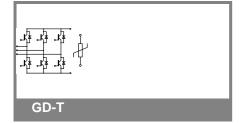


IGBT Module

SK100GD066T

Preliminary Data

Features


- One screw mounting module
- Fully compatible with SEMITOP®1,2,3
- Improved thermal performances by aluminium oxide substrate
- Trench IGBT technology
- CAL technology FWD
- Integrated NTC temperature sensor

Typical Applications*

- Inverter up to 22 kVA
- Typ. motor power 11 kW

Absolute Maximum Ratings T _s = 25 °C, unless otherwise specified						
Symbol	Conditions			Values		
IGBT	•					
V_{CES}	T _j = 25 °C			600	V	
I _C	T _j = 175 °C	T _s = 25 °C		105	Α	
		$T_s = 70 ^{\circ}C$		85	Α	
I _{CRM}	I _{CRM} = 2 x I _{Cnom}			200	Α	
V_{GES}				± 20	V	
t _{psc}	V_{CC} = 360 V; $V_{GE} \le 20$ V; $V_{CES} < 600$ V	T _j = 125 °C		6	μs	
Inverse D	Diode				•	
I_{F}	T _j = 175 °C	$T_s = 25 ^{\circ}C$		99	Α	
		$T_s = 70 ^{\circ}C$		79	Α	
I _{FRM}	I _{FRM} = 2 x I _{Fnom}			120	Α	
Module						
$I_{t(RMS)}$					Α	
T_{vj}				-40 + 175	°C	
T _{stg}				-40 +12 5	°C	
V _{isol}	AC, 1 min.			2500	V	

Characteristics T _s = 25 °C, unless otherwise specified						ecified
Symbol	Conditions		min.	typ.	max.	Units
IGBT						•
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 1.6 \text{ mA}$		5	5,8	6,5	V
I _{CES}	$V_{GE} = 0 \text{ V}, V_{CE} = V_{CES}$	T _j = 25 °C			0,005	mA
		T _j = 125 °C				mA
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 25 °C			600	nA
		T _j = 125 °C				nA
V _{CE0}		T _j = 25 °C		0,9	1,1	V
		T _j = 150 °C		0,8	1	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		5,5	7,5	mΩ
		$T_{j} = 150^{\circ}C$		8,5	10,5	mΩ
V _{CE(sat)}	I _{Cnom} = 100 A, V _{GE} = 15 V	$T_j = 25^{\circ}C_{\text{chiplev.}}$		1,45	1,85	V
		$T_j = 150^{\circ}C_{chiplev.}$		1,65	2,05	V
C _{ies}				6,1		nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,38		nF
C _{res}				0,18		nF
$t_{d(on)}$				144		ns
t _r	$R_{Gon} = 32 \Omega$	V _{CC} = 300V		128		ns
E _{on}		I _C = 100A		7		mJ
^t d(off)	$R_{Goff} = 32 \Omega$	T _j = 150 °C		1040		ns
t _f	di/dt = 2575 A/μs	V _{GE} = -7/+15 V		91		ns
E _{off}				6		mJ
$R_{th(j-s)}$	per IGBT			0,65		K/W

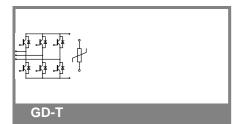
IGBT Module

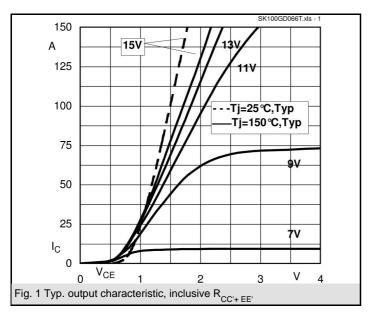
SK100GD066T

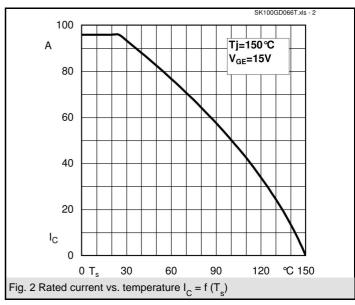
Preliminary Data

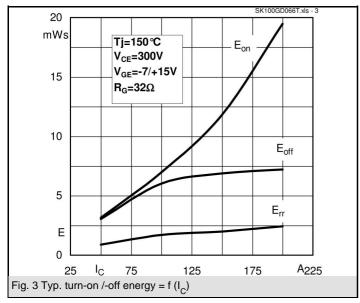
Features

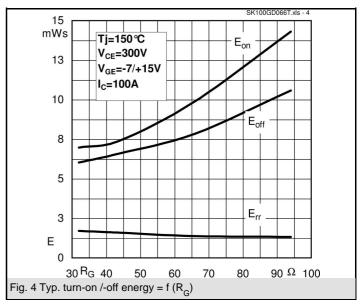
- · One screw mounting module
- Fully compatible with SEMITOP®1,2,3
- Improved thermal performances by aluminium oxide substrate
- Trench IGBT technology
- CAL technology FWD
- Integrated NTC temperature sensor

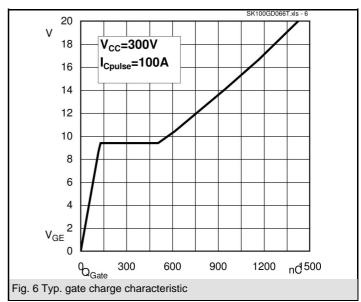

Typical Applications*

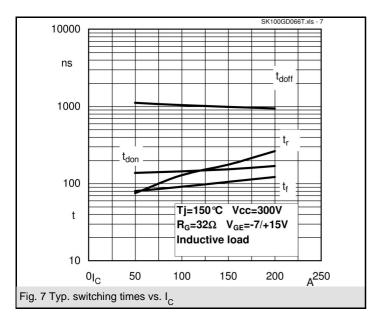

- · Inverter up to 22 kVA
- Typ. motor power 11 kW

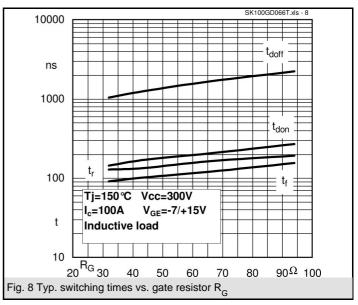

Characteristics							
Symbol	Conditions		min.	typ.	max.	Units	
Inverse Diode							
$V_F = V_{EC}$	$I_{Fnom} = 100 \text{ A}; V_{GE} = 0 \text{ V}$			1,3		V	
		$T_j = 150 ^{\circ}C_{\text{chiplev.}}$		1,3		V	
V_{F0}		T _j = 25 °C		0,95		V	
		T _j = 150 °C		0,85		V	
r _F		T _j = 25 °C		3,5		mΩ	
		T _j = 150 °C		4,5		mΩ	
I _{RRM}	I _F = 100 A	T _i = 150 °C		60		Α	
Q_{rr}	di/dt = 2575 A/µs	,		5,6		μC	
E _{rr}	V _{CC} = 300V			1,7		mJ	
R _{th(j-s)D}	per diode			0,8		K/W	
M _s	to heat sink		2,5		2,75	Nm	
w				60		g	
Temperature sensor							
R ₁₀₀	$T_s = 100^{\circ}C (R_{25} = 5k\Omega)$			493±5%		Ω	

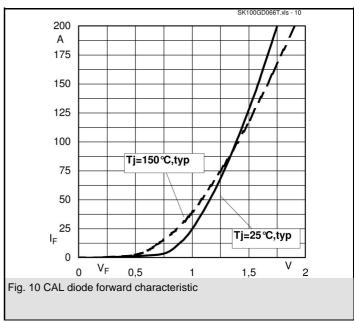

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

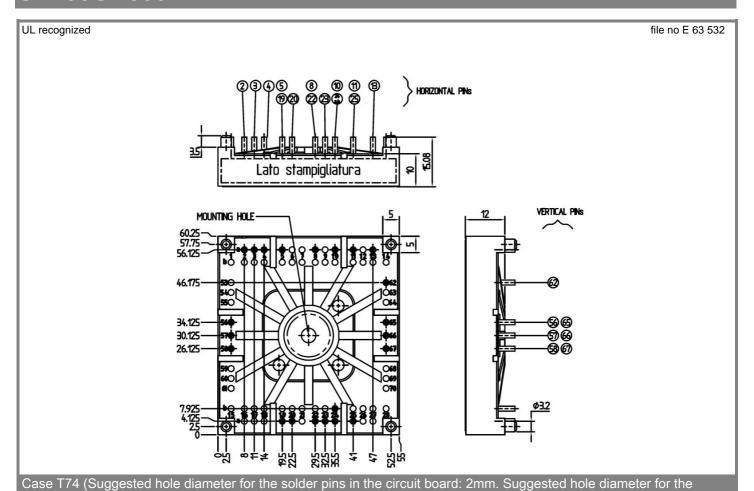

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

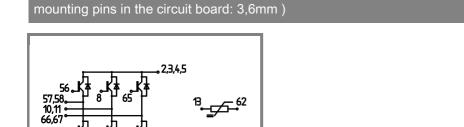












4 26-02-2009 DIL © by SEMIKRON

Case T 74 GD-T

22,23,24a,24b