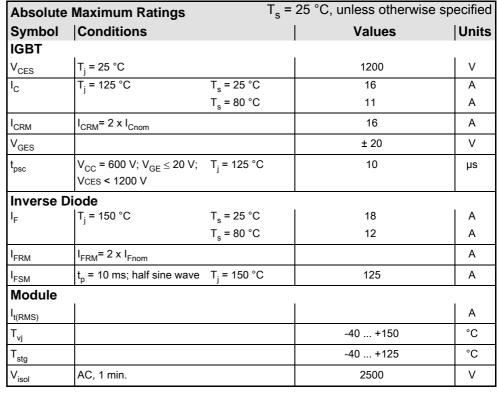


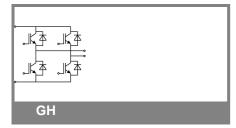
SEMITOP® 2

IGBT Module

SK10GH123


Preliminary Data

Features


- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N-channel homogeneous silicon structure (NPT-Non punch-through IGBT)
- · High short circuit capability
- Low tail current with low temperature dependence
- UL recognized, file no. E63532

Typical Applications

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

Characte	ristics	$T_s = 25 ^{\circ}C$, unless otherwise specified					
Symbol	Conditions		min.	typ.	max.	Units	
IGBT	•						
$V_{GE(th)}$	$V_{GE} = V_{CE}, I_{C} = 0.35 \text{ mA}$		4,5	5,5	6,5	V	
I _{CES}	V _{GE} = 0 V, V _{CE} = V _{CES}	T _j = 25 °C			0,05	mA	
		T _j = 125 °C				mA	
I _{GES}	V _{CE} = 0 V, V _{GE} = 30 V	T _j = 25 °C			120	nA	
		T _j = 125 °C				nA	
V _{CE0}		T _j = 25 °C		1,2		V	
		T _j = 125 °C		1,2		V	
r _{CE}	V _{GE} = 15 V	T _j = 25°C		150		mΩ	
		T _j = 125°C		210		$m\Omega$	
V _{CE(sat)}	I _{Cnom} = 10 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		2,7	3,2	V	
		$T_j = 125^{\circ}C_{chiplev.}$		3,3	3,9	V	
C _{ies}				0,6		nF	
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,06		nF	
C _{res}				0,038		nF	
t _{d(on)}				30		ns	
t _r E _{on}	$R_{Gon} = 50 \Omega$	V _{CC} = 600V		45		ns	
E _{on}		I _C = 10A		1,3		mJ	
t _{d(off)}	$R_{Goff} = 50 \Omega$	T _j = 125 °C		200		ns	
Ч		V _{GE} =±15V		35		ns	
E_{off}				1		mJ	
$R_{th(j-s)}$	per IGBT				1,8	K/W	

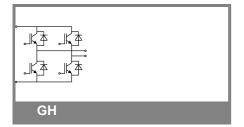
IGBT Module

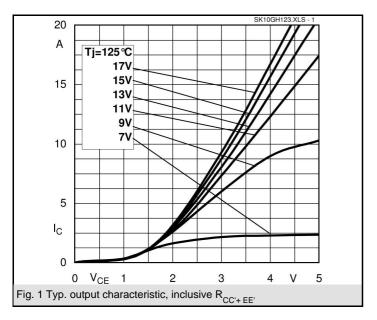
SK10GH123

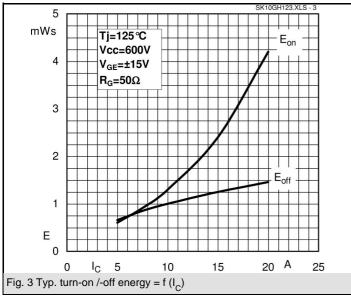
Preliminary Data

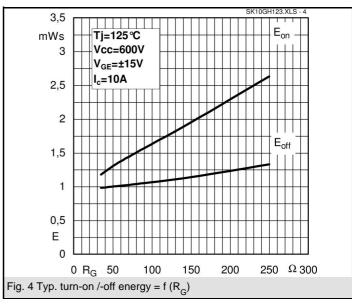
Features

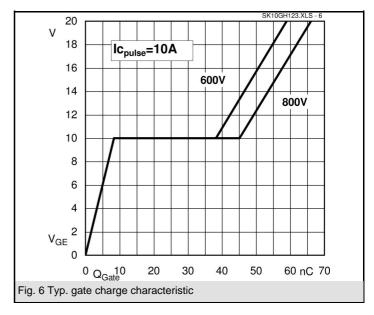
- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N-channel homogeneous silicon structure (NPT-Non punch-through IGBT)
- High short circuit capability
- Low tail current with low temperature dependence
- UL recognized, file no. E63532


Typical Applications


- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS


Characteristics									
Symbol	Conditions		min.	typ.	max.	Units			
Inverse Diode									
$V_F = V_{EC}$	I_{Fnom} = 10 A; V_{GE} = 0 V	$T_j = 25 ^{\circ}C_{\text{chiplev.}}$		2	2,5	V			
		$T_j = 125 ^{\circ}C_{chiplev.}$		1,8	2,3	V			
V _{F0}		T _j = 125 °C		1	1,2	V			
r _F		T _j = 125 °C		80	110	mΩ			
I _{RRM}	I _F = 10 A	T _i = 125 °C		12		Α			
Q_{rr}	di/dt = -300 A/µs	,		1,8		μC			
E _{rr}	V _{CC} = 600V			0,4		mJ			
$R_{th(j-s)D}$	per diode				2,1	K/W			
M_s	to heat sink M1				2	Nm			
w				21		g			


This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.


This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

