

Thin Film, Back-Contact Resistor

Product may not be to scale

The Back Contact Resistor (BCR) series single-value back-contact resistor chip is one of the smallest chips available.

The BCR requires only one wire bond thus saving hybrid space.

The BCRs are manufactured using Vishay Electro-Films (EFI) sophisticated thin film equipment and manufacturing technology. The BCRs are 100 % electrically tested and visually inspected to MIL-STD-883.

FEATURES

- Wire bondable
- Only one wire bond required
- Small size: 0.020 inches square
- Resistance range: 10 Ω to 1 $M\Omega$
- · Oxidized silicon substrate for good power dissipation
- Resistor material: Tantalum nitride, self-passivating
- Moisture resistant

APPLICATIONS

Vishay EFI BCR resistor chips are widely used in hybrid packages where space is limited. The bottom connection is made by attaching the back of the chip to the substrate either eutectically or with conductive epoxy. The single wire bond is made to the notched pad on the top of the chip. (The other rectangular pad on the top of the chip is a via hole, a low-ohmic contact connecting the resistor to the bottom of the chip.)

STANDARD ELECTRICAL SPECIFICATIONS		
PARAMETER		
Noise, MIL-STD-202, Method 308 100 Ω to 250 k Ω < 100 Ω or > 251 k Ω	- 35 dB typ. - 20 dB typ.	
Moisture resistance, MIL-STD-202 Method 106	± 0.5 % max. Δ <i>R</i> / <i>R</i>	
Stability, 1000 h, + 125 °C, 125 mW	± 1.0 % max. ∆ <i>R</i> / <i>R</i>	
Operating Temperature Range	- 55 °C to + 125 °C	
Thermal Shock, MIL-STD-202, Method 107, Test Condition F	± 0.25 % max. ∆ <i>R</i> / <i>R</i>	
High Temperature Exposure, + 150 °C, 100 h	± 0.5 % max. ∆ <i>R</i> / <i>R</i>	
Dielectric Voltage Breakdown	200 V	
Insulation Resistance	10 ¹² min.	
Operating Voltage	75 V max.	
DC Power Rating at + 70 °C (Derated to Zero at + 175 °C)	250 mW	
5 x Rated Power Short-Time Overload, + 25 °C, 5 s	± 0.25 % max. ∆ <i>R</i> / <i>R</i>	

Vishay Electro-Films

DIMENSIONS in inches

Note

• Notched shaded area represents top bonding pad. The backside of the chip constitutes the second resistor connection.

SCHEMATIC Bond Pad

O Back of Chip

MECHANICAL SPECIFICATIONS in inches	
PARAMETER	
Chip Size	0.020" x 0.020" ± 0.002" (0.50 mm x 0.50 mm ± 0.05 mm)
Chip Thickness	0.010" ± 0.003" (0.253 mm ± 0.05 mm)
Chip Substrate Material	Oxidized silicon, 10 kÅ minimum SiO ₂
Resistor Material	Tantalum nitride, self-passivating
Bonding Pad Size	0.004" x 0.004" (0.100 mm x 0.100 mm)
Number of Pads	1
Pad Material	10 kÅ minimum aluminum (15 kÅ minimum gold optional)
Backing	3 kÅ minimum gold
Recommended Attachment Method	Eutectic or conductive epoxy

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.