16-bit Microcontroller

CMOS

F²MC-16LX MB90960 Series

MB90F962(S)/V340E-101/V340E-102

■ DESCRIPTION

The MB90960-series is a 16-bit general-purpose microcontroller. Fujitsu now offers on-chip Flash-ROM program memory up to 64 Kbytes.
The power supply (3 V) is supplied to the internal MCU core from an internal regulator circuit. This creates a major advantage in terms of EMI and power consumption.
The unit features a 4 channel input capture unit, 1 channel 16-bit free-run timer, 2-channel LIN-UART, and 16channel 8/10-bit A/D converter as the peripheral resource.
Note : F²MC is the abbreviation of FUJITSU Flexible Microcontroller.

■ FEATURES

- Clock

- Built-in PLL clock frequency multiplying circuit
- Machine clock (PLL clock) selectable from frequency division by 2 of oscillation clock or 1 to 6 -multiplied oscillation clock (4 MHz to 24 MHz when oscillation clock is 4 MHz).
- Sub clock operation : Up to 50 kHz (devices without S-suffix only)
- Minimum instruction execution time : 42 ns (4 MHz oscillation clock and 6-multiplied PLL clock) .
(Continued)

Be sure to refer to the "Check Sheet" for the latest cautions on development.

[^0]
MB90960 Series

- Instruction system optimized controllers

- 16 Mbytes CPU memory space : Internal 24-bit addressing
- Various data types (bit, byte, word, and long word)
- Various addressing modes (23 types)
- Enhanced signed instructions of multiplication/division and RETI
- Enhanced high-accuracy operations by 32-bit accumulator
- Instruction system for high-level language (C language) / multitask
- System stack pointer
- Enhanced pointer indirect instructions
- Barrel shift instructions
- Higher execution speed
- 4-byte instruction queue
- Powerful interrupt function
- Powerful interrupt function with 8 levels and 34 factors
- Corresponds to 8 -channel external interrupt
- CPU-independent automatic data transfer function
- Expanded intelligent I/O service function (EI²OS) : Maximum 16 channels

- Low-power consumption mode

- Clock mode

PLL clock mode (a PLL clock that is a multiple of the oscillation clock is used to operate the CPU and peripheral functions.)
Main clock mode (the main clock, with the oscillation clock frequency divided by 2 is used to operate the CPU and peripheral functions.)
Sub clock mode (the sub clock is used to operate the CPU and peripheral functions.)

- Standby mode

Sleep mode (stops the operation clock to the CPU.)
Watch mode (operates the sub clock and watch timer only.)
Time-base timer mode (operates the oscillation clock, sub clock, time-base timer and watch timer only.)
Stop mode (stops the operates the oscillation clock and sub clock.)

- CPU intermittent operation mode
- I/O port
- General-purpose input/output ports (CMOS output)
- 34 ports (products without S-suffix)
- 36 ports (products with S-suffix)
- Sub clock pin (X0A, X1A)
- Yes: (external oscillator used), products without S-suffix
- No : products with S-suffix
- Timer
- Time-base timer, watch timer (products without S-suffix), watchdog timer : 1 channel
- 8/16-bit PPG timer : 8 -bit $\times 4$ channels or 16 -bit $\times 2$ channels
- 16-bit reload timer : 2 channels
- 16 - bit input/output timer
- 16-bit free-run timer : 1 channel
- 16- bit input capture (ICU): 4 channels

MB90960 Series

(Continued)

- LIN-UART (LIN/SCI) : Maximum 2 channels
- Full-duplex double buffer
- Clock-asynchronous or clock-synchronous serial transfer
- DTP/External interrupt : 8 channels
- Module for activation of expanded intelligent I / O service ($\mathrm{EL}^{2} \mathrm{OS}$) and generation of external interrupt by external input.
- Delayed interrupt generator module
- Generates interrupt request for task switching.
- 8/10-bit A/D converter : 16 channels
- 8 -bit and 10-bit resolution.
- Start by external trigger input.
- Conversion time : $3 \mu \mathrm{~s}$ (frequency, including sampling time at 24 MHz machine clock)
- Program patch function
- Detects address match for 6 address pointers.
- Changeable port input voltage level
- Automotive input level/CMOS Schmitt input level (initial value in single-chip mode is Automotive level).

MB90960 Series

PRODUCT LINEUP

Part number Parameter	MB90F962 MB90F962S	MB90V340E-101	MB90V340E-102
Type	Flash memory product	Evaluation product	
CPU	FMC-16LX CPU		
System clock	PLL clock multiplier $(\times 1, \times 2, \times 3, \times 4, \times 6,1 / 2$ when PLL stops) Minimum instruction execution time : $42 \mathrm{~ns}(4 \mathrm{MHz}$ oscillation clock, PLL $\times 6$)		
ROM	Flash memory 64 Kbytes (60 Kbytes +4 Kbytes Sectors)	External	
RAM capacitance	3 Kbytes	30 Kbytes	
Power supply for emulator*1	-	Yes	
Sub clock pin (X0A, X1A)	No		Yes
Operating voltage range	3.5 V to 5.5 V : at normal operation (not using A/D converter and not doing flash programming) 4.0 V to 5.5 V : at normal operation	$5 \mathrm{~V} \pm 10 \%$	
Operating temperature range	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ *2		
Package	LQFP-48P	PGA	99C
LIN-UART	2 channels	5 ch	nels
	Wide range of baud rate settings using a dedicated reload timer Special synchronous options for adapting to different synchronous serial protocols LIN functionality working either as master or slave LIN device		
$\begin{aligned} & \text { 8/10-bit } \\ & \text { A/D Converter } \end{aligned}$	16 channels	24 channels	
	10-bit or 8-bit resolution Conversion time: Min. $3 \mu \mathrm{~s}$ includes sample time (per one channel)		
16-bit Reload Timer	2 channels	4 channels	
	Operation clock frequency: fsys $/ 2^{1}$, fsys $/ 2^{3}$, fsys $/ 2^{5}$ (fsys = Machine clock frequency) Supports External Event Count function		
16-bit I/O Timer	1 channel	4 channels	
	Signals an interrupt when overflowing. Operating clock frequency: fsys/ $/ 2^{1}, \mathrm{fsys} / 2^{2}$, fsys $/ 2^{3}$, fsys $/ 2^{4}$, fsys $/ 2^{5}$, fsys $/ 2^{6}$, fsys $/ 2^{7}$ (fsys = Machine clock frequency)		
16-bit Input Capture	4 channels	6 ch	nels
	Maintains I/O timer value by pin input (rising edge, falling edge, or both edge), and generates interrupt		

(Continued)

MB90960 Series

(Continued)

| Parameter | Part number | MB90F962 | MB90F962S | MB90V340E-101 |
| :--- | :---: | :---: | :---: | :---: | MB90V340E-102

*1: It is setting of Jumper switch (TOOL Vcc) when emulator (MB2147-01) is used. Please refer to the Emulator hardware manual for the details.
*2 : If used exceeding $T_{A}=+105^{\circ} \mathrm{C}$, be sure to contact Fujitsu for reliability limitations.

MB90960 Series

PIN ASSIGNMENT

- MB90F962(S)

(FPT-48P-M26)
*: MB90F962: X0A, X1A
MB90F962S: P40, P41

MB90960 Series

- PIN DESCRIPTION

Pin No.	Pin name	Circuit type	Function
1	AV ${ }_{\text {cc }}$	I	Vcc power input pin for analog circuit.
2	AVR	-	Power (Vreft) input pin for A/D converter. AVR should not exceed Vcc.
3 to 8	P60 to P65	H	General-purpose I/O ports.
	AN0 to AN5		Analog input pins for A/D converter.
9, 10	P66, P67	H	General-purpose I/O ports.
	AN6, AN7		Analog input pins for A/D converter.
	PPGC (D) , PPGE (F)		Output pins for PPG.
11	P80	F	General-purpose I/O port.
	ADTG		Trigger input pin for A/D converter.
	INT12R		External interrupt request input pin for INT12R.
12 to 14	P50 to P52	H	General-purpose I/O ports (I/O circuit type of P50 is different from that of MB90V340E).
	AN8 to AN10		Analog input pins for A/D converter.
15	P53	H	General-purpose I/O port.
	AN11		Analog input pin for A/D converter.
	TIN3		Event input pin for reload timer 3.
16	P54	H	General-purpose I/O port.
	AN12		Analog input pin for A/D converter.
	TOT3		Output pin for reload timer 3.
	INT8		External interrupt request input pin for INT8.
17 to 19	P55 to P57	H	General-purpose I/O ports.
	AN13 to AN15		Analog input pins for A/D converter.
	INT10, INT11, INT13		External interrupt request input pins for INT10, INT11, INT13.
20	MD2	D	Input pin for selecting operation mode.
21, 22	MD1, MD0	C	Input pins for selecting operation mode.
23	$\overline{\mathrm{RST}}$	E	Reset input.
24	Vcc	-	Power input pin (3.5 V to 5.5 V) .
25	Vss	-	Power input pin (0 V) .
26	C	1	Capacity pin for stabilizing power supply. It should be connected to a higher than or equal to $0.1 \mu \mathrm{~F}$ ceramic capacitor.
27	X0		Oscillation input pin.
28	X1		Oscillation output pin.

(Continued)

MB90960 Series

$\begin{gathered} \text { Pin No. } \\ \hline \text { LOFP-48P* } \end{gathered}$	Pin name	Circuit type	Function
29 to 32	P27 to P24	G	General-purpose I/O ports. The register can be set to select whether to use a pull-up resistor This function is enabled in single-chip mode.
	IN3 to INO		Event input pins for input capture 0 to 3.
33, 34	P23, P22	G	General-purpose I/O ports. The register can be set to select whether to use a pull-up resistor This function is enabled in single-chip mode.
	$\begin{aligned} & \hline \text { PPGF (E), } \\ & \text { PPGD (C) } \end{aligned}$		Output pins for PPG.
35, 36	P21, P20	G	General-purpose I/O ports. The register can be set to select whether to use a pull-up resistor This function is enabled in single-chip mode.
37	P85	K	General-purpose I/O port.
	SIN1		Serial data input pin for LIN-UART1.
38	P87	F	General-purpose I/O port.
	SCK1		Clock I/O pin for LIN-UART1.
39	P86	F	General-purpose I/O port.
	SOT1		Serial data output pin for LIN-UART1.
40	P43	F	General-purpose I/O port.
41	P42	F	General-purpose I/O port.
	INT9R		External interrupt request input pin for INT9R.
42	P83	F	General-purpose I/O port.
	SOT0		Serial data output pin for LIN-UARTO.
	TOT2		Output pin for reload timer 2
43	P84	F	General-purpose I/O port.
	SCK0		Clock I/O pin for LIN-UARTO.
	INT15R		External interrupt request input pin for INT15R.
44	P82	K	General-purpose I/O port.
	SIN0		Serial data input pin for LIN-UARTO.
	INT14R		External interrupt request input pin for INT14R.
	TIN2		Event input pin for reload timer 2.
45	P44	F	General-purpose I/O port (I/O circuit type of P44 is different from that of MB90V340E) .
	FRCKO		Free-run timer 0 clock input pin.

(Continued)

MB90960 Series

(Continued)

Pin No.	Pin name	Circuit type	Function
LQFP-48P*		46	
46,47	P40, P41	F	General-purpose I/O ports. (products with S-suffix and MB90V340E-101)
	XOA, X1A	B	XOA: Oscillation input pin for sub clock X1A: Oscillation output pin for sub clock (products without S-suffix and MB90V340E-102)
	AVss	I	Vss power input pin for analog circuit.

[^1]
MB90960 Series

I/O CIRCUIT TYPE

Type	Circuit	Remarks
A		Oscillation circuit High-speed oscillation feedback resistor $=$ approx. $1 \mathrm{M} \Omega$
B		Oscillation circuit Low-speed oscillation feedback resistor $=$ approx. $10 \mathrm{M} \Omega$
C		CMOS input
D		- CMOS input - No Pull-down
E		CMOS hysteresis input Pull-up resistor value : approx. $50 \mathrm{k} \Omega$

(Continued)

MB90960 Series

Type	Circuit	Remarks
F		- CMOS level output (loь = 4 mA , Іон $=-4 \mathrm{~mA}$) - CMOS hysteresis input (With the standby-time input shutdown function) - Automotive input (With the standbytime input shutdown function)
G		- CMOS level output (lol = 4 mA , Іон $=-4 \mathrm{~mA}$) - CMOS hysteresis input (With the standby-time input shutdown function) - Automotive input (With the standbytime input shutdown function) - Programmable pull-up resistor : approx. $50 \mathrm{k} \Omega$
H		- CMOS level output (lo = 4 mA , Іон $=-4 \mathrm{~mA}$) - CMOS hysteresis input (With the standby-time input shutdown function) - Automotive input (With the standbytime input shutdown function) - A/D analog input

(Continued)

MB90960 Series

(Continued)

Type	Circuit	Remarks
1		Power supply input protection circuit
K		- CMOS level output (loг $=4 \mathrm{~mA}$, Іон $=-4 \mathrm{~mA}$) - CMOS input (With standby-time input shutdown function) - Automotive input (With the standbytime input shutdown function)

MB90960 Series

HANDLING DEVICES

Special care is required for the following when handling the device :

- Preventing latch-up
- Treatment of unused pins
- Using external clock
- Notes on during operation of PLL clock mode
- Power supply pins (Vcc/Vss)
- Pull-up/down resistors
- Crystal oscillator circuit
- Turning-on sequence of power supply to A/D converter and analog inputs
- Connection of unused pins of A/D converter
- Notes on energization
- Stabilization of power supply voltage
- Initialization
- Correspondence with $+105^{\circ} \mathrm{C}$ or more

1. Preventing latch-up

CMOS IC chips may suffer latch-up under the following conditions :

- A voltage higher than V cc or lower than $\mathrm{V} s$ is applied to an input or output pin.
- A voltage higher than the rated voltage is applied between Vcc and Vss.
- The AVcc power supply is applied before the Vcc voltage.

Latch-up may increase the power supply current drastically, causing thermal damage to the device.
When used, note that maximum rated voltage is not exceeded.
For the same reason, also be careful not to let the analog power-supply voltage (AVcc, AVR) exceed the digital power-supply voltage.

2. Treatment of unused pins

Leaving unused input pins open may result in misbehavior or latch-up and possible permanent damage of the device. Therefore, they must be pulled up or pulled down through resistors. In this case, those resistors should be more than $2 \mathrm{k} \Omega$.

Unused bidirectional pins should be set to the output state and can be left open, or the input state with the above described connection.

3. Using external clock

To use external clock, drive the X0 (XOA) pin and leave X1 (X1A) pin open.

MB90960 Series

4. Notes on during operation of PLL clock mode

On this microcontroller, if in case the crystal oscillator breaks off or an external reference clock input stops while the PLL clock mode is selected, a self-oscillator circuit contained in the PLL may continue its operation at its self-running frequency. However, Fujitsu will not guarantee results of operations if such failure occurs.

5. Power supply pins (Vcc/Vss)

- If there are multiple $V_{c c}$ and $V_{s s}$ pins, from the point of view of device design, pins to be of the same potential are connected the inside of the device to prevent such malfunctioning as latch-up.
To reduce unnecessary radiation, prevent malfunctioning of the strobe signal due to the rise of ground level, and to keep the recommended DC characteristics specified as the total output current, be sure to connect the $V_{c c}$ and $V_{s s}$ pins to the power supply and ground externally.
- Connect V_{cc} and V_{ss} to the device from the power supply source with lowest possible impedance.
- It is recommended to connect a capacitor of about $0.1 \mu \mathrm{~F}$ as a bypass capacitor between V_{cc} and $\mathrm{V}_{\text {ss }}$ in the vicinity of $V_{c c}$ and $V_{s s}$ pins of the device.

6. Pull-up/down resistors

The MB90960 series does not support internal pull-up/down resistors (except Port 2 : programmable pull-up resistors) . Use pull-up/down handling where needed.

7. Crystal oscillator circuit

Noises around X0 or X1 pins may be possible causes of abnormal operations. Make sure to provide bypass capacitors via shortest distance from X0, X1 pins, crystal oscillator (or ceramic resonator) and ground lines, and make sure, to the utmost effort, that lines of oscillation circuit do not cross the lines of other circuits. It is highly recommended to provide a printed circuit board artwork surrounding X0 and X1 pins with a ground area for stabilizing the operation.

8. Turning-on sequence of power supply to A / D converter and analog inputs

Make sure to turn on the A/D converter power supply (AVcc, AVR) and analog inputs (ANO to AN15) after turningon the digital power supply (Vcc) . Turn-off the digital power supply after turning off the A / D converter power supply and analog inputs. In this case, make sure that the voltage does not exceed AVR or AVcc (turning on/off the analog and digital power supplies simultaneously is acceptable) .

9. Connection of unused pins of A / D converter if A / D converter is not used

Connect unused pins of A / D converter to $\mathrm{AVcc}=\mathrm{Vcc}, \mathrm{AV} s \mathrm{~s}=\mathrm{AVR}=\mathrm{V} s \mathrm{~s}$.

MB90960 Series

10. Notes on energization

To prevent malfunction of the internal voltage regulator , supply voltage profile while turning on the power supply should be slower than $50 \mu \mathrm{~s}(0.2 \mathrm{~V}$ to 2.7 V$)$.

11. Stabilization of power supply voltage

If the power supply voltage varies acutely even within the operation assurance range of the Vcc power supply voltage, a malfunction may occur. The Vcc power supply voltage must therefore be stabilized. As stabilization guide lines, stabilize the power supply voltage so that $\mathrm{V}_{\text {cc }}$ ripple fluctuations (peak to peak value) in the commercial frequencies ($50 \mathrm{~Hz} / 60 \mathrm{~Hz}$) fall within 10% of the standard $V_{c c}$ power supply voltage and the transient fluctuation rate becomes $0.1 \mathrm{~V} / \mathrm{ms}$ or less in instantaneous fluctuation for power supply switching.
12. Initialization

In the device, there are internal registers which are initialized only by a power-on reset. To initialize these registers, turn on the power again.
13. Correspondence with $+105^{\circ} \mathrm{C}$ or more

If used exceeding $\mathrm{T}_{\mathrm{A}}=+105^{\circ} \mathrm{C}$, please contact Fujitsu for reliability limitations.

MB90960 Series

BLOCK DIAGRAMS

- MB90V340E-101/V340E-102

*: Only for MB90V340E-102

MB90960 Series

- MB90F962(S)

MB90960 Series

MEMORY MAP

Note : The high-order portion of bank 00 gives the image of the FF bank ROM to make the small model of the C compiler effective. Since the low-order 16 bits are the same, the table in ROM can be referred without using the far specification in the pointer declaration.
For example, an attempt to access 00C000н accesses the value at FFCOOO н in ROM.
The ROM area in bank FF exceeds 32 Kbytes, and its entire image cannot be shown in bank 00.
The image between FF8000 ${ }_{\text {н }}$ and FFFFFFн is visible in bank 00, while the image between FF0000н and FF7FFFH is visible only in bank FF.

MB90960 Series

I/O MAP

Address	Register	Abbreviation	Access	Resource name	Initial value
$\begin{aligned} & \hline 000000 \mathrm{H}, \\ & 000001 \mathrm{H} \end{aligned}$	Reserved				
000002н	Port 2 Data Register	PDR2	R/W	Port 2	XXXXXXXX
000003н	Reserved				
000004н	Port 4 Data Register	PDR4	R/W	Port 4	XXXXXXXX
000005н	Port 5 Data Register	PDR5	R/W	Port 5	XXXXXXXX
000006н	Port 6 Data Register	PDR6	R/W	Port 6	XXXXXXXX
000007H	Reserved				
000008н	Port 8 Data Register	PDR8	R/W	Port 8	XXXXXXXX
$\begin{aligned} & 000009_{\mathrm{H}}, \\ & 00000 \mathrm{~A}_{\mathrm{H}} \end{aligned}$	Reserved				
00000Вн	Port 5 Analog Input Enable Register	ADER5	R/W	Port 5, A/D	11111111в
$00000 \mathrm{CH}_{\mathrm{H}}$	Port 6 Analog Input Enable Register	ADER6	R/W	Port 6, A/D	11111111в
00000D	Reserved				
00000Ен	Input Level Select Register 0	ILSR0	R/W	Port 2, 4, 5, 6	X000X0XX ${ }^{\text {¢ }}$
00000Fн	Input Level Select Register 1	ILSR1	R/W	Port 8	XXXXXXX0в
$\begin{aligned} & 0000010 \mathrm{H}, \\ & 000011 \mathrm{H} \end{aligned}$	Reserved				
000012н	Port 2 Direction Register	DDR2	R/W	Port 2	00000000в
000013н	Reserved				
000014H	Port 4 Direction Register	DDR4	R/W	Port 4	XXX00000в
000015н	Port 5 Direction Register	DDR5	R/W	Port 5	00000000в
000016н	Port 6 Direction Register	DDR6	R/W	Port 6	00000000в
000017н	Reserved				
000018н	Port 8 Direction Register	DDR8	R/W	Port 8	000000X0в
000019н	Reserved				
00001Aн	Port A Direction Register	DDRA	W	Port A	XXX00XXX
$\begin{aligned} & 00001 \text { Bн } \\ & \text { to } \\ & 00001 \mathrm{DH} \end{aligned}$	Reserved				
00001Ен	Port 2 Pull-up Control Register	PUCR2	R/W	Port 2	00000000в
00001F	Reserved				

(Continued)

MB90960 Series

Address	Register	Abbreviation	Access	Resource name	Initial value
000020н	Serial Mode Register 0	SMR0	W, R/W	LIN-UARTO	00000000в
000021н	Serial Control Register 0	SCR0	W, R/W		00000000в
000022н	Reception/Transmission Data Register 0	RDR0/TDR0	R/W		00000000в
000023н	Serial Status Register 0	SSR0	R, R/W		00001000в
000024	Extended Communication Control Register 0	ECCR0	$\begin{aligned} & \hline R, W, \\ & R / W \end{aligned}$		000000XХв
000025н	Extended Status Control Register 0	ESCR0	R/W		00000100в
000026н	Baud Rate Generator Register 00	BGR00	R/W, R		00000000в
000027н	Baud Rate Generator Register 01	BGR01	R/W, R		00000000в
000028н	Serial Mode Register 1	SMR1	W, R/W	LIN-UART1	00000000в
000029н	Serial Control Register 1	SCR1	W, R/W		00000000в
00002Ан	Reception/Transmission Data Register 1	RDR1/TDR1	R/W		00000000в
00002Bн	Serial Status Register 1	SSR1	R, R/W		00001000в
00002Сн	Extended Communication Control Register 1	ECCR1	$\begin{aligned} & \hline R, W, \\ & R / W \end{aligned}$		000000XХв
00002D	Extended Status Control Register 1	ESCR1	R/W		00000100в
00002Ен	Baud Rate Generator Register 10	BGR10	R/W, R		00000000в
00002Fн	Baud Rate Generator Register 11	BGR11	R/W, R		00000000в
$\begin{array}{\|c\|} \hline 000030_{\mathrm{H}} \\ \text { to } \\ 00003 A_{H} \end{array}$	Reserved				
00003Вн	Address Detect Control Register 1	PACSR1	R/W	Address Match Detection 1	00000000в
$\begin{array}{\|c\|} \hline 00003 \mathrm{C}_{\mathrm{H}} \\ \text { to } \\ 000047 \mathrm{H} \end{array}$	Reserved				
000048н	PPGC Operation Mode Control Register	PPGCC	W, R/W	16-bit PPG C/D	0X000XX1в
000049н	PPGD Operation Mode Control Register	PPGCD	W, R/W		0X000001в
00004Ан	PPGC/PPGD Count Clock Select Register	PPGCD	R/W		000000ХОв
00004B	Reserved				
00004Сн	PPGE Operation Mode Control Register	PPGCE	W, R/W	16-bit PPG E/F	0X000XX1в
00004D	PPGF Operation Mode Control Register	PPGCF	W, R/W		0X000001в
00004Ен	PPGE/PPGF Count Clock Select Register	PPGEF	R/W		000000ХОв
00004FH	Reserved				

(Continued)

MB90960 Series

Address	Register	Abbreviation	Access	Resource name	Initial value
000050н	Input Capture Control Status 0/1	ICS01	R/W	Input Capture 0/1	00000000в
000051н	Input Capture Edge 0/1	ICE01	R/W, R		ХХХОХОХХв
000052н	Input Capture Control Status 2/3	ICS23	R/W	Input Capture 2/3	00000000в
000053н	Input Capture Edge 2/3	ICE23	R		XXXXXXXX
$\begin{array}{\|c\|} \hline 000054_{\mathrm{H}} \\ \text { to } \\ 000063_{\mathrm{H}} \end{array}$	Reserved				
000064н	Timer Control Status 2	TMCSR2	R/W	16-bit Reload Timer 2	00000000в
000065	Timer Control Status 2	TMCSR2	R/W		XXXX0000в
000066н	Timer Control Status 3	TMCSR3	R/W	16-bit Reload Timer 3	00000000в
000067H	Timer Control Status 3	TMCSR3	R/W		XXXX0000в
000068н	A/D Control Status 0	ADCS0	R/W	A/D Converter	000XXXX0в
000069н	A/D Control Status 1	ADCS1	R/W, W		0000000Хв
00006Ан	A/D Data Register 0	ADCR0	R		00000000в
00006Вн	A/D Data Register 1	ADCR1	R		XXXXXX00в
00006CH	A/D Converter Setting 0	ADSR0	R/W		00000000в
00006D	A/D Converter Setting 1	ADSR1	R/W		00000000в
00006Ен	Reserved				
00006Fн	ROM Mirror Function Select	ROMM	W	ROM Mirror	XXXXXXX1в
$\begin{array}{\|c\|} \hline 000070_{\mathrm{H}} \\ \text { to } \\ 00009 \mathrm{D}_{\mathrm{H}} \end{array}$	Reserved				
00009Ен	Address Detect Control Register 0	PACSR0	R/W	Address Match Detection 0	00000000в
00009Fн	Delayed Interrupt/Release Register	DIRR	R/W	Delayed Interrupt generation module	ХХХХХХХХОв
0000AOH	Low-power Consumption Mode Control Register	LPMCR	W, R/W	Low-Power consumption Control Circuit	00011000в
0000A1н	Clock Selection Register	CKSCR	R, R/W	Low-Power consumption Control Circuit	11111100в
0000А2н to 0000A7н	Reserved				
0000A8н	Watchdog Timer Control Register	WDTC	R, W	Watchdog Timer	XXXXX111в
0000А9н	Time-base Timer Control Register	TBTC	W, R/W	Time-base Timer	1XX00100в

(Continued)

MB90960 Series

Address	Register	Abbreviation	Access	Resource name	Initial value
0000ААн	Watch Timer Control Register	WTC	R, R/W	Watch Timer	1Х001000в
$\begin{aligned} & \text { O000АВн } \\ & \text { to } \\ & 0000 \mathrm{ADH} \end{aligned}$	Reserved				
0000AEн	Flash Control Status	FMCS	R, R/W	Flash Memory	000X0000в
0000AFH	Reserved				
0000B0н	Interrupt Control Register 00	ICR00	W, R/W	Interrupt Control	00000111в
0000B1н	Interrupt Control Register 01	ICR01	W, R/W		00000111в
0000B2н	Interrupt Control Register 02	ICR02	W, R/W		00000111в
0000В3н	Interrupt Control Register 03	ICR03	W, R/W		00000111в
0000B4н	Interrupt Control Register 04	ICR04	W, R/W		00000111в
0000B5н	Interrupt Control Register 05	ICR05	W, R/W		00000111в
0000B6н	Interrupt Control Register 06	ICR06	W, R/W		00000111в
0000B7н	Interrupt Control Register 07	ICR07	W, R/W		00000111в
0000B8н	Interrupt Control Register 08	ICR08	W, R/W		00000111в
0000В9н	Interrupt Control Register 09	ICR09	W, R/W		00000111в
0000ВАн	Interrupt Control Register 10	ICR10	W, R/W		00000111в
0000ВВн	Interrupt Control Register 11	ICR11	W, R/W		00000111в
0000BCн	Interrupt Control Register 12	ICR12	W, R/W		00000111в
0000BD	Interrupt Control Register 13	ICR13	W, R/W		00000111в
0000ВЕн	Interrupt Control Register 14	ICR14	W, R/W		00000111в
0000BFн	Interrupt Control Register 15	ICR15	W, R/W		00000111в
$\begin{aligned} & 0000 \mathrm{COH} \\ & \text { to } \\ & 0000 \mathrm{C} 9 \mathrm{H} \end{aligned}$	Reserved				
0000САн	DTP/External Interrupt Enable 1	ENIR1	R/W	External Interrupt 1	00000000в
0000СВн	DTP/External Interrupt Source 1	EIRR1	R/W		XXXXXXXX
0000ССн	Detection Level Setting 1	ELVR1	R/W		00000000в
0000СDн	Detection Level Setting 1	ELVR1	R/W		00000000в
0000СЕн	External Interrupt factor Select	EISSR	R/W		00000000в
0000CFн	PLL/Sub clock Control Register	PSCCR	W	PLL	XXXX0000в
$\begin{aligned} & \text { 0000D0н } \\ & \text { to } \\ & 0000 \mathrm{FF} \end{aligned}$	Reserved				

(Continued)

MB90960 Series

Address	Register	Abbreviation	Access	Resource name	Initial value
$\begin{gathered} \hline 007900 \text { н } \\ \text { to } \\ 007917 \boldsymbol{H} \end{gathered}$	Reserved				
007918H	Reload Register LC	PRLLC	R/W	16-bit PPG C/D	XXXXXXXX
007919н	Reload Register HC	PRLHC	R/W		XXXXXXXX
00791Ан	Reload Register LD	PRLLD	R/W		XXXXXXXXB
00791В	Reload Register HD	PRLHD	R/W		XXXXXXXX
00791䄯	Reload Register LE	PRLLE	R/W	16-bit PPG E/F	XXXXXXXXB
00791的	Reload Register HE	PRLHE	R/W		XXXXXXXX
00791Eн	Reload Register LF	PRLLF	R/W		XXXXXXXX ${ }^{\text {¢ }}$
00791F ${ }^{\text {\% }}$	Reload Register HF	PRLHF	R/W		XXXXXXXX
007920н	Input Capture 0	IPCP0	R	Input Capture 0/1	XXXXXXXX
007921н	Input Capture 0	IPCP0	R		XXXXXXXXB
007922н	Input Capture 1	IPCP1	R		XXXXXXXX
007923н	Input Capture 1	IPCP1	R		XXXXXXXXB
007924н	Input Capture 2	IPCP2	R	Input Capture 2/3	XXXXXXXXB
007925н	Input Capture 2	IPCP2	R		
007926н	Input Capture 3	IPCP3	R		XXXXXXXXB
007927 ${ }_{\text {H }}$	Input Capture 3	IPCP3	R		XXXXXXXX
$\begin{gathered} \hline 007928 \text { н } \\ \text { to } \\ 00793 \mathrm{~F}_{\mathrm{H}} \end{gathered}$	Reserved				
007940н	Timer Data 0	TCDT0	R/W	I/O Timer 0	00000000в
007941н	Timer Data 0	TCDT0	R/W		00000000в
007942н	Timer Control Status 0	TCCSLO	R/W		00000000в
007943н	Timer Control Status 0	TCCSH0	R/W		0XXXXXXX
$\begin{aligned} & \text { 007944н } \\ & \text { to } \\ & 00794 \text { вн } \end{aligned}$	Reserved				
00794Сн	Timer 2/Reload 2	TMR2/TMRLR2	R/W	16-bit Reload Timer 2	XXXXXXXXB
00794D			R/W		ХXXXXXXX
00794Ен	Timer 3/Reload 3	TMR3/TMRLR3	R/W	16-bit Reload Timer 3	XXXXXXXXB
00794Fн			R/W		XXXXXXXX
$\begin{gathered} \text { 007950н } \\ \text { to } \\ 0079 \text { tr }_{H} \end{gathered}$	Reserved				

(Continued)

MB90960 Series

(Continued)

Address	Register	Abbreviation	Access	Resource name	Initial value
0079E0н	Detect Address Setting 0	PADR0	R/W	Address Match Detection 0	XXXXXXXX
0079E1н	Detect Address Setting 0	PADR0	R/W		XXXXXXXX
0079E2н	Detect Address Setting 0	PADR0	R/W		XXXXXXXXB
0079Е3н	Detect Address Setting 1	PADR1	R/W		XXXXXXXX
0079E4н	Detect Address Setting 1	PADR1	R/W		XXXXXXXX
0079E5н	Detect Address Setting 1	PADR1	R/W		XXXXXXXX
0079E6н	Detect Address Setting 2	PADR2	R/W		XXXXXXXX
0079E7н	Detect Address Setting 2	PADR2	R/W		XXXXXXXXB
0079E8н	Detect Address Setting 2	PADR2	R/W		XXXXXXXX
$\begin{array}{\|c\|} \hline \text { 0079Е9н } \\ \text { to } \\ 0079 \text { EF }^{\prime} \end{array}$	Reserved				
0079FOH	Detect Address Setting 3	PADR3	R/W	Address Match Detection 1	XXXXXXXXB
0079F1н	Detect Address Setting 3	PADR3	R/W		XXXXXXXX
0079F2н	Detect Address Setting 3	PADR3	R/W		XXXXXXXXB
0079F3н	Detect Address Setting 4	PADR4	R/W		XXXXXXXXB
0079F4н	Detect Address Setting 4	PADR4	R/W		XXXXXXXX
0079F5н	Detect Address Setting 4	PADR4	R/W		XXXXXXXX
0079F6н	Detect Address Setting 5	PADR5	R/W		XXXXXXXX
0079F7н	Detect Address Setting 5	PADR5	R/W		XXXXXXXX
0079F8н	Detect Address Setting 5	PADR5	R/W		XXXXXXXX
$\begin{array}{\|c\|} \hline \text { 0079F9н } \\ \text { to } \\ \text { 007FFF } \end{array}$	Reserved				

Notes: • Initial value of " X " represents unknown value.

- Any write access to reserved addresses in I/O map should not be performed. A read access to reserved addresses results in reading " X ".

MB90960 Series

■ INTERRUPT FACTORS, INTERRUPT VECTORS, INTERRUPT CONTROL REGISTER

Interrupt cause	$\mathrm{El}^{2} \mathrm{OS}$ corresponding	Interrupt vector		Interrupt control register	
		Number	Address	Number	Address
Reset	N	\#08	FFFFDC	-	-
INT9 instruction	N	\#09	FFFFD8н	-	-
Exception processing	N	\#10	FFFFD4 ${ }_{\text {¢ }}$	-	-
Reserved	N	\#11	FFFFFDOH	ICR00	0000B0н
Reserved	N	\#12	FFFFCCH		
Reserved	N	\#13	FFFFC8 ${ }_{\text {¢ }}$	ICR01	0000B1н
Reserved	N	\#14	FFFFC4 ${ }_{\text {¢ }}$		
Reserved	N	\#15	FFFFFC0 ${ }_{\text {н }}$	ICR02	0000B2н
Reserved	N	\#16	FFFFBCH		
Reserved	N	\#17	FFFFB8н	ICR03	0000B3н
Reserved	N	\#18	FFFFFB4н		
16-bit reload timer 2	Y1	\#19	FFFFB0н	ICR04	0000B4 ${ }^{\text {H }}$
16-bit reload timer 3	Y1	\#20	FFFFACH		
Reserved	N	\#21	FFFFA8н	ICR05	0000B5 ${ }^{\text {H }}$
Reserved	N	\#22	FFFFA4		
PPG C/D	N	\#23	FFFFA0н	ICR06	0000B6н
PPG E/F	N	\#24	FFFF9C ${ }_{\text {н }}$		
Time-base timer	N	\#25	FFFF98	ICR07	0000B7 ${ }^{\text {H }}$
External interrupt 8 to 11	Y1	\#26	FFFF94		
Watch Timer	N	\#27	FFFF90н	ICR08	0000B8н
External interrupt 12 to 15	Y1	\#28	FFFF8C ${ }_{\text {H }}$		
A/D converter	Y1	\#29	FFFF88	ICR09	0000B9н
I/O timer 0	N	\#30	FFFF84н		
Reserved	N	\#31	FFFF80н	ICR10	0000ВАн
Reserved	N	\#32	FFFF7C ${ }_{\text {н }}$		
Input capture 0 to 3	Y1	\#33	FFFF78 ${ }_{\text {¢ }}$	ICR11	0000 BB н
Reserved	N	\#34	FFFF74 ${ }_{\text {¢ }}$		
LIN-UART 0 reception	Y2	\#35	FFFF70 ${ }_{\text {¢ }}$	ICR12	0000BCH
LIN-UART 0 transmission	Y1	\#36	FFFF6C ${ }_{\text {н }}$		
LIN-UART 1 reception	Y2	\#37	FFFF68 ${ }_{\text {¢ }}$	ICR13	0000BDн
LIN-UART 1 transmission	Y1	\#38	FFFF64 ${ }_{\text {н }}$		

(Continued)

MB90960 Series

(Continued)

Interrupt cause	$\mathrm{El}^{2} \mathrm{OS}$ corresponding	Interrupt vector		Interrupt control register	
		Number	Address	Number	Address
Reserved	N	\#39	FFFF60 ${ }_{\text {H }}$	ICR14	0000ВЕн
Reserved	N	\#40	FFFF5CH		
Flash memory	N	\#41	FFFF58	ICR15	0000BFн
Delayed interrupt generation module	N	\#42	FFFF54 ${ }_{\text {H }}$		

Y1: Usable
Y2 : Usable, with El ${ }^{2} \mathrm{OS}$ stop function
N : Unusable
Notes : - The peripheral resources sharing the ICR register have the same interrupt level.

- When 2 peripheral resources share the ICR register, only one can use extended intelligent I/O service at a time.
- When either of the 2 peripheral resources sharing the ICR register specifies extended intelligent I/O service, the other one cannot use interrupts.

MB90960 Series

- ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Parameter	Symbol	Rating		Unit	Remarks
		Min	Max		
Power supply voltage*1	Vcc	Vss - 0.3	Vss +6.0	V	
	AVcc	Vss - 0.3	Vss +6.0	V	$\mathrm{Vcc}=\mathrm{AVcc}^{*} 2$
	AVR	Vss - 0.3	Vss +6.0	V	AV cc $\geq \mathrm{AVR}^{* 2}$
Input voltage*1	V_{1}	Vss - 0.3	Vss +6.0	V	*3
Output voltage**	Vo	Vss - 0.3	Vss +6.0	V	* 3
Maximum clamp current	Iclamp	-2.0	+2.0	mA	* 4
Total Maximum clamp current	Ellclampl	-	40	mA	* 4
"L" level maximum output current	lot	-	15	mA	* 4
"L" level average output current	lolav	-	4	mA	* 4
"L" level maximum overall output current	Eloı	-	125	mA	* 4
"L" level average overall output current	Elolav	-	40	mA	* 4
"H" level maximum output current	Іон	-	-15	mA	* 4
"H" level average output current	lohav	-	-4	mA	* 4
"H" level maximum overall output current	इıон	-	-125	mA	* 4
"H" level average overall output current	Elohav	-	-40	mA	* 4
Power consumption	Po	-	300	mW	
Operating temperature	TA	-40	+105	${ }^{\circ} \mathrm{C}$	
		-40	+125	${ }^{\circ} \mathrm{C}$	*5
Storage temperature	Tstg	-55	+150	${ }^{\circ} \mathrm{C}$	

(Continued)

MB90960 Series

(Continued)

*1: This parameter is based on $\mathrm{V} s \mathrm{ss}=\mathrm{AV}$ ss $=0 \mathrm{~V}$.
*2 : Set $A V c c$ and $V c c$ to the same voltage. Make sure that $A V c c$ does not exceed $V_{c c}$ and that the voltage at the analog inputs does not exceed $A V c c$ when the power is switched on.
*3: $\mathrm{V}_{\text {I }}$ and V_{0} should not exceed $\mathrm{Vcc}+0.3 \mathrm{~V}$. $\mathrm{V}_{\text {I }}$ should not exceed the specified ratings. However, if the maximum current to/from an input is limited by some means with external components, the Iclamp rating supersedes the V_{1} rating.
*4 : Applicable to pins : P20 to P27, P40 to P44, P50 to P57, P60 to P67, P80, P82 to P87
*5 : If used exceeding $T_{A}=+105^{\circ} \mathrm{C}$, be sure to contact Fujitsu for reliability limitations.

- Use within recommended operating conditions.
- Use at DC voltage (current) .
- The +B signal should always be applied a limiting resistance placed between the +B signal and the microcontroller.
- The value of the limiting resistance should be set so that when the $+B$ signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
- Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the Vcc pin, and this may affect other devices.
- Note that if $\mathrm{a}+\mathrm{B}$ signal is inputted when the microcontroller power supply is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result.
- Note that if the $+B$ input is applied during power-on, the power supply is provided from the pins and the resulting power supply voltage may not be sufficient to operate the power-on reset.
- Care must be taken not to leave the +B input pin open.
- Sample recommended circuits :

- Input/output equivalent circuits

[^2]
MB90960 Series

2. Recommended Conditions

$(\mathrm{Vss}=\mathrm{AV} \mathrm{ss}=0 \mathrm{~V})$

Parameter	Symbol	Value			Unit	Remarks
		Min	Typ	Max		
Power supply voltage	Vcc, AV cc	4.0	5.0	5.5	V	Under normal operation
		3.5	5.0	5.5	V	Under normal operation when not using the A/D converter and not Flash programming.
		3.0	-	5.5	V	Maintains RAM data in stop mode
Smooth capacitor	Cs	0.1	-	1.0	$\mu \mathrm{F}$	Use a ceramic capacitor or capacitor of better AC characteristics for the C pin. Bypass capacitor at the Vcc pin should be greater than this capacitor.
Operating temperature	TA	-40	-	+105	${ }^{\circ} \mathrm{C}$	
		-40	-	+125	${ }^{\circ} \mathrm{C}$	*

*: If used exceeding $T_{A}=+105^{\circ} \mathrm{C}$, please contact Fujitsu for reliability limitations.

- C Pin Connection Diagram

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

MB90960 Series

3. DC Characteristics

Parameter	Symbol	Pin	Condition	Value			Unit	Remarks
				Min	Typ	Max		
Input "H" voltage	Vihs	-	-	0.8 Vcc	-	$\mathrm{V} \mathrm{cc}+0.3$	V	Pin inputs if CMOS hysteresis levels are selected (except P82, P85)
		-	-	0.7 Vcc	-	$\mathrm{V} \mathrm{cc}+0.3$	V	P82, P85 inputs if CMOS input levels are selected
	Viнa	-	-	0.8 Vcc	-	V cc +0.3	V	Pin inputs if Automotive input levels are selected
	VIHR	-	-	0.8 Vcc	-	V cc +0.3	V	$\overline{\text { RST input pin (CMOS }}$ hysteresis)
	Vінм	-	-	Vcc-0.3	-	V cc +0.3	V	MD input pin
Input "L" voltage	Vıs	-	-	Vss - 0.3	-	0.2 Vcc	V	Pin inputs if CMOS hysteresis input levels are selected (except P82, P85)
		-	-	Vss - 0.3	-	0.3 Vcc	V	P82, P85 inputs if CMOS input levels are selected
	VILA	-	-	Vss - 0.3	-	0.5 Vcc	V	Pin inputs if Automotive input levels are selected
	VILR	-	-	Vss - 0.3	-	0.2 Vcc	V	RST input pin (CMOS hysteresis)
	VILm	-	-	Vss -0.3	-	Vss +0.3	V	MD input pin
Output "H" voltage	Vон	-	$\begin{aligned} & \mathrm{V} \mathrm{Cc}=4.5 \mathrm{~V}, \\ & \mathrm{loH}=-4.0 \mathrm{~mA} \end{aligned}$	$\mathrm{V} \mathrm{cc}-0.5$	-	-	V	
Output "L" voltage	VoL	-	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, \\ & \mathrm{loL}=4.0 \mathrm{~mA} \end{aligned}$	-	-	0.4	V	
Input leak current	ILI	-	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{ss}}<\mathrm{V}_{1}<\mathrm{V}_{\mathrm{cc}} \end{aligned}$	-1	-	+1	$\mu \mathrm{A}$	
Pull-up resistance	Rup	$\frac{\mathrm{P} 20}{\mathrm{PST}} \text { to P27, }$	-	25	50	100	k Ω	
Pull-down resistance	Roown	MD2	-	25	50	100	k Ω	Except Flash memory devices

(Continued)

MB90960 Series

(Continued)
$\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}^{\star 1}, \mathrm{~V} \mathrm{Vc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{fcp} \leq 24 \mathrm{MHz}$, $\mathrm{V}_{\mathrm{ss}}=\mathrm{AV}$ ss $=0 \mathrm{~V}$)

Parameter	Symbol	Pin	Condition	Value			Unit	Remarks
				Min	Typ	Max		
Power supply current*2	Icc	Vcc	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V},$ Internal frequency: 24 MHz , At normal operation.	-	35	45	mA	MB90F962(S)
			$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V},$ Internal frequency: 24 MHz , At writing Flash memory.	-	50	60	mA	MB90F962(S)
			$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V},$ Internal frequency: 24 MHz , At erasing Flash memory.	-	50	60	mA	MB90F962(S)
	Iccs		$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V},$ Internal frequency : 24 MHz , At sleep mode.	-	12	20	mA	MB90F962(S)
	Icts		$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V},$ Internal frequency: 2 MHz , At main timer mode	-	0.3	0.8	mA	MB90F962(S)
	IctsplL		$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V},$ Internal frequency : 24 MHz , At PLL timer mode, External frequency $=4 \mathrm{MHz}$	-	4	7	mA	MB90F962(S)
	Iccı		$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V},$ Internal frequency : 8 kHz , At sub clock operation mode, $T_{A}=+25^{\circ} \mathrm{C}$	-	40	100	$\mu \mathrm{A}$	MB90F962
	Iccıs		$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$ Internal frequency : 8 kHz , At sub clock sleep mode, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	10	50	$\mu \mathrm{A}$	MB90F962
	Ісст		$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V},$ Internal frequency : 8 kHz , At watch mode, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	8	30	$\mu \mathrm{A}$	MB90F962
	Іссн		$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$, At stop mode, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	5	25	$\mu \mathrm{A}$	MB90F962(S)
Input capacity	$\mathrm{Cin}^{\text {m}}$	Other than AVcc, AVss, AVR, Vcc, Vss, C	-	-	5	15	pF	

*1 : If used exceeding $\mathrm{T}_{\mathrm{A}}=+105^{\circ} \mathrm{C}$, please contact Fujitsu for reliability limitations.
*2 : The power supply current is measured with an external clock.

MB90960 Series

4. AC Characteristics

(1) Clock Timing

$$
\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}^{*}, \mathrm{~V} \mathrm{Cc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{fcp} \leq 24 \mathrm{MHz}, \mathrm{~V} s \mathrm{ss}=\mathrm{AVss}=0 \mathrm{~V}\right)
$$

Parameter	Symbol	Pin	Value			Unit	Remarks
			Min	Typ	Max		
Clock frequency	fc	$\mathrm{X0}, \mathrm{X} 1$	3	-	16	MHz	1/2 when PLL stops, When using an oscillation circuit
			4		16		PLL $\times 1$, When using an oscillation circuit
			4		12		PLL $\times 2$, When using an oscillation circuit
			4		8		PLL $\times 3$, When using an oscillation circuit
			4		6		PLL $\times 4$, When using an oscillation circuit
			4		4		PLL $\times 6$, When using an oscillation circuit
		$\mathrm{X} 0, \mathrm{X} 1$	3	-	24	MHz	1/2 when PLL stops, When using an external clock
			4		20		$\mathrm{PLL} \times 1,$ When using an external clock
			4		12		PLL $\times 2$, When using an external clock
			4		8		$\mathrm{PLL} \times 3,$ When using an external clock
			4		6		PLL $\times 4$, When using an external clock
			4		4		$\mathrm{PLL} \times 6,$ When using an external clock
	fcı	X0A, X1A	-	32.768	100	kHz	
Clock cycle time	toyı	$\mathrm{X0} 0 \mathrm{X1}$	62.5	-	333	ns	When using an oscillation circuit
		$\mathrm{X0} 0 \mathrm{X1}$	41.67	-	333	ns	When using an external clock
	tcyll	X0A, X1A	10	30.5	-	$\mu \mathrm{s}$	When using sub clock
Input clock pulse width	Pwh, PwL	X0	10	-	-	ns	Duty ratio is about 30\% to 70\%.
	PwнL, Pwlı	X0A	5	15.2	-	$\mu \mathrm{s}$	
Input clock rise and fall time	tcr, tcF	X0	-	-	5	ns	When using external clock
Internal operating clock frequency (machine clock)	fcp	-	1.5	-	24	MHz	When using main clock
	fcpl	-	-	8.192	50	kHz	When using sub clock
Internal operating clock cycle time (machine clock)	tcp	-	41.67	-	666	ns	When using main clock
	tcPL	-	20	122.1	-	$\mu \mathrm{s}$	When using sub clock

[^3]
MB90960 Series

- Clock Timing

MB90960 Series

- Guaranteed PLL Operation Range

Guaranteed operation range of MB90960 series

- CS2 (bit 0 in PSCCR register) $=0$

- CS2 (bit 0 in PSCCR register) = 1

*: When using a crystal oscillator or a ceramic oscillator, the maximum oscillation clock frequency is 16 MHz .

External clock frequency and Machine clock frequency

MB90960 Series

(2) Reset Standby Input

$$
\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}^{\star 1}, \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{fcp} \leq 24 \mathrm{MHz}, \mathrm{Vss}=\mathrm{AV} \mathrm{ss}=0 \mathrm{~V}\right)
$$

Parameter	Symbol	Pin	Value		Unit	Remarks
			Min	Max		
Reset input time	$\mathrm{trsta}^{\text {L }}$	$\overline{\text { RST }}$	500	-	ns	Under normal operation
			Oscillation time of oscillator*2 $+100 \mu \mathrm{~s}$	-	ns	In stop mode
			100	-	$\mu \mathrm{s}$	In time-base timer mode

*1: If used exceeding $\mathrm{T}_{\mathrm{A}}=+105^{\circ} \mathrm{C}$, please contact Fujitsu for reliability limitations.
*2 : Oscillation time of oscillator is the time that the amplitude reaches 90%.
In the crystal oscillator, the oscillation time is between several ms and tens of ms . In ceramic oscillators, the oscillation time is between hundreds of $\mu \mathrm{s}$ and several ms . With an external clock, the oscillation time is 0 ms .

- Under normal operation :

- In stop mode :

MB90960 Series

(3) Power-on Reset

Parameter	Symbol	Pin	Condition	Value		Unit	Remarks
				Min	Max		
Power on rise time	tR	Vcc		0.05	30	ms	
Power off time	toff	Vcc		1	-	ms	Due to repetitive operation

*: If used exceeding $\mathrm{T}_{\mathrm{A}}=+105^{\circ} \mathrm{C}$, please contact Fujitsu for reliability limitations.

Note: If you change the power supply voltage too rapidly, a power-on reset may occur. We recommend that you start up smoothly by restraining voltages when changing the power supply voltage during operation, as shown in the figure below. Perform while not using the PLL clock. However, if voltage drops are within $1 \mathrm{~V} / \mathrm{s}$, you can operate while using the PLL clock.

MB90960 Series

(4) LIN-UARTO/1

- Bit setting: ESCR0/1:SCES = 0, ECCR0/1:SCDE = 0
($\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}^{*}, \mathrm{~V} \mathrm{Cc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{fcP} \leq 24 \mathrm{MHz}, \mathrm{V} \mathrm{ss}=0 \mathrm{~V}$)

Parameter	Symbol	Pin	Condition	Value		Unit
				Min	Max	
Serial clock cycle time	tscyc	SCK0, SCK1	Internal shift clock mode output pins are $\mathrm{C}_{\mathrm{L}}=80 \mathrm{pF}+1 \mathrm{TTL}$.	5 tcp	-	ns
SCK $\downarrow \rightarrow$ SOT delay time	tstovı	$\begin{aligned} & \text { SCK0, SCK1, } \\ & \text { SOT0, SOT1 } \end{aligned}$		-50	+50	ns
Valid SIN \rightarrow SCK \uparrow	tivshı	$\begin{aligned} & \hline \text { SCK0, SCK1, } \\ & \text { SIN0, SIN1 } \end{aligned}$		tcp +80	-	ns
SCK $\uparrow \rightarrow$ Valid SIN hold time	tshlıı	$\begin{aligned} & \text { SCK0, SCK1, } \\ & \text { SIN0, SIN1 } \end{aligned}$		0	-	ns
Serial clock "L" pulse width	tshsL	SCK0, SCK1	External shift clock mode output pins are $\mathrm{C}_{\mathrm{L}}=80 \mathrm{pF}+1 \mathrm{TTL}$.	3 tcp - tr	-	ns
Serial clock "H" pulse width	tsısh	SCK0, SCK1		tcp +10	-	ns
SCK $\downarrow \rightarrow$ SOT delay time	tslove	$\begin{aligned} & \text { SCK0, SCK1, } \\ & \text { SOT0, SOT1 } \end{aligned}$		-	$2 \mathrm{tcp}+60$	ns
Valid SIN \rightarrow SCK \uparrow	tivshe	$\begin{aligned} & \text { SCKO, SCK1, } \\ & \text { SIN0, SIN1 } \end{aligned}$		30	-	ns
SCK $\uparrow \rightarrow$ Valid SIN hold time	tshlix	$\begin{aligned} & \text { SCKO, SCK1, } \\ & \text { SINO, SIN1 } \end{aligned}$		tcp +30	-	ns
SCK fall time	tF	SCK0, SCK1		-	10	ns
SCK rise time	tr	SCK0, SCK1		-	10	ns

*: If used exceeding $\mathrm{T}_{\mathrm{A}}=+105^{\circ} \mathrm{C}$, please contact Fujitsu for reliability limitations.
Notes: •AC characteristic in CLK synchronized mode.

- C_{L} is load capacity value of pins when testing.
- tcp is internal operating clock cycle time (machine clock) . Refer to " (1) Clock Timing".
- Internal Shift Clock Mode

MB90960 Series

- External Shift Clock Mode

- Bit setting: ESCR0/1:SCES = 1, ECCR0/1:SCDE = 0

Parameter	Symbol	Pin	Condition	Value		Unit
				Min	Max	
Serial clock cycle time	tscrc	SCK0, SCK1	Internal shift clock mode output pins are $\mathrm{C}_{\llcorner }=80 \mathrm{pF}+1 \mathrm{TTL}$.	5 tcp	-	ns
SCK $\uparrow \rightarrow$ SOT delay time	tshovi	SCKO, SCK1, SOTO, SOT1		-50	+50	ns
Valid SIN \rightarrow SCK \downarrow	tivslı	$\begin{gathered} \hline \text { SCKO, SCK1, } \\ \text { SINO, SIN1 } \end{gathered}$		tcp +80	-	ns
SCK $\downarrow \rightarrow$ Valid SIN hold time	tsuxı	$\begin{aligned} & \text { SCKO, SCK1, } \\ & \text { SIN0, SIN1 } \end{aligned}$		0	-	ns
Serial clock "H" pulse width	tshsL	SCK0, SCK1	External shift clock mode output pins are $\mathrm{C}_{\mathrm{L}}=80 \mathrm{pF}+1 \mathrm{TTL}$.	3 tcp - tr	-	ns
Serial clock "L" pulse width	tsLsH	SCK0, SCK1		tcp +10	-	ns
SCK $\uparrow \rightarrow$ SOT delay time	tshove	$\begin{aligned} & \hline \text { SCKO, SCK1, } \\ & \text { SOTO, SOT1 } \end{aligned}$		-	$2 \mathrm{tcp}+60$	ns
Valid SIN \rightarrow SCK \downarrow	tivsLe	$\begin{aligned} & \hline \text { SCKO, SCK1, } \\ & \text { SIN0, SIN1 } \end{aligned}$		30	-	ns
SCK $\downarrow \rightarrow$ Valid SIN hold time	tslux	SCKO, SCK1, SINO, SIN1		tcp +30	-	ns
SCK fall time	t_{F}	SCK0, SCK1		-	10	ns
SCK rise time	t_{R}	SCK0, SCK1		-	10	ns

*: If used exceeding $\mathrm{T}_{\mathrm{A}}=+105^{\circ} \mathrm{C}$, please contact Fujitsu for reliability limitations.

MB90960 Series

- Internal Shift Clock Mode

- External Shift Clock Mode

MB90960 Series

- Bit setting: ESCR0/1:SCES = 0, ECCR0/1:SCDE = 1
($\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}^{*}, \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{fcp} \leq 24 \mathrm{MHz}$, $\mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Pin	Condition	Value		Unit
				Min	Max	
Serial clock cycle time	tscyc	SCKO,SCK1	Internal clock operation output pins are $\mathrm{C}_{\llcorner }=80 \mathrm{pF}+1 \mathrm{TTL}$.	5 tcp	-	ns
SCK $\uparrow \rightarrow$ SOT delay time	tshovi	$\begin{array}{\|l\|} \hline \text { SCK0,SCK1 } \\ \text { SOT0,SOT1 } \end{array}$		-50	+50	ns
Valid SIN \rightarrow SCK \downarrow	tivsul	$\begin{array}{\|l\|} \hline \text { SCK0,SCK1 } \\ \text { SIN0,SIN1 } \end{array}$		tcp +80	-	ns
SCK $\downarrow \rightarrow$ Valid SIN hold time	tsıxı	$\begin{aligned} & \text { SCK0,SCK1 } \\ & \text { SIN0,SIN1 } \end{aligned}$		0	-	ns
SOT \rightarrow SCK \downarrow delay time	tsovu	$\begin{array}{\|l\|} \hline \text { SCK0,SCK1 } \\ \text { SOT0,SOT1 } \end{array}$		3 tcp - 70	-	ns

*: If used exceeding $\mathrm{T}_{\mathrm{A}}=+105^{\circ} \mathrm{C}$, please contact Fujitsu for reliability limitations.
Note : tcp is the machine clock cycle time (Unit : ns) . Refer to " (1) Clock Timing" rating for tcp.

- Bit setting: ESCR0/1:SCES = 1, ECCR0/1:SCDE = 1
($\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}^{*}, \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{fcp} \leq 24 \mathrm{MHz}, \mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Pin	Condition	Value		Unit
				Min	Max	
Serial clock cycle time	tscyc	SCK0,SCK1	Internal clock operation output pins are $C_{\llcorner }=80 \mathrm{pF}+1 \mathrm{TTL}$.	5 tcp	-	ns
SCK $\downarrow \rightarrow$ SOT delay time	tslovi	$\begin{aligned} & \hline \text { SCK0,SCK1 } \\ & \text { SOT0,SOT1 } \end{aligned}$		-50	+50	ns
Valid SIN \rightarrow SCK \uparrow	tivsh	$\begin{aligned} & \hline \text { SCKO,SCK1 } \\ & \text { SINo,SIN1 } \end{aligned}$		tcp +80	-	ns
SCK $\uparrow \rightarrow$ Valid SIN hold time	tshlı\|	$\begin{aligned} & \text { SCKO,SCK1 } \\ & \text { SINo,SIN1 } \end{aligned}$		0	-	ns
SOT \rightarrow SCK \uparrow delay time	tsoven	$\begin{aligned} & \hline \text { SCK0,SCK1 } \\ & \text { SOT0,SOT1 } \end{aligned}$		3 tcp - 70	-	ns

*: If used exceeding $T_{A}=+105^{\circ} \mathrm{C}$, please contact Fujitsu for reliability limitations.

MB90960 Series

Note : tcp is the machine clock cycle time (Unit : ns) . Refer to " (1) Clock Timing" rating for tcr.

(5) Trigger Input Timing

Parameter	Symbol	Pin	Condition	Value		Unit
				Min	Max	
Input pulse width	ttrgh ttrgl	INT8, INT9R INT10, INT11 INT12R, INT13 INT14R, INT15R	-	200	-	ns
		ADTG	-	tcp + 200	-	ns

*: If used exceeding $\mathrm{T}_{\mathrm{A}}=+105^{\circ} \mathrm{C}$, please contact Fujitsu for reliability limitations.
Note : tcp is internal operating clock cycle time (machine clock) . Refer to " (1) Clock Timing".

INT8, INT9R INT10, INT11 INT12R, INT13 INT14R, INT15R ADTG

MB90960 Series

(6) Timer Related Resource Input Timing

Parameter	Symbol	Pin	Condition	Value		Unit
				Min	Max	
Input pulse width	tтwн	TIN2, TIN3 INO to IN3	-	4 tcp	-	ns
	ttiwL					

*: If used exceeding $T_{A}=+105^{\circ} \mathrm{C}$, please contact Fujitsu for reliability limitations.
Note : tcp is internal operating clock cycle time (machine clock) . Refer to " (1) Clock Timing".

TIN2, TIN3 INO to IN3

(7) Timer Related Resource Output Timing

Parameter	Symbol	Pin	Condition	Value		Unit
				Min	Max	
CLK $\uparrow \rightarrow$ Tout change time	too	TOT2, TOT3 PPGC to PPGF	-	30	-	ns

*: If used exceeding $T_{A}=+105^{\circ} \mathrm{C}$, please contact Fujitsu for reliability limitations.

MB90960 Series

5. A/D Converter

$\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}^{\star 1}, 3.0 \mathrm{~V} \leq \mathrm{AVR}-\mathrm{AV} \mathrm{ss}, \mathrm{Vcc}=\mathrm{AV} \mathrm{cc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{fcp} \leq 24 \mathrm{MHz}, \mathrm{V}_{\mathrm{ss}}=\mathrm{AV}$ ss $=0 \mathrm{~V}$)

Parameter	Symbol	Pin	Value			Unit	Remarks
			Min	Typ	Max		
Resolution	-	-	-	-	10	bit	
Total error	-	-	-	-	± 3.0	LSB	
Nonlinearity error	-	-	-	-	± 2.5	LSB	
Differential nonlinearity error	-	-	-	-	± 1.9	LSB	
Zero reading voltage	Vот	AN0 to AN15	AVss - 1.5	AVss +0.5	AVss + 2.5	LSB	
Full scale reading voltage	Vfst	AN0 to AN15	AVR - 3.5	AVR - 1.5	AVR + 0.5	LSB	
Compare time	-	-	1.0	-	16500	$\mu \mathrm{s}$	$4.5 \mathrm{~V} \leq \mathrm{AV} \mathrm{cc} \leq 5.5 \mathrm{~V}$
			2.0				$4.0 \mathrm{~V} \leq \mathrm{AV}$ cc $<4.5 \mathrm{~V}$
Sampling time	-	-	0.5	-	∞	$\mu \mathrm{s}$	$4.5 \mathrm{~V} \leq \mathrm{AV} \mathrm{cc} \leq 5.5 \mathrm{~V}$
			1.2				$4.0 \mathrm{~V} \leq \mathrm{AVcc}<4.5 \mathrm{~V}$
Analog port input current	IAIN	AN0 to AN15	-0.3	-	+0.3	$\mu \mathrm{A}$	
Analog input voltage	Vain	AN0 to AN15	AVss	-	AVR	V	
Reference voltage	-	AVR	AVss + 2.7	-	AVcc	V	
Power supply current	I_{A}	AV ${ }_{\text {cc }}$	-	3.5	7.5	mA	
	ІАн	AVcc	-	-	5	$\mu \mathrm{A}$	*2
Reference voltage supply current	IR	AVR	-	600	900	$\mu \mathrm{A}$	
	IRH	AVR	-	-	5	$\mu \mathrm{A}$	*2
Offset between input channels	-	AN0 to AN15	-	-	4	LSB	

*1 : If used exceeding $T_{A}=+105^{\circ} \mathrm{C}$, please contact Fujitsu for reliability limitations.
*2 : If A / D converter is not operating, a current when $C P U$ is stopped is applicable $(\mathrm{Vcc}=A V \mathrm{Cc}=\mathrm{AVR}=5.0 \mathrm{~V})$.
(Continued)

MB90960 Series

- About the external impedance of analog input and its sampling time

- A/D converter with sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage changed to the internal sample and hold capacitor is insufficient, adversely affecting A/D conversion precision.
- Analog input circuit model

Note : The values are reference values.

Use the device with external circuits of the following output impedance for analog inputs:

- Recommended output impedance of external circuits are : Approx. $1.5 \mathrm{k} \Omega$ or lower ($4.0 \mathrm{~V} \leq \mathrm{AV} \mathrm{cc} \leq 5.5 \mathrm{~V}$, sampling period $=0.5 \mu \mathrm{~s}$)
- If an external capacitor is used, in consideration of the effect by tap capacitance caused by external capacitors an on-chip capacitors, capacitance of the external one is recommended to be several thousand times as high as internal capacitor.
- If the output impedance of an external circuit is too high, the sampling period for the analog voltage may be insufficient.
- If the sampling time cannot be sufficient, connect a capacitor of about $0.1 \mu \mathrm{~F}$ to the analog input pin.
- To satisfy the A/D conversion precision standard, consider the relationship between the external impedance and minimum sampling time and either adjust the resistor value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value.
(Continued)

MB90960 Series

(Continued)

- The relationship between external impedance and minimum sampling time
- At $4.5 \mathrm{~V} \leq \mathrm{AV}_{\mathrm{cc}} \leq 5.5 \mathrm{~V}$
(External impedance $=0 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$)

- At $4.0 \mathrm{~V} \leq \mathrm{AV}_{\mathrm{cc}}<4.5 \mathrm{~V}$
(External impedance $=0 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$)

(External impedance $=0 \mathrm{k} \Omega$ to $20 \mathrm{k} \Omega$)

- About errors

As I AVR - AVss | becomes smaller, values of relative errors grow larger.

MB90960 Series

6. Definition of A/D Converter Terms

Resolution : Analog variation that is recognized by an A/D converter.
Non linearity : Deviation between a line across zero-transition line ("00 0000 0000b" $\leftarrow \rightarrow$ "000000 0001s") error

Differential : Deviation of input voltage, which is required for changing output code by 1 LSB, from an ideal linearity error
Total error and full-scale transition line ("11 11111110в" $\leftarrow \rightarrow$ "11 1111 1111s") and actual conversion characteristics. value.
: Difference between an actual value and an theoretical value. A total error includes zero transition error, full-scale transition error, and linear error.

(Continued)

MB90960 Series

(Continued)

MB90960 Series

7. Flash Memory Program/Erase Characteristics

Parameter	Conditions	Value			Unit	Remarks
		Min	Typ	Max		
Sector erase time (60 Kbytes)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{cc}}=5.0 \mathrm{~V} \end{aligned}$	-	1	15	s	Excludes programming prior to erasure
Sector erase time (4 Kbytes)		-	0.2	0.5	s	Excludes programming prior to erasure
Byte programming time		-	21	6100	$\mu \mathrm{s}$	Except for the overhead time of the system level
Machine clock frequency fcp at Flash programming/erasing	$\mathrm{Vcc}=5.0 \mathrm{~V}$	-	-	24	MHz	
Program/Erase cycle	-	10000	-	-	cycle	
Flash memory data retention time	Average $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$	20	-	-	year	*

[^4]
MB90960 Series

ORDERING INFORMATION

Part number	Package	Remarks
MB90F962PMT	48-pin plastic LQFP FPT-48P-M26	Flash Memory Product (64Kbytes)
MB90F962SPMT	$7 \mathrm{~mm} \square, 0.50 \mathrm{~mm}$ pitch	Evaluation product
MB90V340E-101	299-pin ceramic PGA PGA-299C-A01	
MB90V340E-102		

MB90960 Series

PACKAGE DIMENSION

Please confirm the latest Package dimension by following URL.
http://edevice.fujitsu.com/fj/DATASHEET/ef-ovpklv.html

MB90960 Series

The information for microcontroller supports is shown in the following homepage.
http://www.fujitsu.com/global/services/microelectronics/product/micom/support/index.html

FUJITSU LIMITED

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.
The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information.
Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.
The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).
Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.
Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.
If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.
The company names and brand names herein are the trademarks or registered trademarks of their respective owners.

Edited Business Promotion Dept.

[^0]: "Check Sheet" is seen at the following support page
 URL : http://www.fujitsu.com/global/services/microelectronics/product/micom/support/index.html
 "Check Sheet" lists the minimal requirement items to be checked to prevent problems beforehand in system development.

[^1]: *: FPT-48P-M26

[^2]: WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

[^3]: *: If used exceeding $\mathrm{T}_{\mathrm{A}}=+105^{\circ} \mathrm{C}$, please contact Fujitsu for reliability limitations.

[^4]: *: This value comes from the technology qualification (using Arrhenius equation to translate high temperature measurements into normalized value at $+85^{\circ} \mathrm{C}$).

