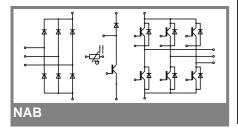
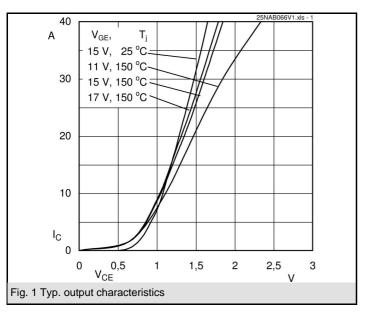


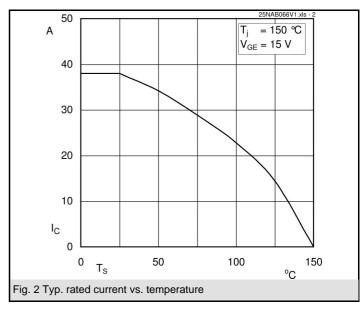
3-phase bridge rectifier + brake chopper + 3-phase bridge inverter SKiiP 25NAB066V1

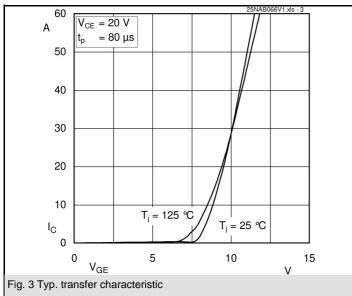

- Trench IGBTs
- Robust and soft freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognised file no. E63532

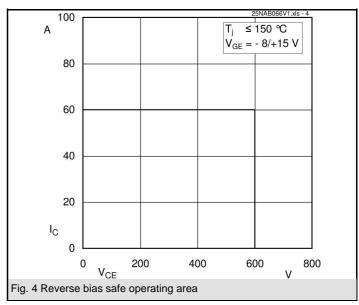
#### **Typical Applications\***

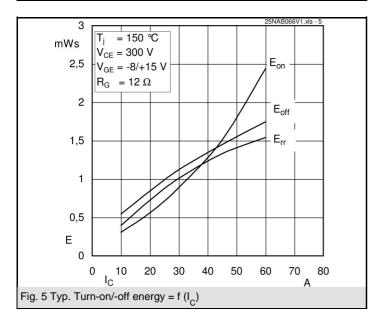
- Inverter up to 10 kVA
- Typical motor power 4,0 kW

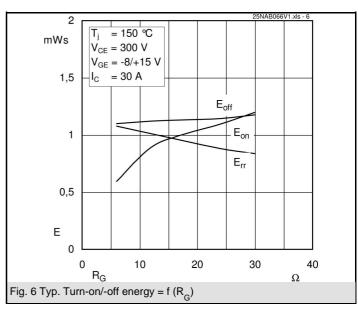

#### **Remarks**

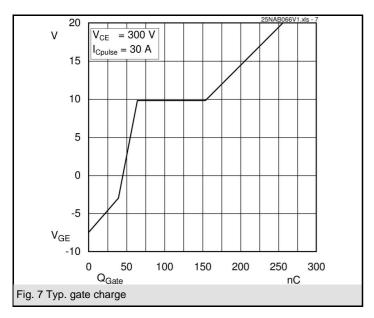

- Case temperature limited to T<sub>C</sub>= 125°C max.
- Product reliability results are valid for  $T_i$ = 150°C
- SC data:  $t_p \le 6 \mu s$ ;  $V_{CE} \le 15 V$ ;  $T_j$  = 150°C,  $V_{CC}$  = 360 V  $V_{CEsat}$ ,  $V_F$  = chip level

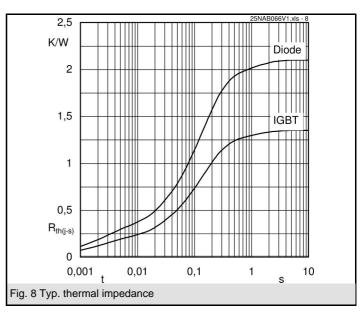


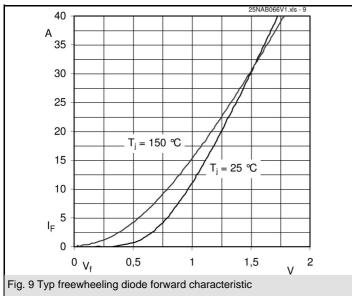


| Absolute Maximum Ratings T <sub>S</sub> = 25°C, unless otherwise specified |                                                                 |         |       |  |  |  |  |
|----------------------------------------------------------------------------|-----------------------------------------------------------------|---------|-------|--|--|--|--|
| Symbol                                                                     | Conditions                                                      | Values  | Units |  |  |  |  |
| IGBT - Inverter, Chopper                                                   |                                                                 |         |       |  |  |  |  |
| $V_{CES}$                                                                  |                                                                 | 600     | V     |  |  |  |  |
| I <sub>C</sub>                                                             | $T_s = 25 (70) ^{\circ}C, T_i = 150 ^{\circ}C$                  | 39 (27) | Α     |  |  |  |  |
| I <sub>C</sub>                                                             | $T_s = 25 (70) ^{\circ}\text{C},  T_j = 175 ^{\circ}\text{C}$   | 43 (32) | Α     |  |  |  |  |
| I <sub>CRM</sub>                                                           | t <sub>p</sub> = 1 ms                                           | 60      | Α     |  |  |  |  |
| $V_{GES}$                                                                  |                                                                 | ± 20    | V     |  |  |  |  |
| Diode - Inverter, Chopper                                                  |                                                                 |         |       |  |  |  |  |
| I <sub>F</sub>                                                             | T <sub>s</sub> = 25 (70) °C, T <sub>i</sub> = 150 °C            | 33 (22) | Α     |  |  |  |  |
| I <sub>F</sub>                                                             | $T_s = 25 (70) ^{\circ}C, T_j = 175 ^{\circ}C$                  | 39 (29) | Α     |  |  |  |  |
| I <sub>FRM</sub>                                                           | t <sub>p</sub> = 1 ms                                           | 60      | Α     |  |  |  |  |
| Diode - Rectifier                                                          |                                                                 |         |       |  |  |  |  |
| $V_{RRM}$                                                                  |                                                                 | 800     | V     |  |  |  |  |
| I <sub>F</sub>                                                             | T <sub>s</sub> = 70 °C                                          | 46      | Α     |  |  |  |  |
| I <sub>FSM</sub>                                                           | $t_p = 10 \text{ ms, sin } 180 ^\circ, T_j = 25 ^\circ\text{C}$ | 370     | Α     |  |  |  |  |
| i²t                                                                        | $t_p$ = 10 ms, sin 180 °, $T_j$ = 25 °C                         | 680     | A²s   |  |  |  |  |
| I <sub>tRMS</sub>                                                          | per power terminal (20 A / spring)                              | 40      | Α     |  |  |  |  |
| T <sub>j</sub>                                                             | IGBT, Diode                                                     | -40+175 | °C    |  |  |  |  |
| T <sub>stg</sub>                                                           |                                                                 | -40+125 | °C    |  |  |  |  |
| V <sub>isol</sub>                                                          | AC, 1 min.                                                      | 2500    | V     |  |  |  |  |

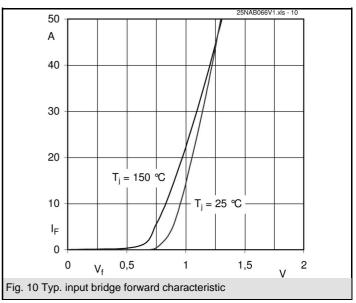

| Character                       | istics                                                           | T <sub>S</sub> = 25°C, unless otherwise specified |             |             |       |  |  |  |  |
|---------------------------------|------------------------------------------------------------------|---------------------------------------------------|-------------|-------------|-------|--|--|--|--|
| Symbol                          | Conditions                                                       | min.                                              | typ.        | max.        | Units |  |  |  |  |
| IGBT - Inverter, Chopper        |                                                                  |                                                   |             |             |       |  |  |  |  |
| V <sub>CE(sat)</sub>            | I <sub>Cnom</sub> = 30 A, T <sub>i</sub> = 25 (150) °C           |                                                   | 1,45 (1,65) | 1,85 (2,05) | V     |  |  |  |  |
| $V_{GE(th)}$                    | V <sub>GE</sub> = V <sub>CE</sub> , I <sub>C</sub> = 1 mA        |                                                   | 5,8         |             | V     |  |  |  |  |
| V <sub>CE(TO)</sub>             | T <sub>i</sub> = 25 (150) °C                                     |                                                   | 0,9 (0,85)  | 1 (0,9)     | V     |  |  |  |  |
| r <sub>CE</sub>                 | $T_{j} = 25 (150)  ^{\circ}\text{C}$                             |                                                   | 18 (27)     | 28 (38)     | mΩ    |  |  |  |  |
| C <sub>ies</sub>                | $V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$ |                                                   | 1,6         |             | nF    |  |  |  |  |
| C <sub>oes</sub>                | $V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$ |                                                   | 0,19        |             | nF    |  |  |  |  |
| C <sub>res</sub>                | $V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$ |                                                   | 0,17        |             | nF    |  |  |  |  |
| R <sub>CC'+EE'</sub>            | spring contact-chip T <sub>s</sub> = 25 (150 )°C                 |                                                   |             |             | mΩ    |  |  |  |  |
| $R_{th(j-s)}$                   | per IGBT                                                         |                                                   | 1,35        |             | K/W   |  |  |  |  |
| t <sub>d(on)</sub>              | under following conditions                                       |                                                   | 20          |             | ns    |  |  |  |  |
| t <sub>r</sub>                  | $V_{CC} = 300 \text{ V}, V_{GE} = -8 \text{V} / 15 \text{ V}$    |                                                   | 20          |             | ns    |  |  |  |  |
| $t_{d(off)}$                    | I <sub>Cnom</sub> = 30 A, T <sub>j</sub> = 150 °C                |                                                   | 200         |             | ns    |  |  |  |  |
| t <sub>f</sub>                  | $R_{Gon} = R_{Goff} = 12 \Omega$                                 |                                                   | 45          |             | ns    |  |  |  |  |
| $E_{on} \left( E_{off} \right)$ | inductive load                                                   |                                                   | 0,9 (1,2)   |             | mJ    |  |  |  |  |
| Diode - Inverter, Chopper       |                                                                  |                                                   |             |             |       |  |  |  |  |
| $V_F = V_{EC}$                  | I <sub>F</sub> = 30 A, T <sub>i</sub> = 25 (150) °C              |                                                   | 1,5 (1,5)   | 1,7 (1,7)   | V     |  |  |  |  |
| $V_{(TO)}$                      | $T_j = 25 (150) ^{\circ}C$                                       |                                                   | 1 (0,9)     |             | V     |  |  |  |  |
| r <sub>T</sub>                  | T <sub>j</sub> = 25 (150) °C                                     |                                                   | 16,7 (20)   |             | mΩ    |  |  |  |  |
| $R_{th(j-s)}$                   | per diode                                                        |                                                   | 2,1         |             | K/W   |  |  |  |  |
| I <sub>RRM</sub>                | under following conditions                                       |                                                   | 46,3        |             | Α     |  |  |  |  |
| $Q_{rr}$                        | $I_{Fnom} = 30 \text{ A}, V_{R} = 300 \text{ V}$                 |                                                   | 4           |             | μC    |  |  |  |  |
| E <sub>rr</sub>                 | $V_{GE} = 0 \text{ V}, T_j = 150^{\circ}\text{C}$                |                                                   | 1,1         |             | mJ    |  |  |  |  |
|                                 | di <sub>F</sub> /dt = 1880 A/μs                                  |                                                   |             |             |       |  |  |  |  |
| Diode - Rectifier               |                                                                  |                                                   |             |             |       |  |  |  |  |
| $V_{F}$                         | $I_{Fnom} = 25 \text{ A}, T_j = 25 \text{ °C}$                   |                                                   | 1,1         |             | V     |  |  |  |  |
| $V_{(TO)}$                      | $T_{j} = 150  ^{\circ}\text{C}$                                  |                                                   | 0,8         |             | V     |  |  |  |  |
| r <sub>T</sub>                  | $T_{j} = 150  ^{\circ}\text{C}$                                  |                                                   | 13          |             | mΩ    |  |  |  |  |
| $R_{th(j-s)}$                   | per diode                                                        |                                                   | 1,5         |             | K/W   |  |  |  |  |
|                                 | ure Sensor                                                       |                                                   |             |             | _     |  |  |  |  |
| R <sub>ts</sub>                 | 3 %, T <sub>r</sub> = 25 (100) °C                                |                                                   | 1000(1670)  |             | Ω     |  |  |  |  |
| Mechanical Data                 |                                                                  |                                                   |             |             |       |  |  |  |  |
| w                               |                                                                  |                                                   | 65          |             | g     |  |  |  |  |
| $M_s$                           | Mounting torque                                                  | 2                                                 |             | 2,5         | Nm    |  |  |  |  |

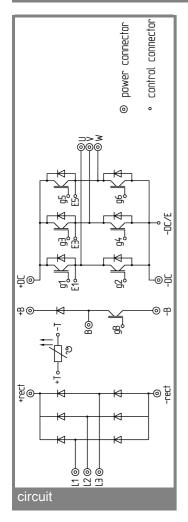


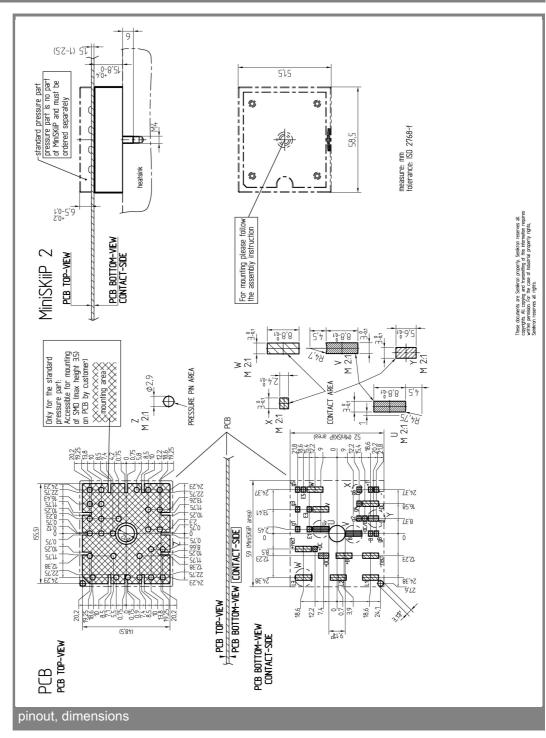














This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

<sup>\*</sup> The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.