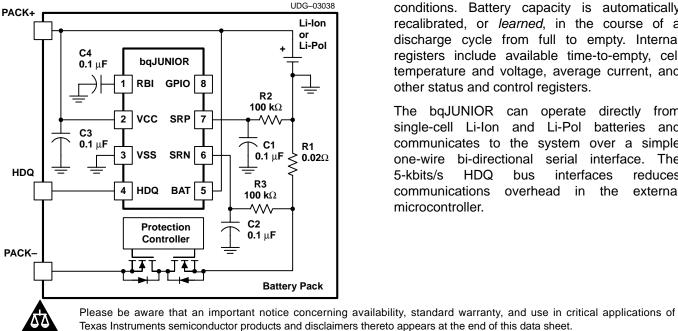


bq27000 bq27010


SLUS556 - FEBRUARY 2003

SINGLE-CELL LI-ION AND LI-POL BATTERY GAS GAUGE IC FOR PORTABLE APPLICATIONS (bqJUNIOR™)

FEATURES

- Reports Accurate Time-to-Empty in Li-Ion and Li-Pol Cells, No System Processor **Calculations Needed**
- **Reports Cell Temperature, Voltage and** Average Current
- **High-Accuracy Coulometric Charge and Discharge Current Integration with** Automatic Offset Cancellation
- Requires No Offset Calibration
- **Programmable Input/Output Port** •
- **Internal Time-Base Eliminates External** Crystal Oscillator
- Four Automatic Low-Power Operating Modes
 - Active: < 100 μA
 - Sleep: < 5 μA
 - Ship: < 2 μA
 - Hibernate: < 500 nA</p>
- Small 8-Pin TSSOP Package

TYPICAL APPLICATION

APPLICATIONS

- **PDAs**
- Smart Phones
- **MP3 Players**
- **Digital Cameras**
- Internet Appliances
- Handheld Devices

DESCRIPTION

The bqJUNIOR series are highly accurate standalone single-cell Li-Ion and Li-Pol battery capacity monitoring and reporting devices targeted at space limited portable applications. The device monitors a voltage drop across a small current sense resistor connected in series with the battery to determine charge and discharge activity of the battery. Compensations for battery temperature, self-discharge, and rate of discharge are applied to the charge counter to provide available time-to-empty and time-to-full information across a wide range of operating conditions. Battery capacity is automatically recalibrated, or learned, in the course of a discharge cycle from full to empty. Internal registers include available time-to-empty, cell temperature and voltage, average current, and other status and control registers.

The bqJUNIOR can operate directly from single-cell Li-Ion and Li-Pol batteries and communicates to the system over a simple one-wire bi-directional serial interface. The HDQ 5-kbits/s bus interfaces reduces communications overhead in the external microcontroller.

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.

SLUS556 - FEBRUARY 2003

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range unless otherwise noted (1) (2)

		bq27000 bq27010
Supply voltage range, V _{CC} (all with respect to V _{SS})		–0.3 V to 7.0 V
Input voltage range at SRP, SRN, RBI, and BAT (all with respect to VSS)		–0.3 V to V _{CC} + 0.3 V
Input voltage	HDQ, GPIO (with respect to V _{SS})	–0.3 V to 7.0 V
	GPIO (with respect to V_{SS}) during EEPROM programming only	–0.3 V to 22.0 V
Output sink current at GPIO, HDQ		5 mA
Operating free-air temperature range, T _A		-20°C to 70°C
Storage temperature range, T _{Stg}		–65°C to 150°C
Junction temperature range, TJ		–40°C to 125°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds		300°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to Absolute Maximum Rated conditions for extended periods may affect device reliability

RECOMMENDED OPERATING CONDITIONS

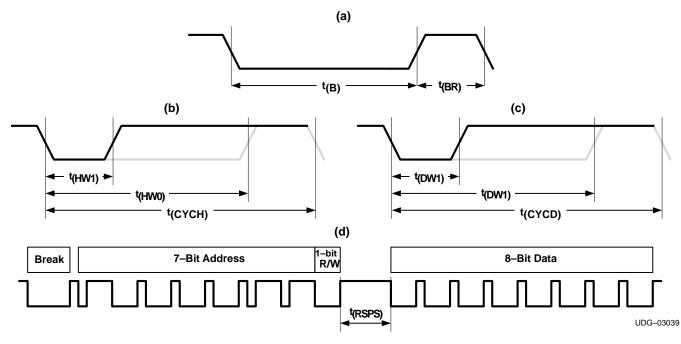
	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	2.6		4.5	V
Operating free-air temperature, TJ	-20		70	°C

ELECTRICAL CHARACTERISTICS

 $T_J = -20^{\circ}C$ to $70^{\circ}C$, $T_J = T_{A_1}$, 2.6 V $\leq V_{CC} \leq 4.5$ V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN TYP MAX	UNIT			
INPUT CURRENTS							
ICC(VCC)	Input current, V _{CC}	V _{CC} > V _{CC} (min)	100				
ICC(SLP)	Sleep current		5	μA			
ICC(SHP)	Ship current		2				
ICC(POR)	Hibernate current	0 V < V _{CC} < V _(POR)	500	nA			
	EEPROM programming current	VPROGRAM = 21 V	15	mA			
	RBI current	RBI pin only, V _{CC} < V _(POR)	20	nA			
V(POR)	POR threshold		2.0 2.5				
	RBI data retention voltage		1.2	V			
	Input impedance on BAT pin		10				
	Input impedance on SRR, SRN pins		10	MΩ			
VOLTAGE	MEASUREMENT	·					
	Measurement range	$V_{CC} = V_{I(BAT)}$	2.6 4.5	V			
	Reported voltage resolution		2.7				
	Reported accuracy		-25 25	mV			
	Voltage update time		2	S			
VOLTAGE	MEASUREMENT	·					
	Reported temperature resolution		0.25	016			
	Reported temperature accuracy		-3 3	°K			
	Temperature update time		2	S			

SLUS556 - FEBRUARY 2003

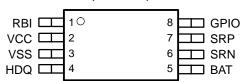

ELECTRICAL CHARACTERISTICS (continued)

 $T_J = -20^{\circ}C$ to 70°C, $T_J = T_{A_1}$ 2.6 V $\leq V_{CC} \leq 4.5$ V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP MAX	UNIT
EEPROM	PROGRAMMING VOLTAGE	·			
^t RISE	Programming voltage rise time		0.5	1.5	
	Programming voltage high time		10	100	ms
^t FALL	Programming voltage fall time		0.5	1.5	1
	Programming voltage	Applied to GPIO pin	20	22	V
IO PORT ((GPIO) AND SERIAL INTERFACE (HDQ	2)			
		$V_{CC} < 4.2 V$	1.7		
VIH	High-level input voltage	$V_{CC} > 4.2 V$	1.9		V
VIL	Low-level input voltage			0.7	1
IOL	Low-level output current	V _{OL} > 0.4 V		1	mA
	D SERIAL COMMUNICATION (HDQ) T	IMING ⁽¹⁾			-
T _(B)	Break timing		190		
T _(BR)	Break recovery time		40		
T(CYCH)	Host bit window timing		190		
T(HW1)	Host sends 1 time		5	50	
T(HW0)	Host sends 0 time		100	145	μs
T _(RSPS)	bq27000 to host response time		190	320	1
T(CYCB)	bq27000 bit window timing		190	250	1
T _(DW1)	bq27000 sends 1 time		32	50	1
T(DW0)	bq27000 sends 0 time		80	145	1

(1) See Figure 1.

The following timing diagrams describe break and break recovery timing (a), host transmitted bit timing (b), bqJUNIOR transmitted bit timing (c), and bqJUNIOR to host response timing (d).


bq27000 bq27010

SLUS556 - FEBRUARY 2003

PIN ASSIGNMENTS

TERMINAL				
NAME	NO.	1/0	DESCRIPTION	
BAT	5	Ι	Battery voltage sense input	
GPIO	8	I/O	General-purpose input/output port	
HDQ	4	I/O	Single-wire HDQ serial interface	
RBI	1	Ι	Register back-up input	
SRN	6	Ι	Current sense input (positive)	
SRP	7	Ι	Current sense input (negative)	
VCC	2	I	V _{CC} supply input	
VSS	3	I	Ground input	

PW PACKAGE (TOP VIEW)

AVAILABLE OPTIONS

TA	ADDITIONAL FUNCTIONS	PACKAGED DEVICES	MARKINGS
–20°C to 70°C	TTECP, AP, SAE, MLTTE, MLI, STTE, SI, ARTTE, and AR	bq27000PW	
		bq27010PW	

[†] The PW package is available taped and reeled. Add R suffix to device type (e.g. bq27000PWR) to order quantities of 2,000 devices per reel.

bq27000 bq27010

SLUS556 - FEBRUARY 2003

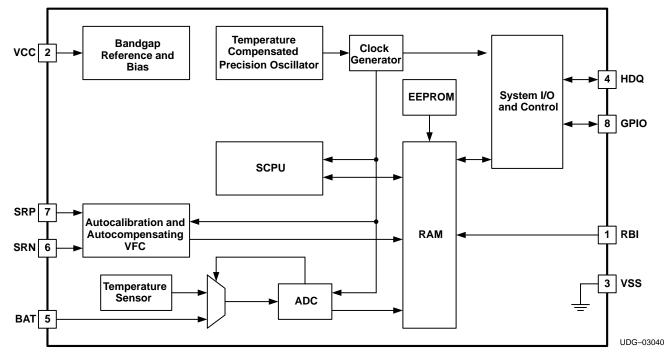
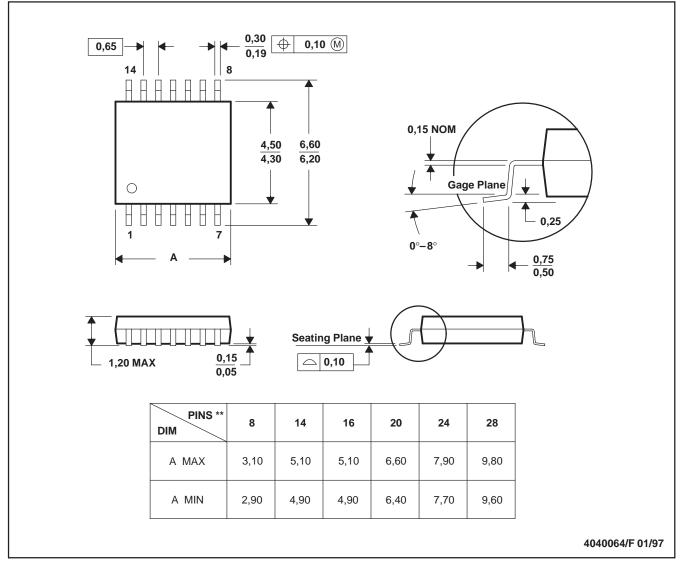


Figure 2. Functional Block Diagram


MECHANICAL DATA

MTSS001C - JANUARY 1995 - REVISED FEBRUARY 1999

PW (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

14 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third–party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2003, Texas Instruments Incorporated