SHARP

	Spec No. DG-106010B
	Issue 31-Jan-11
SPEO	; I F I C A T I O N S
Product Type	ZENIGATA LED
Model No.	GW5BTJ**K03
	** : 27, 30, 35, 40, 50, 65
	ations contain <u>20</u> pages including the cover and appendix. y objections, please contact us before issuing purchasing order. Reference
DATE:	<u> </u>
	PRESENTED
	BY:
DATE: BY:	-
	BY: Y. Ohiwane

Model No. **GW5BTJ**K03**

• Handle this document carefully for it contains material protected by international copyright law. Any reproduction, full or in part, of this material is prohibited without the express written permission of the company.

• When using the products covered herein, please observe the conditions written herein and the precautions outlined in the following paragraphs. In no event shall the company be liable for any damages resulting form failure to strictly adhere to these conditions and precautions.

(1) Please do verify the validity of this part after assembling it in customer's products, when customer wants to make catalogue and instruction manual based on the specification sheet of this part.

(2) The products covered herein are designed and manufactured for the following application areas. When using the products covered herein for the equipment listed in paragraph (3), even for the following application areas, be sure to observe the precautions given in Paragraph (3). Never use the products for the equipment listed in Paragraph (4).

- \cdot Office electronics
- ·Instrumentation and measuring equipment
- Machine tools
- Audiovisual equipment
- Home appliances
- ·Communication equipment other than for trunk lines
- (3) These contemplating using the products covered herein for the following

equipment which demands high reliability, should first contact a sales representative of the company and then accept responsibility for incorporating into the design fail-safe operation, redundancy, and other appropriate measures for ensuring reliability and safety of the equipment and the overall system.

·Control and safety devices for airplanes, trains, automobiles, and other

- transportation equipment
- · Mainframe computers
- · traffic control systems
- ·Gas leak detectors and automatic cutoff devices
- ·Rescue and security equipment
- ·Other safety devices and safety equipment, etc.

(4) Do not use the products covered herein for the following equipment which

demands extremely high performance in terms of functionality, reliability, or accuracy.

- ·Aerospace equipment
- ·Communications equipment for trunk lines
- ·Control equipment for the nuclear power industry
- ·Medical equipment related to life support, etc.
- (5) please direct all queries and comments regarding the interpretation of the above four Paragraphs to a sales representative of the company.

 Please direct all queries regarding the products covered herein to a sales representative of the company.

Pa J**K03 1

HAR			E	G-106010
	Ρ		Model No. GW5BTJ**K03	Page 2 of 1
			G W 3D 1 J KU3	2 01 1
2 External d	imensions and equiv	valent circuit		
2. Enternar a	und equiv	I I I I I I I I I I I I I I I I I I I	Unit = mm	
		< 15.0 + 0.50 / - 0.10 ① >		
		< (12.0) >		
		(8.7)		
Top view				
			^	
	٨		Ϋ́	
(6.5)		$(9.2) \frac{12.0}{+0.50/-0.10}$	
	N/		2	
			↓	
			V	
	.l.		1	
Side view	Y		V	
(1.6)		1.0 ± 0.1	
			1	
	(Note) Values in	nside parentheses are reference values.		
	External	dimension of ceramic substrate is the indication	n of maximum length at e	ach side
Equivalent ci	ircuit o	, , , , , , , , , , , , , , , , , , , 		
Equivalent ci + connection t	0			
Equivalent ci + connection t	0			
-	0			
-	0			
-	O terminal terminal			
+ connection t	0			
+ connection t	O terminal C	$ \begin{array}{c} \hline & & & & & & & & & & & & & & & & & & $		
+ connection t	O terminal C		Z ↓ Z ↓ Z ↓ Z ↓ Z ↓ Z ↓ Drawing No	

SHARP

- 3. Ratings and characteristics
- 3-1. Absolute maximum ratings

Item	Symbol	Rating	Unit
Power Dissipation *1,4	Р	12.6	W
Forward Current *1,4	I _F	600	mA
Reverse Voltage *2,4	V _R	-15	V
Operating Temperature *3	T _{opr}	- 30 ~ + 90	°C
Storage Temperature	T _{stg}	- 40 ~ + 100	°C

*1 Power dissipation and forward current are the value when the module temperature is set lower than the rating by using an adequate heat sink.

- *2 Voltage resistible at initial connection error (Not dealing with the possibility of always-on reverse voltage.)
- *3 Case temperature Tc (Refer to measuring point for case temperature in the next page.) Refer to "Derating curve" in the next page as for operating current.

*4 T_c = 25 $^{\circ}$ C

SHARP

Model No. Pa GW5BTJ**K03 4 of 18

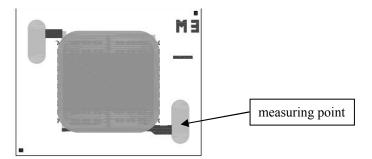
3-2. Electro-optical characteristics

							= 25 °C	
**	Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit	
common	Forward Voltage *5	V _F	$I_F = 480 \text{ mA}$	18.0	(19.6)	21	V	
	Luminous Flux *6	Φ		540	(610)	-	lm	
	Chromaticity Coordinates *7	х		-	(0.464)	-	-	
27	Chromaticity Coordinates • 7	у	$I_F = 480 \text{ mA}$	-	(0.418)	-	-	
	Color Temperature	-		(2600)	(2700)	(2800)	Κ	
	General Color Rendering Index *8	Ra		81	(85)	-	-	
	Luminous Flux *6	Φ		560	(630)	-	lm	
	Chromoticity Coordinatos *7	x		-	(0.435)	-	-	
30	Chromaticity Coordinates *7	у	$I_F = 480 \text{ mA}$	-	(0.403)	-	-	
	Color Temperature	-		(2900)	(3025)	(3150)	K	
	Color Temperature General Color Rendering Index *8 Luminous Flux *6	Ra		83	(87)	-	-	
	Luminous Flux *6	Φ		580	(650)	-	lm	
	Chromoticity Coordinator *7	x		-	(0.409)	-	-	
35	Chromaticity Coordinates *7 Color Temperature General Color Rendering Index *8	Chromaticity Coordinates *7	у	$I_{\rm F} = 480 \ {\rm mA}$	-	(0.393)	-	-
		-	-	(3300)	(3450)	(3600)	Κ	
		Ra		83	(87)	_	-	
	Luminous Flux *6	Φ		600	(670)	-	lm	
	Luminous Flux *6	x		-	(0.381)	-	-	
40	Chromaticity Coordinates *7	у	$I_F = 480 \text{ mA}$	-	(0.383)	-	-	
	Color Temperature	-		(3900)	(4050)	(4200)	K	
	General Color Rendering Index *8	Ra		83	(87)	-	-	
	Luminous Flux *6	Φ		620	(690)	-	lm	
		x		-	(0.346)	-	-	
50	Chromaticity Coordinates *7	у	$I_{\rm F} = 480 ~{\rm mA}$	-	(0.360)	-	-	
	Color Temperature	-		(4745)	(5000)	(5311)	Κ	
	General Color Rendering Index *8	Ra		83	(87)	-	-	
	Luminous Flux *6	Φ		620	(690)	-	lm	
	Chromoticity Coordinates *7	x		-	(0.313)	-	-	
65	Chromaticity Coordinates *7	у	$I_{\rm F} = 480 ~{\rm mA}$	-	(0.332)	-	-	
	Color Temperature	-		(6020)	(6500)	(7040)	Κ	
	General Color Rendering Index *8	Ra		81	(85)	-	-	

(Note) Values inside parentheses are shown for reference purpose only.

*5 (After 20 ms drive, Measurement tolerance: ± 3 %)

- *6 Monitored by Sharp's 8 inch integrating sphere and Otsuka electronics MCPD-LE3400 (After 20 ms drive, Measurement tolerance: \pm 20 %)
- *7 Monitored by Sharp's 8 inch integrating sphere and Otsuka electronics MCPD-LE3400 (After 20 ms drive, Measurement tolerance: ± 0.01)
- *8 Monitored by Sharp's 8 inch integrating sphere and Otsuka electronics MCPD-LE3400 (After 20 ms drive, Measurement tolerance: ± 4)


DG-106010B

age	
of 18	

ARF					Model No GW5B). TJ**K03
Derating	curve					
		Forward Current	Derating Curve	2		
700		= = = = = = = = = = = = = = = = = = = =	+	+		= =
₹ ⁶⁰⁰	E - + - +	_ <u>+</u> _ <u>+</u> _ <u>+</u> _ <u>+</u> _ <u>+</u> <u>-</u> <u>+</u>	‡	<u>+</u>		
Forward Current I _F [mA] 500 200 200 200 200 200 200 200 200 200				I		
1 1 400		- + - + + - 				
			+			
300 J						
200 g		<u>- + - + - + + + + - + - + -</u>	<u>+</u>			
5 - 100	+	- + - + + - 	+	+	+	
0						
0	0 -20 -10	0 10 20 3	0 40 50	60 70	80 90	100

(Note) To keep the case temperature lower than the rating, enough heat-radiation performance needs to be secured by using an adequate heat sink.

(Measuring point for case temperature)

SHARP	Model No.
SIANP	GW5BTJ

DG-106010B

4. Reliability

The reliability of products shall be satisfied with items listed below.

4-1.7	Test items and test condit	ions	Co	nfidence le	vel: 90 %
No.	Test item	Test conditions	Samples	Defective	LTPD
			n	С	(%)
1	Temperature Cycle	- 40 °C(30 min) \sim + 100 °C(30 min), 100 cycles			
			11	0	20
2	Temperature Humidity	$T_{stg} = +60$ °C, RH = 90 %, Time = 1000 h			
	Storage		11	0	20
3	High Temperature	$T_{stg} = +100$ °C, Time = 1000 h			
	Storage		11	0	20
4	Low Temperature	$T_{stg} = -40 \text{ °C}, \text{ Time} = 1000 \text{ h}$			
	Storage		11	0	20
5	Steady State Operating	$T_c = 60 \ ^{\circ}C$, $I_F = 550 \ mA$, Time = 1000 h			
	Life		11	0	20
6	Shock	Acceleration: 15000 m/s^2 , Pulse width: 0.5 ms			
		Direction: 3 directions (X, Y and Z)			
		3 trials in each direction	5	0	50
7	Vibration	Frequency: 100 to 2000 Hz for 4 minutes per trial			
		Acceleration: 200 m/s ²			
		Direction: 3 directions (X, Y and Z)			
		4 trials in each direction	5	0	50

4-2. Failure criteria

No.	Parameter	Symbol	Failure criteria
1	Forward Voltage	V _F	$V_F > U.S.L \times 1.1$
2	Luminous Flux	Φ	$\Phi \le$ Initial value $\times 0.7$

(Note) U.S.L. stands for Upper Specification Limit.

10	NRP	1	Model No.	DG-
			GW5BTJ**K	K03
5. Qu	ality level			
	Applied standard			
I	SO2859-1			
5-2	Sampling inspecti	ion		
		mpling plan, level S-4.		
1	i single normal su			
5-3.	Inspection items a	and defect criteria		
5-3. No.	Inspection items a Item	and defect criteria Defect criteria	Classification	AQL
			Classification Major	
No.	Item	Defect criteria		AQL 0.1%
No.	Item No radiation Electro-optical	Defect criteria	Major	
No. 1	Item No radiation	Defect criteria No light emitting	Major	
No. 1	Item No radiation Electro-optical characteristics External	Defect criteria No light emitting Not conforming to the specification	Major	
No. 1 2	Item No radiation Electro-optical characteristics	Defect criteria No light emitting Not conforming to the specification (Forward voltage, Luminous flux and Chromaticity)	Major	
No. 1 2	Item No radiation Electro-optical characteristics External	Defect criteria No light emitting Not conforming to the specification (Forward voltage, Luminous flux and Chromaticity) Not conforming to the specified dimensions	Major	0.1%
No. 1 2 3	Item No radiation Electro-optical characteristics External dimensions	Defect criteria No light emitting Not conforming to the specification (Forward voltage, Luminous flux and Chromaticity) Not conforming to the specified dimensions (External dimensions of ① and ② shown in Page 2)	Major defect	
No. 1 2 3	Item No radiation Electro-optical characteristics External dimensions	Defect criteria No light emitting Not conforming to the specification (Forward voltage, Luminous flux and Chromaticity) Not conforming to the specified dimensions (External dimensions of ① and ② shown in Page 2) Nonconformity observed in product appearance is determined	Major defect	0.1%
No. 1 2 3	Item No radiation Electro-optical characteristics External dimensions	Defect criteria No light emitting Not conforming to the specification (Forward voltage, Luminous flux and Chromaticity) Not conforming to the specified dimensions (External dimensions of ① and ② shown in Page 2) Nonconformity observed in product appearance is determined as defective only when electro-optical characteristics is affected by.	Major defect	0.1%
No. 1 2 3	Item No radiation Electro-optical characteristics External dimensions	Defect criteria No light emitting Not conforming to the specification (Forward voltage, Luminous flux and Chromaticity) Not conforming to the specified dimensions (External dimensions of ① and ② shown in Page 2) Nonconformity observed in product appearance is determined as defective only when electro-optical characteristics is affected by. <if above="" any="" arises="" criterion="" mentioned="" of="" question="" regardless=""></if>	Major defect	0.1%
No. 1 2 3	Item No radiation Electro-optical characteristics External dimensions	Defect criteria No light emitting Not conforming to the specification (Forward voltage, Luminous flux and Chromaticity) Not conforming to the specified dimensions (External dimensions of ① and ② shown in Page 2) Nonconformity observed in product appearance is determined as defective only when electro-optical characteristics is affected by. <lf above="" any="" arises="" criterion="" mentioned="" of="" question="" regardless=""> ■ Foreign material, scratch, or bubble at emitting area: 0.8 mm φ</lf>	Major defect	0.1%

IARP]	Model No. GW5BTJ**K03	G-10 Pa 8
6. Supplements								
6-1. Chromaticity	v rank table				(To	lerance [.]	x,y ± 0.01)	
					$(I_F = 480)$) mA,	$T_c = 25 \text{°C}$	
**: 27								
Danaa	Ch	romaticity	v coordinat	tes				
Range	Point 1	Point 2	Point 3	Point 4				
x	0.4606	0.4526	0.4669	0.4756				
у	0.4250	0.4100	0.4100	0.4250				
Rank		romaticity						
	Point 1	Point 2	Point 3	Point 4				
1 <u>x</u>	0.4606	0.4526	0.4595	0.4679 0.4250				
y y x	0.4230	0.4100	0.4100	0.4230				
$2 \qquad \frac{x}{y}$	0.4250	0.4393	0.400	0.4750				
0.440					,			
			,' 			/ 		
		,	<i>i</i>					
	1 1		<i>i</i>				<u>-</u>	
0.430	· · · · ·		i		1			
0.430		1	1	/				
0.430		/'				· ;		
0.430			ŕ	/		7		
			/	<u>/</u> /	; /	7		
0.430					2	/		
				<u>;</u> 	2	7		
					2	/ 		
> 0.420				: 	2			
					2			
> 0.420		2800K	2700K	2600K	2			
> 0.420		800K	2700K	2600K	2			
>> 0.420 0.410		2800K	2700K	2600K	2			
> 0.420 0.410			/					
>> 0.420 0.410	0.45		0.460		2		0.480	
> 0.420 0.410			/				0.480	
> 0.420 0.410			0.460				0.480	

	M. 1.1 N.	DG-1
IARP	Model No. GW5BTJ**K0	2 I
	GW5B1J**K0	3
	(Tolerance: $x,y \pm 0.01$)	
	$(I_F = 480 \text{ mA, } T_c = 25 \text{ °C})$	
**: 30		
	Chromaticity coordinates	
Range	Point 1 Point 2 Point 3 Point 4	
x	0.4310 0.4243 0.4384 0.4460	
у	0.4100 0.3950 0.3950 0.4100	
Rank	Chromaticity coordinates Point 1 Point 2 Point 3 Point 4	
	Point 1 Point 2 Point 3 Point 4 0.4310 0.4243 0.4311 0.4383	
1 <u>x</u> y	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
v	0.4383 0.4311 0.4384 0.4460	
$2 \qquad \frac{x}{y}$	0.4100 0.3950 0.3950 0.4100	
* The percentage of	f each rank in the shipment shall be determined by SHARP.	
	Chromaticity Diagram	
0.400		
0.420		
0.410		
> 0.400		
> 0.400		
> 0.400		
> 0.400		
	3100K 3000K 2900K	
>> 0.400		
0.390		
0.390	3100K 3000K 2900K	
0.390	0.420 0.430 0.440 0.450	
0.390	3100K 3000K 2900K	

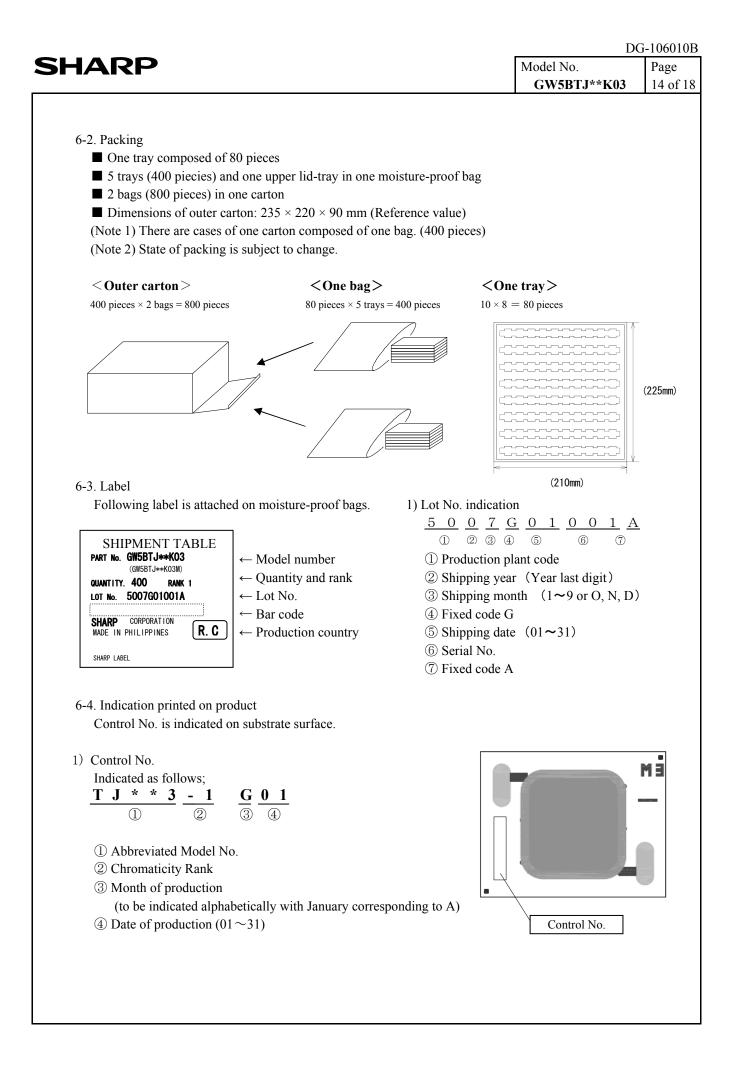
IARP		Model No.	G-106 Pag
		GW5BTJ**K03	10
	(Tole	prance: $x, y \pm 0.01$)	
**: 35	$(I_F = 480)$	mA, $T_c = 25 \ ^{\circ}C)$	
	Chromaticity coordinates		
Range	Point 1Point 2Point 3Point 4		
x	0.4041 0.3988 0.4124 0.4186 0.4000 0.3850 0.3850 0.4000		
у	0.4000 0.3830 0.3830 0.4000		
Donk	Chromaticity coordinates		
Rank	Point 1 Point 2 Point 3 Point 4		
1 <u>x</u>	0.4041 0.3988 0.4054 0.4112 0.4000 0.3850 0.3850 0.4000		
y 2 x	0.4000 0.3850 0.3850 0.4000 0.4112 0.4054 0.4124 0.4186		
$2 \qquad \frac{x}{y}$	0.4000 0.3850 0.3850 0.4000		
0.410			
0.400			
> 0.390			
;	3600K 3500K 3400K 3300K		
0.380			
/			
0.370			
0.370	0.400 0.410 0.420 x	0.430	

	D						Model No.	G-106010
IAR							GW5BTJ**K03	Page 11 of 18
						(Talana		
						$(I_{\rm F} = 480$ 1	nce: x,y \pm 0.01) mA, T _c = 25 °C)	
**: 40								
Range			nromaticity					
Runge		Point 1	Point 2	Point 3	Point 4			
	Х	0.3762	0.3718	0.3837	0.3895			
	У	0.3890	0.3700	0.3750	0.3950			
Rank	/		nromaticity	coordinat				
Railk		Point 1	Point 2	Point 3	Point 4			
1	Х	0.3762	0.3718	0.3775	0.3826			
1	у	0.3890	0.3700	0.3724	0.3919			
2	Х	0.3826	0.3775	0.3837	0.3895			
* The nerg	y	0.3919	0.3724	0.3750	0.3950	CIIADD		
* The perce	entage of ea	ach rank in t	the snipmen	t shall be de	etermined by	y SHARP.		
			Chro	maticity Dia	gram			
0 400								
0.400		1		:	;			
0.400								
0.400			, , , , , , , , , , , , , , , , , , ,					
0.400			 					
0.400 0.390					1 1			
					/ // //			
0.390								
0.390								
0.390								
0.390								
0.390 ≻ 0.380								
0.390								
0.390 ≻ 0.380				i i i i i i i i i i i i i i i i i i i				
0.390 ≻ 0.380				i i i i i i i i i i i i i i i i i i i				
0.390 ≻ 0.380				i i i i i i i i i i i i i i i i i i i				

0.390

0.400

0.380


х

0.370

0.360

x y Rank 1 x y 2	_	Point 3 0.3524 0.3555 y coordinat Point 3 0.3446 0.3493 0.3524 0.3555	Point 4 0.3551 0.3760 es Point 4 0.3464 0.3688 0.3551 0.3760 etermined by	(I _F = 480	Model No. GW5BTJ**K rance: $x,y \pm 0.01$) mA, T _c = 25 °C)	Pa 12
Range x y Rank 1 y 2 y * The percentage of each	Point 1 Point 2 0.3376 0.3369 0.3616 0.3431 Chromaticity Point 1 Point 2 0.3376 0.3369 0.3616 0.3431 0.3376 0.3369 0.3616 0.3431 0.3464 0.3446 0.3688 0.3493 h rank in the shipmer	Point 3 0.3524 0.3555 y coordinat Point 3 0.3446 0.3493 0.3524 0.3555 nt shall be de	Point 4 0.3551 0.3760 es Point 4 0.3464 0.3688 0.3551 0.3760 etermined by	(I _F = 480		
Range x y Rank 1 y 2 y * The percentage of each	Point 1 Point 2 0.3376 0.3369 0.3616 0.3431 Chromaticity Point 1 Point 2 0.3376 0.3369 0.3616 0.3431 0.3376 0.3369 0.3616 0.3431 0.3464 0.3446 0.3688 0.3493 h rank in the shipmer	Point 3 0.3524 0.3555 y coordinat Point 3 0.3446 0.3493 0.3524 0.3555 nt shall be de	Point 4 0.3551 0.3760 es Point 4 0.3464 0.3688 0.3551 0.3760 etermined by	(I _F = 480		
Range x y Rank 1 y 2 y * The percentage of each	Point 1 Point 2 0.3376 0.3369 0.3616 0.3431 Chromaticity Point 1 Point 2 0.3376 0.3369 0.3616 0.3431 0.3376 0.3369 0.3616 0.3431 0.3464 0.3446 0.3688 0.3493 h rank in the shipmer	Point 3 0.3524 0.3555 y coordinat Point 3 0.3446 0.3493 0.3524 0.3555 nt shall be de	Point 4 0.3551 0.3760 es Point 4 0.3464 0.3688 0.3551 0.3760 etermined by	(I _F = 480		
Range x y Rank 1 y 2 y * The percentage of each	Point 1 Point 2 0.3376 0.3369 0.3616 0.3431 Chromaticity Point 1 Point 2 0.3376 0.3369 0.3616 0.3431 0.3376 0.3369 0.3616 0.3431 0.3464 0.3446 0.3688 0.3493 h rank in the shipmer	Point 3 0.3524 0.3555 y coordinat Point 3 0.3446 0.3493 0.3524 0.3555 nt shall be de	Point 4 0.3551 0.3760 es Point 4 0.3464 0.3688 0.3551 0.3760 etermined by	(I _F = 480		
Range x y Rank 1 y 2 y * The percentage of each	Point 1 Point 2 0.3376 0.3369 0.3616 0.3431 Chromaticity Point 1 Point 2 0.3376 0.3369 0.3616 0.3431 0.3376 0.3369 0.3616 0.3431 0.3464 0.3446 0.3688 0.3493 h rank in the shipmer	Point 3 0.3524 0.3555 y coordinat Point 3 0.3446 0.3493 0.3524 0.3555 nt shall be de	Point 4 0.3551 0.3760 es Point 4 0.3464 0.3688 0.3551 0.3760 etermined by	(I _F = 480		
Range x y Rank 1 y 2 y * The percentage of each	Point 1 Point 2 0.3376 0.3369 0.3616 0.3431 Chromaticity Point 1 Point 2 0.3376 0.3369 0.3616 0.3431 0.3376 0.3369 0.3616 0.3431 0.3464 0.3446 0.3688 0.3493 h rank in the shipmer	Point 3 0.3524 0.3555 y coordinat Point 3 0.3446 0.3493 0.3524 0.3555 nt shall be de	Point 4 0.3551 0.3760 es Point 4 0.3464 0.3688 0.3551 0.3760 etermined by	SHARP.		
x y Rank 1 2 y * The percentage of each	Point 1 Point 2 0.3376 0.3369 0.3616 0.3431 Chromaticity Point 1 Point 2 0.3376 0.3369 0.3616 0.3431 0.3376 0.3369 0.3616 0.3431 0.3464 0.3446 0.3688 0.3493 h rank in the shipmer	Point 3 0.3524 0.3555 y coordinat Point 3 0.3446 0.3493 0.3524 0.3555 nt shall be de	Point 4 0.3551 0.3760 es Point 4 0.3464 0.3688 0.3551 0.3760 etermined by	SHARP.		
x y Rank 1 2 y * The percentage of each	Point 1 Point 2 0.3376 0.3369 0.3616 0.3431 Chromaticity Point 1 Point 2 0.3376 0.3369 0.3616 0.3431 0.3376 0.3369 0.3616 0.3431 0.3464 0.3446 0.3688 0.3493 h rank in the shipmer	Point 3 0.3524 0.3555 y coordinat Point 3 0.3446 0.3493 0.3524 0.3555 nt shall be de	Point 4 0.3551 0.3760 es Point 4 0.3464 0.3688 0.3551 0.3760 etermined by	SHARP.		
x y Rank 1 2 x y 2 y * The percentage of each	0.3376 0.3369 0.3616 0.3431 Chromaticity Point 1 Point 2 0.3376 0.3369 0.3616 0.3431 0.3616 0.3431 0.3616 0.3431 0.3464 0.3446 0.3688 0.3493 h rank in the shipmer	0.3524 0.3555 y coordinat Point 3 0.3446 0.3493 0.3524 0.3555 nt shall be de	0.3551 0.3760 es Point 4 0.3464 0.3688 0.3551 0.3760 etermined by	SHARP.		
y Rank 1 2 x y * The percentage of each	0.3616 0.3431 Chromaticity Point 1 Point 2 0.3376 0.3369 0.3616 0.3431 0.3464 0.3446 0.3688 0.3493 h rank in the shipmer	0.3555 y coordinat Point 3 0.3446 0.3493 0.3524 0.3555 nt shall be de	0.3760 es Point 4 0.3464 0.3688 0.3551 0.3760 etermined by	SHARP.		
x 1 y 2 x y * The percentage of each	Point 1 Point 2 0.3376 0.3369 0.3616 0.3431 0.3464 0.3446 0.3688 0.3493 h rank in the shipmer	Point 3 0.3446 0.3493 0.3524 0.3555 nt shall be de	Point 4 0.3464 0.3688 0.3551 0.3760 etermined by	SHARP.		
x 1 y 2 x y * The percentage of each	Point 1 Point 2 0.3376 0.3369 0.3616 0.3431 0.3464 0.3446 0.3688 0.3493 h rank in the shipmer	Point 3 0.3446 0.3493 0.3524 0.3555 nt shall be de	Point 4 0.3464 0.3688 0.3551 0.3760 etermined by	SHARP.		
x 1 y 2 x y * The percentage of each	Point 1 Point 2 0.3376 0.3369 0.3616 0.3431 0.3464 0.3446 0.3688 0.3493 h rank in the shipmer	Point 3 0.3446 0.3493 0.3524 0.3555 nt shall be de	Point 4 0.3464 0.3688 0.3551 0.3760 etermined by	SHARP.		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.3376 0.3369 0.3616 0.3431 0.3464 0.3446 0.3688 0.3493 h rank in the shipmer	0.3446 0.3493 0.3524 0.3555 nt shall be de	0.3464 0.3688 0.3551 0.3760 etermined by	SHARP.		
I y 2 x y x * The percentage of each	0.3616 0.3431 0.3464 0.3446 0.3688 0.3493 h rank in the shipmer	0.3493 0.3524 0.3555 nt shall be de	0.3688 0.3551 0.3760 etermined by	SHARP.		
2 x y * The percentage of each	0.3464 0.3446 0.3688 0.3493 h rank in the shipmer	0.3524 0.3555 nt shall be de	0.3551 0.3760 etermined by	SHARP.		
* The percentage of each	h rank in the shipmer	nt shall be de	etermined by	SHARP.		
	_			SHARP.		
0.380	Chro	maticity Dia				
				·		
0.370						
1			$\boldsymbol{\Lambda}$			
	i i 	; ; 				
> 0.360	i 	[j i	2		
	i i		li i			
			1			
			!			
0.350	I		İ/			
0.550	, i					
	1 1			- 4800K		
			5000K			
		5200K	i	i		
0.340	0.330	0.340	<u> </u>	0.350	0.360	
0.520	0.000	0.540 X		0.000	0.500	

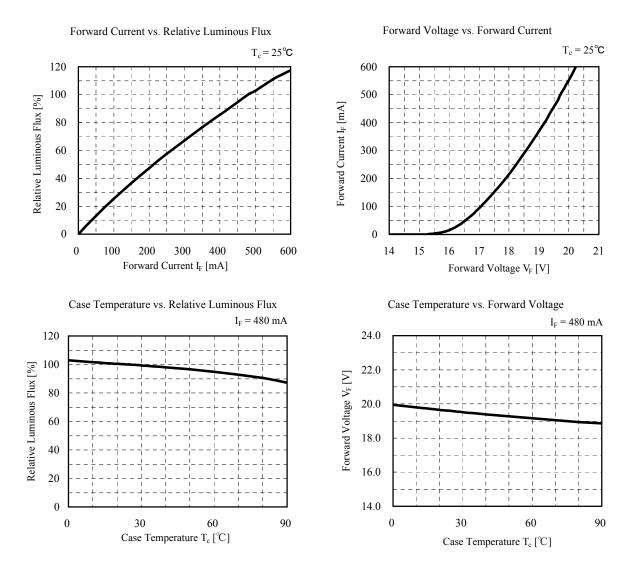
HARP		Model No.	G-106010 Page
		GW5BTJ**K03	13 of
	(Toleran $(I_F = 480 \text{ m})$	ce: x,y \pm 0.01) A, T _c = 25 °C)	
**: 65			
Range	Chromaticity coordinates Point 1 Point 2 Point 3 Point 4		
х	Point 1 Point 2 Point 3 Point 4 0.3028 0.3058 0.3217 0.3205		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
, <u>,</u>	0.5501 0.5101 0.5510 0.5101		
Rank	Chromaticity coordinates		
	Point 1 Point 2 Point 3 Point 4		
1 <u>x</u>	0.3028 0.3058 0.3138 0.3117		
у	0.3304 0.3161 0.3238 0.3393		
2 <u>x</u>	0.3117 0.3138 0.3217 0.3205 0.3393 0.3238 0.3316 0.3481		
* The percentage of	each rank in the shipment shall be determined by SHARP.		
0.340			
> 0.330			
0.320	1 6000K		
	6400К		
0.310	6800K		
0.290	0.300 0.310 0.320	0.330	
	Х		

HARP		Model No.	Pag
		GW5BTJ**K03	15 0
7. Precautions			
① Storage conditions			
 Please follow the conditions below. Before opened: Temperature 5 ∼ 30 °C, R 	alativa humidita laga than	(0.0/	
(Before opened LED should be used within a	•	00 %.	
• After opened: Temperature $5 \sim 30 ^{\circ}\text{C}$, Rel	• •	SO %	
(Please apply soldering within 1 week)	lative number jess than t	JU /0.	
• After opened LED should be kept in an alum	ninum moisture proof hag	with a moisture	
absorbent material (silica gel).	innum moisture proof oug	with a moistaite	
• Avoid exposing to air with corrosive gas.			
If exposed, electrode surface would be dama	aged, which may affect sol	ldering.	
② Usage conditions			
This product is not designed for the use unde	er any of the following con	nditions.	
Please confirm performance and reliability w			ions;
• In a place with a lot of moisture, dew conde (Cl, H ₂ S, NH ₃ , SO ₂ , NO _X , etc.)	ensation, briny air, and co	rrosive gas.	
• Under the direct sunlight, outdoor exposure	e, and in a dusty place.		
• In water, oil, medical fluid, and organic sol	lvent.		
③ Heat radiation			
If forward current (I_F) is applied to single-sta	ate module at any current,	there is a risk of damaging LE	ED
or emitting smoke.			
Equip with specified heat radiator, and avoid	heat stuffed inside the mo	odule.	
(4) Installation			
Material of board is alumina ceramic. If instal board crack or overheat. Please take particula	11 1 5,	le of no radiation may occur d	lue to
Refer to the following cautions on installation	1.		
 Apply thermolysis adhesive, adhesive shear In case of applying adhesive or adhesive s If LED comes off from heat radiator, unus device deterioration, coming off of solder 	sheet only, check the effect sual temperature rise entait at leads, and emitting smooth	tiveness and reliability before ls hazardous phenomena inclu bke.	fixing. ding
 When LED device is mechanically fixed of attachment due to fail from stress. Avoid convexly uneven boards. 	or locked, Please take into	consideration regarding the m	ethod
Convex board is subject to substrate crack	ting or debasement of heat	release	
 It is recommended to apply adhesive or ad 	-		
for radiation of heat effectively.			
• Please take care about the influence of col period, which may affect light output or co	-		ng tern

HARP	Model No. GW5BTJ**K03	G-106010 Page 16 of 1
 Do not touch resin part including white resin part on the surface of L No light emission may occur due to damage of resin or cutting wire of When using tweezers, please handle by ceramic substrate part and av For mounting, please handle by side part of ceramic or the specified 	of LEDs by outer force. oid touching resin part.	
 ⑤ Connecting method In case of solder connecting method, follow the conditions mentioned b Use Soldering iron with thermo controller (tip temperature 380 °C), v Secure the solderwettability on whole solder pad and leads. During the soldering process, put the ceramic board on materials who not to radiate heat of soldering. Warm up (with using a heated plate) the substrate is recommended be (preheat condition: 100 °C ~ 150 °C, within 60 sec) Avoid touching a part of resin with soldering iron. This product is not designed for reflow and flow soldering. Avoid such lead arrangement as applying stress to solder-applied area Please do not detach solder and make re-solder. Please prevent flux from touching to resin. 	within 5 seconds per one place se conductivity is poor enough fore soldering.	
⑥ Static electricity This product is subject to static electricity, so take measures to cope wit Install circuit protection device to drive circuit, if necessary.	th it.	
 ⑦ Drive method Any reverse voltage cannot be applied to LEDs when they are in oper Design a circuit so that any flow of reverse or forward voltage can not when they are out of operation. Module is composed of LEDs connected in both series and parallel. Constant voltage power supply runs off more than specified current am caused by temperature rise. Constant current power supply is recommended to drive. 	be applied to LEDs	
⑧ Cleaning Avoid cleaning, since silicone resin is eroded by cleaning.		
③ Color-tone variation Chromaticity of this product is monitored by integrating sphere right af Chromaticity varies depending on measuring method, light spread cond Please verify your actual conditions before use.	-	

	DG-1	106010B
SHARP	Model No. I	Page
	GW5BTJ**K03	17 of 18

10 Safety


- ·Looking directly at LEDs for a long time may result in hurt your eyes.
- •In case that excess current (over ratings) are supplied to the device, hazardous phenomena including abnormal heat generation, emitting smoke, or catching fire can be caused.
- Take appropriate measures to excess current and voltage.
- In case of solder connecting method, there is a possibility of fatigue failure by heat.
- Please fix the leads in such case to protect from short circuit or leakage of electricity caused by contact.
- Please confirm the safety standards or regulations of application devices.
- •Please careful not to injure your hand by edge of ceramic substrate.

1 Other cautions

Guarantee covers the compliance to the quality standards mentioned in the Specifications, however it does not cover the compatibility with application of the end-use, including assembly and usage environment.

In case any quality problems occurred in the application of end-use, details will be separately discussed and determined between the parties hereto.

	DG-10		
SHARP	Model No.	Page	
	GW5BTJ**K03	18 of 18	
8. Characteristics diagram (TYP.)			

 $(T_c = 25 \ ^{\circ}C)$

**	Item	Symbol	Condition	Reference Value	Unit
common	Forward Voltage	V _F	$I_F = 500 \text{ mA}$	(19.72)	V
27	Luminous Flux			(627)	
30				(648)	
35		Φ	$I_F = 500 \text{ mA}$	(668)	lm
40		Ψ	$I_{\rm F} = 300 {\rm mA}$	(688)	1111
50				(710)	
65				(710)	

(Note) Characteristics data shown here are for reference purpose only. (Not guaranteed data)