Pin 7 and Pin 8 must be connected to Vcc.		
2. Either Pin 3 or Pin 4 must be connected to Gnd.		

2. Either Pin 3 or Pin 4 must be connected to Gnd.

Figure 2. Recommended receiver circuit.

Ordering Information

Resolution Options		
	CPR	Counts after 4X Decoding
A4*	600	2400
A6*	1000	4000
A7*	1024	4096
AB*	2000	8000
AC*	2048	8192
AJ	2500	10000
AM*	3000	12000
AQ*	4000	16000
AT^{*}	4096	16384
B 1	5000	20000
B 7	6000	24000
B J	7200	28800
B K	7500	30000
B M	8000	32000
B N	8192	32768
C 1	10000	40000
C 3	10240	40960
C H	12000	48000
CJ	12500	50000
C X	14400	57600
DM	18000	72000
E1	20000	80000

www.agilent.com/ semiconductors

For product information and a complete list of distributors, please go to our web site.
For technical assistance call:
Americas/Canada: +1 (800) 235-0312
or (916) 788-6763
Europe: +49 (0) 644192460
China: 108006500017
Hong Kong: (+65) 67562394
India, Australia, New Zealand: (+65) 67551939
Japan: (+81 3) 3335-8152(Domestic/International), or 0120-61-1280(Domestic Only)

Korea: (+65) 67551989
Singapore, Malaysia, Vietnam, Thailand,
Philippines, Indonesia: (+65) 67552044
Taiwan: (+65) 67551843
Data subject to change.
Copyright © 2005 Agilent Technologies, Inc.
October 21, 2005
5989-4101EN

