

Website:www.midascomponents.co.uk Tel:+44(0)1493 602602 Fax:+44(0)1493 665111

Specification

MC42005B6W-SPR

DOC.

DATASHEET STATEMENT

- 1. The following icons are absolutely designed by Midas independently in 2007-SEP. They are not in common use in the LCD industry yet but just used for marking out Midasproducts' characteristics quickly and simply without any special meaning. Midas reserves the composing right and copyright. No one else is allowed to adopt these icons without Midas approval.
- 2. The ISO9001 logo used in this document is authorized by SGS (www.sgs.com). Midas had already successfully passed the strict and professional ISO9001:2000 Quality Management System Certification and got the certificate (No.: CN07/00404)
- 3. The technologies/techniques/crafts which denoted by the following icons are not exclusively owned by Midas, but also shared by Midas LCD strategic cooperators, however all these technologies/techniques/crafts have been finally confirmed by Midas professional engineers and QC department.
- **4.** As the difference in test standard and test conditions, also Midas insufficient familiarity with the actual LCD using environment, all the referred information in this DATASHEET (including the icons) only have two functions:
 - 4.1: providing quick reference when you are judging whether or not the product meets your requirements.
 - 4.2: listing out definitely the tolerance.

SAMPLE APPROVAL document rather than consider this DATASHEET as the standard for judging whether or not the LCD meets your requirements. Once you instruct Midas to a mass-production without definite demand for providing sample before, Midas will disclaim all responsibility if the mass-production is proved not meeting with your requirements.

- **5.** The sequence of the icons is random and doesn't indicate the importance grade.
- 6. Icons explanation

Midas 2006 version logo. Midas is an integrated manufacturer of flat panel display (FPD). Midas supplies TN, HTN, STN, FSTN monochrome LCD panel; COB, COG, TAB LCD module; and all kinds of LED backlight.

FAST RESPONSE TIME

This icon on the cover indicates the product is with high response speed; Otherwise not.

PROTECTION CIRCUIT

This icon on the cover indicates the product is with protection circuit; Otherwise not.

HIGH CONTRAST

This icon on the cover indicates the product is with high contrast; Otherwise not.

LONG LIFE VERSION

This icon on the cover indicates the product is long life version (over 9K hours guaranteed); Otherwise not.

WIDE VIEWING SCOPE

This icon on the cover indicates the product is with wide viewing scope; Otherwise not.

Anti UV VERSION

This icon on the cover indicates the product is against UV line. Otherwise not.

RoHS COMPLIANCE

This icon on the cover indicates the product meets ROHS requirements; Otherwise not.

OPERATION TEMPERATURE RANGE

This icon on the cover indicates the operating temperature range (X-Y).

3TIMEs 100% QC EXAMINATION

This icon on the cover indicates the product has passed Midas thrice 100% QC.
Otherwise not.

TWICE SELECTION OF LED MATERIALS

This icon on the cover indicates the LED had passed Midas twice strict selection which promises the product's identical color and brightness; Otherwise not.

Vlcm = 3.0V

This icon on the cover indicates the product can work at 3.0V exactly; otherwise not.

N SERIES TECHNOLOGY (2008 developed)

New structure, new craft, new technology and new materials inside both LCD module and LCD panel to improve the "RainBow"

DOCUMENT REVISION HISTORY:

DATE	PAGE	DESCRIPTION
1999.8. 2005.3. 2005.12 2006.03		First release Modify the full specification Update the part number system Add Red backlight

Contents

- 1.Module Classification Information
- 2.Precautions in use of LCD Modules
- 3.General Specification
- 4. Absolute Maximum Ratings
- 5. Electrical Characteristics
- 6.Optical Characteristics
- 7.Interface Pin Function
- 8. Power Supply
- 9. Contour Drawing & Block Diagram
- 11.Function Description
- 12. Character Generator ROM Pattern
- 12.Instruction Table
- 13. Timing Characteristics
- 14.Initializing of LCM
- 15. Quality Assurance
- 16.Reliability

Midas LCD Part Number System

COG 132033 Т 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

- 1 = MC: Midas Components
- 2 = **Blank:** COB (chip on board) **COG**: chip on glass
- 3 = No of dots (e.g. 240064 = 240 x 64 dots) (e.g. 21605 = 2 x 16 5mm C.H.)
- 4 = Series
- 5 = Series Variant: A to Z
- 6 = **3:** 3 o'clock **6:** 6 o'clock **9:** 9 o'clock **12:** 12 o'clock
- 7 = S: Normal (0 to + 50 deg C) W: Wide temp. (-20 to + 70 deg C) X: Extended temp (-30 + 80 Deg C)
- 8 = Character Set

Blank: Standard (English/Japanese)

C: Chinese Simplified (Graphic Displays only)

CB: Chinese Big 5 (Graphic Displays only)

H: Hebrew

K: European (std) (English/German/French/Greek)

L: English/Japanese (special)

M: European (English/Scandinavian)

R: Cyrillic

W: European (English/Greek)

U: European (English/Scandinavian/Icelandic)

9 = **Bezel Height** (where applicable / available)

	Ton of Paral to Ton	Common	Array
	Top of Bezel to Top of PCB	(via pins 1	or Edge
	01.1 CD	and 2)	Lit
Blank	9.5mm / not applicable	Common	Array
2	8.9 mm	Common	Array
3	7.8 mm	Separate	Array
4	7.8 mm	Common	Array
5	9.5 mm	Separate	Array
6	7 mm	Common	Array
7	7 mm	Separate	Array
8	6.4 mm	Common	Edge
9	6.4 mm	Separate	Edge
A	5.5 mm	Common	Edge
В	5.5 mm	Separate	Edge

- 10 = T: TN S: STN B: STN Blue G: STN Grey F: FSTN F2: FFSTN
- 11 = P: Positive N: Negative
- 12 = **R:** Reflective **M:** Transmissive **T:** Transflective
- 13 = **Backlight: Blank:** Reflective **L:** LED
- = Backlight Colour: Y: Yellow-Green W: White B: Blue R: Red A: Amber O: Orange G: Green RGB: R.G.B.
- 15 = **Driver Chip:** Blank: Standard I: I²C
- 16 = Voltage Variant: e.g. 3 = 3v

2. Precautions in use of LCD Modules

- (1) Avoid applying excessive shocks to the module or making any alterations or modifications to it.
- (2)Don't make extra holes on the printed circuit board, modify its shape or change the components of LCD module.
- (3)Don't disassemble the LCM.
- (4)Don't operate it above the absolute maximum rating.
- (5)Don't drop, bend or twist LCM.
- (6) Soldering: only to the I/O terminals.
- (7)Storage: please storage in anti-static electricity container and clean environment.

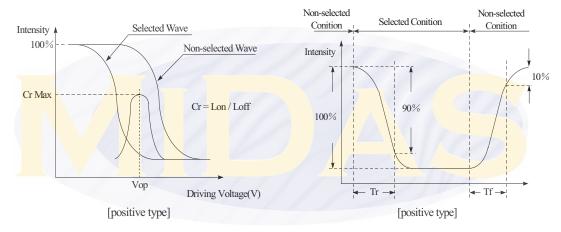
3. General Specification

Item	Dimension	Unit
Numb <mark>er of C</mark> haracters	20characters x 4 Lines	_
Modul <mark>e dime</mark> nsion(No Backlight)	98.0 x 60.0 x 10.0 (MAX)	mm
Modul <mark>e d</mark> imension(With LED Backlight)	98.0 x 60.0 x 15.0 (MAX)	mm
View area	76.0 x 25.2	mm
Active area	70.40 x 20.80	mm
Dot size	0.55 x 0.55	mm
Dot pitch	0.60 x 0.60	mm
Character size	2.95 x 4.75	mm
Character pitch	3.55 x 5.35	mm
LCD type	STN	
Duty	1/16	
View direction	6 o'clock or 12 o'clock	
Backlight Type	Yellow/Green Reflective	

4. Absolute Maximum Ratings

It	em	Symbol	Min	Max	Unit
Input Voltage		V_{I}	-0.3	VDD+0.3	V
Supply Voltage For I	Logic	VDD-V _{SS}	-0.3	7.0	V
Supply Voltage For I	LCD	V_{DD} - V_0	Vdd-13.5	0	V
Standard	Operating Temp.	Тор	0	50	$^{\circ}$
Temperature LCM	Storage Temp.	Tstr	-10	60	$^{\circ}$
Wide Temperature	Operating Temp.	Тор	-20	70	$^{\circ}$
LCM	Storage Temp.	Tstr	-30	80	$^{\circ}\!\mathbb{C}$

5. Electrical Characteristics

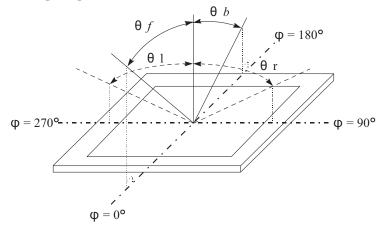

Item	Symbol	Condition	Min	Тур	Max	Unit
Supply Voltage For Logic	V_{DD} - V_{SS}		4.5	5.0	5.5	V
Supply Voltage For LCD	V _{DD} -V ₀	Ta=25°C	4.5	5.0	5.5	V
Input H <mark>igh Volt</mark> .	V_{IH}	-	$0.7 V_{DD}$	_	V_{DD}	V
Input <mark>Low</mark> V <mark>olt.</mark>	V _{IL}	-	V _{SS}	\-/	$0.3 V_{DD}$	V
Supply Current	I_{DD}	V _{DD} =5V	0.7	0.75	1.5	mA
Supply Voltage of Yellow-green backlight	$ m V_{LED}$	Forward current =180 mA Number of LED die 2x18=36	4.0	4.2	4.4	V
Supply Voltage of White backlight	$ m V_{LED}$	Forward current = 30 mA Number of LED die 2	3.8	4.0	4.2	V
Supply Voltage of RED backlight	$ m V_{LED}$	Forward current =180 mA Number of LED die 2x18= 36	3.5	3.9	4.1	V

6. Optical Characteristics

Item	Symbol	Condition	Min	Тур	Max	Unit
View Angle	(V)θ	CR ≧ 2	-20	_	35	deg
view ringle	(Н)ф	CR≥2	-30	_	30	deg
Contrast Ratio	CR	_	_	3	_	_
Response Time	T rise	_	_	_	250	ms
The sponso Thire	T fall	_	_	_	250	ms

Definition of Operation Voltage (Vop)

Definition of Response Time (Tr, Tf)

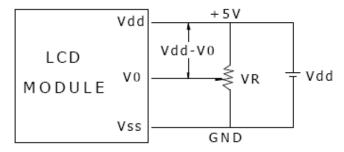


Conditions:

Operating Voltage : Vop $\mbox{ Viewing Angle}(\theta \ , \ \phi) : 0^{\circ} \ , \quad 0^{\circ}$

Frame Frequency : $64\ HZ$ Driving Waveform : $1/N\ duty$, $1/a\ bias$

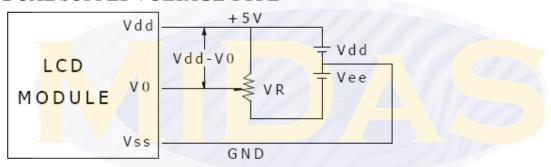
Definition of viewing angle($CR \ge 2$)



7. Interface Pin Function

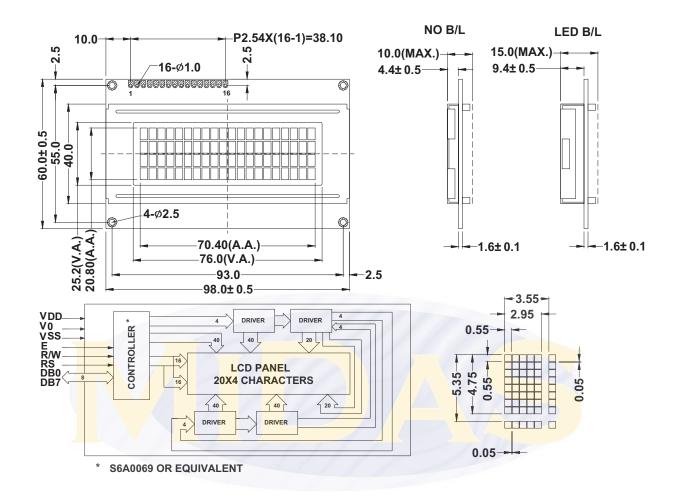
Pin No.	Symbol	Level	Description
1	V_{SS}	0V	Ground
2	V_{DD}	5.0V	Supply Voltage for logic
3	V0	(Variable)	Operating voltage for LCD
4	RS	H/L	H: DATA, L: Instruction code
5	R/W	H/L	H: Read(MPU→Module) L: Write(MPU→Module)
6	Е	H,H→L	Chip enable signal
7	DB0	H/L	Data bit 0
8	DB1	H/L	Data bit 1
9	DB2	H/L	Data bit 2
10	DB3	H/L	Data bit 3
11	DB4	H/L	Data bit 4
12	DB5	H/L	Data bit 5
13	DB6	H/L	Data bit 6
14	DB7	H/L	Data bit 7
15	LED(+)	9 9	Anode of LED Backlight
16	LED(-)		Cathode of LED Backlight

8. POWER SUPPLY


SINGLE SUPPLY VOLTAGE TYPE

Vdd-V0: LCD Driving Voltage

VR: 10K - 20K


DUAL SUPPLY VOLTAGE TYPE

Vdd-V0: LCD Driving Voltage

VR: 10K - 20K

9. Contour Drawing & Block Diagram

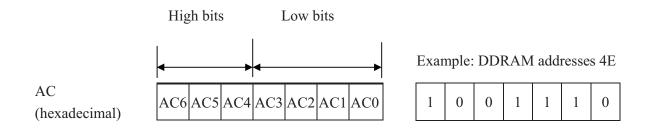
10. Function Description

The LCD display Module is built in a LSI controller, the controller has two 8-bit registers, an instruction register (IR) and a data register (DR).

The IR stores instruction codes, such as display clear and cursor shift, and address information for display data RAM (DDRAM) and character generator (CGRAM). The IR can only be written from the MPU. The DR temporarily stores data to be written or read from DDRAM or CGRAM. When address information is written into the IR, then data is stored into the DR from DDRAM or CGRAM. By the register selector (RS) signal, these two registers can be selected.

RS	R/W	Operation
0	0	IR write as an internal operation (display clear, etc.)
0	1	Read busy flag (DB7) and address counter (DB0 to DB7)
1	0	Write data to DDRAM or CGRAM (DR to DDRAM or CGRAM)
1	1	Read data from DDRAM or CGRAM (DDRAM or CGRAM to DR)

Busy Flag (BF)


When the busy flag is 1, the controller LSI is in the internal operation mode, and the next instruction will not be accepted. When RS=0 and R/W=1, the busy flag is output to DB7. The next instruction must be written after ensuring that the busy flag is 0.

Address Counter (AC)

The address counter (AC) assigns addresses to both DDRAM and CGRAM

Display Data RAM (DDRAM)

This DDRAM is used to store the display data represented in 8-bit character codes. Its extended capacity is 80×8 bits or 80 characters. Below figure is the relationships between DDRAM addresses and positions on the liquid crystal display.

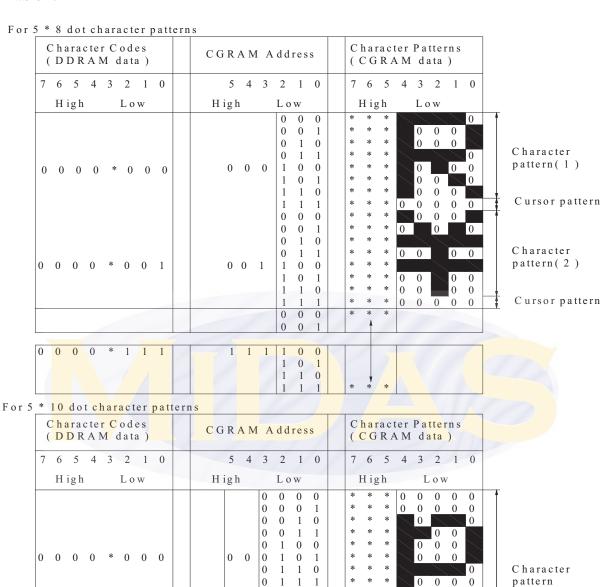
Display position DDRAM address

1	2	3	4	3	O	/	Ō	9	10	11	12	13	14	13	10	1 /	10	19	20
_	1																		
00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F	10	11	12	13
40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4F	50	51	52	53
80	81	82	83	84	85	86	87	88	89	8A	8B	8C	8D	8E	8F	90	91	92	93
C0	C1	C2	C3	C4	C5	C6	C7	C8	C9	CA	СВ	CC	CD	CE	CF	D0	D1	D2	D3

4-Line by 20-Character Display

Character Generator ROM (CGROM)

The CGROM generate 5×8 dot or 5×10 dot character patterns from 8-bit character codes. See Table 2.


Character Generator RAM (CGRAM)

In CGRAM, the user can rewrite character by program. For 5×8 dots, eight character patterns can be written, and for 5×10 dots, four character patterns can be written.

Write into DDRAM the character code at the addresses shown as the left column of table 1. To show the character patterns stored in CGRAM.

Relationship between CGRAM Addresses, Character Codes (DDRAM) and Character patterns

Table 1.

: " High "

0 0 0

1

0 0 1

0 1 0

1 1 1 1

0 0 0 0

0 0 0 0

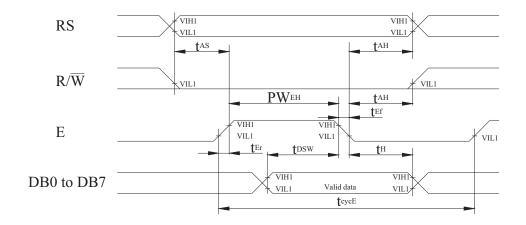
Cursor pattern

* 0 0 0 0 0

* * * * * * *

11. Character Generator ROM Pattern

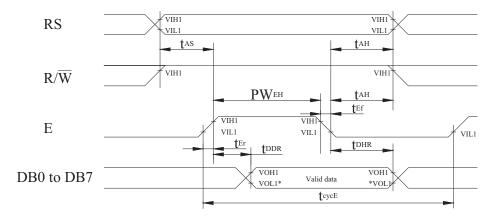
						ı	ı	ı				ı					l
		0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
	0	CG RAM (1)						••					•••••	-:::	₩.		
	1	CG RAM (2)						-:::	••••					::-	:		
	2	CG RAM (3)			:::				···			•	·: ·	• ;	.::¹		
cimal)	3	CG RAM (4)			:			:	·						•	::	:
Lower 4-bit (D0 to D3) of Character Code (Hexadecimal)	4	CG RAM (5)		:					•			٠.			•		
er Code	5	CG RAM (6)		*:								**		:			
Characte	6	CG RAM (7)	7						•••		7						
D3) of	7	CG RAM (8)		:								::					
t (D0 to	8	CG RAM (1)							×			·i'	••••	•	•		:
ver 4-bi	9	CG RAM (2)		Þ			···	1.	•!			•••••	•			•••	
Lov	A	CG RAM (3)		**:	==		····					 .			···		
	В	CG RAM (4)		••••	:				*			:::				×	
	С	CG RAM (5)		:	€.							#::	 :	 !			
	D	CG RAM (6)		••••				i i	:					*:	:		
	Е	CG RAM (7)		#	÷			!					1		•••		
	F	CG RAM (8)			?		••••	::::				•	٠ا	**			


12. Instruction Table

Instruction				Ins	structi	ion Ca	ode				Description	Execution time
Thstruction	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description	(fosc=270Khz)
Clear Display	0	0	0	0	0	0	0	0	0	1	Write "00H" to DDRAM and set DDRAM address to "00H" from AC	1.53ms
Return Home	0	0	0	0	0	0	0	0	1	_	Set DDRAM address to "00H" from AC and return cursor to its original position if shifted. The contents of DDRAM are not changed.	1.53ms
Entry Mode Set	0	0	0	0	0	0	0	1	I/D	SH	Assign cursor moving direction and enable the shift of entire display.	39μs
Display ON/OFF Control	0	0	0	0	0	0	1	D	С	В	Set display (D), cursor (C), and blinking of cursor (B) on/off control bit.	39µs
Cursor or Display Shift	0	0	0	0	0	1	S/C	R/L	_	_	Set cursor moving and display shift control bit, and the direction, without changing of DDRAM data.	39µs
Function Set	0	0	0	0	1	DL	N	F		_	Set interface data length (DL:8-bit/4-bit), numbers of display line (N:2-line/1-line)and, display font type (F:5×11 dots/5×8 dots)	39μs
Set CGRAM Address	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address in address counter.	39μs
Set D <mark>DRA</mark> M Addre <mark>ss</mark>	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set DDRAM address in address counter.	39μs
Read Busy Flag and Address	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Whether during internal operation or not can be known by reading BF. The contents of address counter can also be read.	0µs
Write Data to RAM	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data into internal RAM (DDRAM/CGRAM).	43μs
Read Data from RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data from internal RAM (DDRAM/CGRAM).	43μs

* "-": don't care

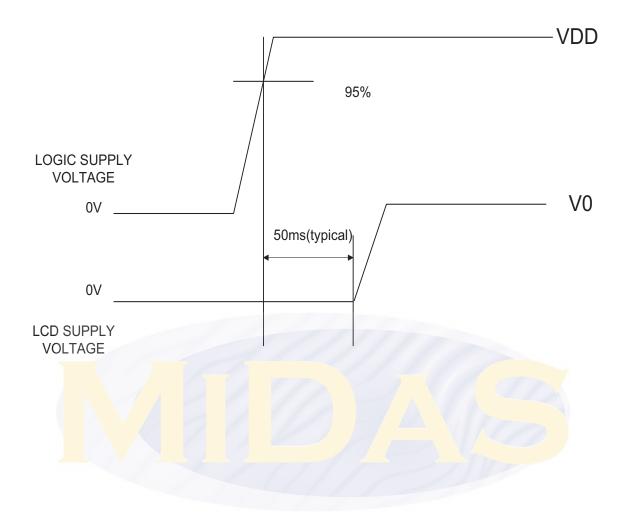
13. Timing Characteristics


13.1 Write Operation

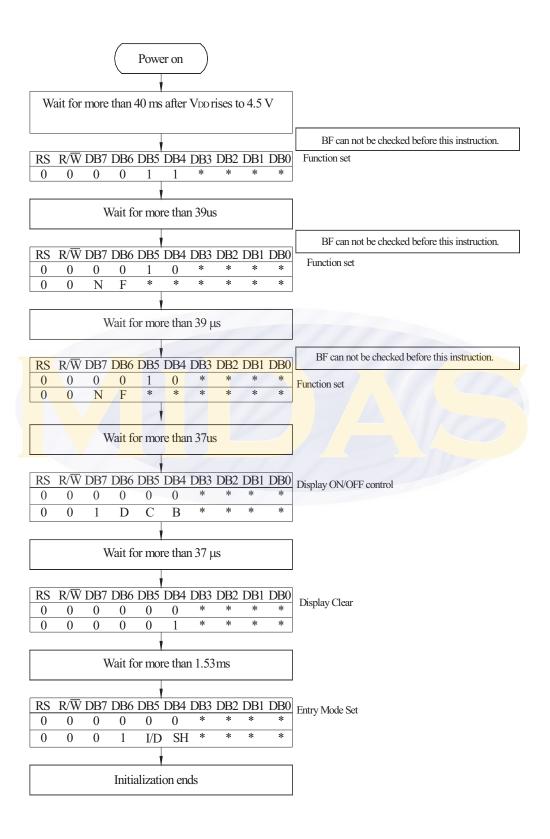
Ta=25°C, VDD=5.0± 0.5V

Item	Symbol	Min	Тур	Max	Unit
Enab <mark>le cyc</mark> le time	$t_{ m cycE}$	1200	7-	-	ns
Enab <mark>le pulse width (high</mark> lev <mark>el)</mark>	PW_{EH}	140			ns
Enab <mark>le r</mark> ise/fall time	$t_{\rm Er}, t_{\rm Ef}$	/-/		25	ns
Address set-up time (RS, R/W to E)	t_{AS}	0	_		ns
Address hold time	t_{AH}	10	_	_	ns
Data set-up time	$t_{ m DSW}$	40	_	_	ns
Data hold time	t_{H}	10	_	_	ns

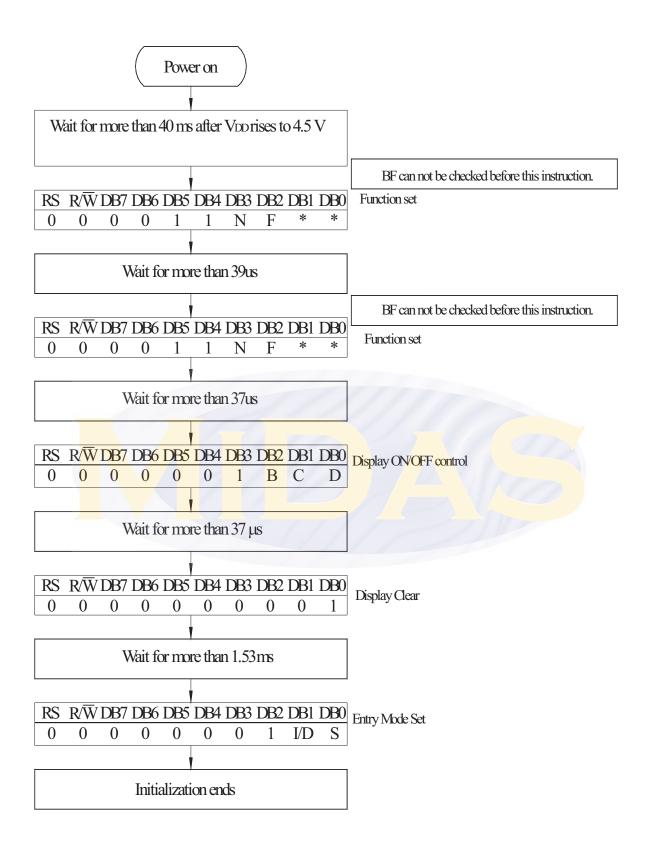
13.2 Read Operation


NOTE: *VOL1 is assumed to be 0.8V at 2 MHZ operation.

Ta=25°C, VDD= 5.0 ± 0.5 V


Item	Symbol	Min	Тур	Max	Unit
Enable cycle time	$t_{ m cycE}$	1200	_	_	ns
Enable pulse width (high level)	PW_{EH}	140	7-/	_	ns
Enab <mark>le ris</mark> e/fall tim <mark>e</mark>	$t_{\rm Er}, t_{\rm Ef}$	(-)		25	ns
Address set-up time (RS, R/W to E)	t _{AS}	0			ns
Addr <mark>ess</mark> hol <mark>d tim</mark> e	t _{AH}	10			ns
Data delay time	t _{DDR}			100	ns
Data hold time	t _{DHR}	10	_	_	ns

13.3 Timing Diagram of VDD Against V0.


Power on sequence shall meet the requirement of Figure 4, the timing diagram of VDD against V0.

14.Initializing of LCM

4-Bit Ineterface

8-Bit Ineterface

15.Quality Assurance

Screen Cosmetic Criteria

Item	Defect	Judgment Criterion	Partition
1	Spots	A)Clear $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Minor
2	Bubbles in Polarizer	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Minor
3	Scratch	In accordance with spots cosmetic criteria. When the light reflects on the panel surface, the scratches are not to be remarkable.	Minor
4	Allowable Density	Above defects should be separated more than 30mm each other.	Minor
5	Coloration	Not to be noticeable coloration in the viewing area of the LCD panels. Back-light type should be judged with back-light on state only.	Minor

16.Reliability

Content of Reliability Test

Environmental Test							
Test Item	Content of Test	Test Condition	Applicable Standard				
High Temperature storage	Endurance test applying the high storage temperature for a long time.	60℃ 96hrs					
Low Temperature storage	Endurance test applying the high storage temperature for a long time.	-10℃ 96hrs					
High Temperature Operation	Endurance test applying the electric stress (Voltage & Current) and the thermal stress to the element for a long time.	50℃ 96hrs					
Low Temperature Operation	Endurance test applying the electric stress under low temperature for a long time.	0°C 96hrs					
High Temperature/ Humidity Storage	Endurance test applying the high temperature and high humidity storage for a long time.	60℃,90%RH 96hrs					
High Temperature/ Humidity Operation	Endurance test applying the electric stress (Voltage & Current) and temperature / humidity stress to the element for a long time.	50℃,90%RH 96hrs					
Temperature Cycle	Endurance test applying the low and high temperature cycle. -10°C 25°C 60°C 30min 5min 30min 1 cycle	-10°C/60°C 10 cycles					
Mechanical Test							
Vibration test	Endurance test applying the vibration during transportation and using.	10~22Hz→1.5mmp-p 22~500Hz→1.5G Total 0.5hrs					
Shock test	Constructional and mechanical endurance test applying the shock during transportation.	50G Half sign wave 11 msedc 3 times of each direction					

^{***}Supply voltage for logic system=5V. Supply voltage for LCD system=Operating voltage at $25\,^{\circ}$ C