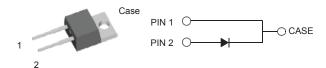


GB10SLT12-220

Silicon Carbide Power Schottky Diode


$V_{RRM} = 1200 V$ $I_{F} = 10 A$ $Q_{C} = 37 nC$

Features

- 1200 V Schottky rectifier
- 175 °C maximum operating temperature
- · Zero reverse recovery charge
- Positive temperature coefficient of V_F
- · Extremely fast switching speeds
- Temperature independent switching behavior
- Lowest figure of merit Q_C/I_F

• RoHS Co

RoHS Compliant

TO - 220AC

Advantages

- Improved circuit efficiency (Lower overall cost)
- · Low switching losses
- Ease of paralleling devices without thermal runaway
- Smaller heat sink requirements
- Industry's lowest reverse recovery charge
- Industry's lowest device capacitance
- Ideal for output switching of power supplies
- Best in class reverse leakage current at operating temperature

Applications

- Power Factor Correction (PFC)
- Switched-Mode Power Supply (SMPS)
- Solar Inverters
- Wind Turbine Inverters
- Motor Drives
- Induction Heating
- Uninterruptible Power Supply (UPS)
- Voltage Clamping

Maximum Ratings, at T_i = 175 °C, unless otherwise specified

Parameter	Symbol	Conditions	Values	Unit
Repetitive peak reverse voltage	V _{RRM}		1200	V
Continuous forward current	I _F	T _c ≤ 150 °C	10	Α
RMS forward current	I _{F(RMS)}	T _C ≤ 150 °C	17	Α
Surge non-repetitive forward current, Half Sine Wave	I _{F,SM}	$T_{c} = 25 ^{\circ}\text{C}, t_{p} = 10 \text{ms}$	tbd	Α
Non-repetitive peak forward current	I _{F,max}	$T_{c} = 25 ^{\circ}\text{C}, t_{p} = 10 \mu\text{s}$	tbd	Α
i²t value	∫i² dt	$T_{\rm C}$ = 25 °C, $t_{\rm p}$ = 10 ms	tbd	A ² s
Power dissipation	P _{tot}	T _C = 25 °C	190	W
Operating and storage temperature	T _j , T _{stg}		-55 to 175	°C

Electrical Characteristics, at T_i = 175 °C, unless otherwise specified

Devenuetes	Cumbal	Conditions	Values		I Imia	
Parameter	Symbol	Conditions	min.	typ.	max.	Unit
Diada faruard valtara	V	I _F = 10 A, T _j = 25 °C		1.70	1.8	V
Diode forward voltage	v _F	I _F = 10 A, T _j = 175 °C V = 1200 V, T = 25 °C		3.00		
Dayaraa ayrrant	1	$V_{R} = 1200 \text{ V}, T_{j} = 25 ^{\circ}\text{C}$		10	240	
Reverse current	rent V _R = 1200 V, T _i = 175 °C		40	1000	μA	
Total capacitive charge	Q _c	$V_R = 950 \text{ V}, I_F \leq I_{F,max}$		37		nC
Switching time	t _s	$dI_F/dt = 330 \text{ A/}\mu\text{s}, T_j = 150 ^{\circ}\text{C}$		< 15		ns
Total capacitance	C	$V_R = 3 \text{ V, f} = 1 \text{ kHz, } T_j = 25 \text{ °C}$		337		n.E
	С	$V_R = 200 \text{ V, f} = 1 \text{ kHz, T}_j = 25 \text{ °C}$		61		pF

Thermal Characteristics

i nermai resistance, junction - case	K _{thJC}	0.79	*C/VV
Mechanical Properties			
Mounting torque	M	0.6	Nm

^{1.} Considering worst case Z_{th} conditions

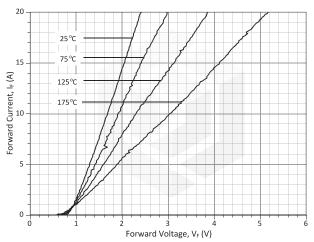


Figure 1: Typical Forward Characteristics

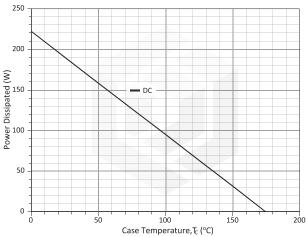


Figure 3: Typical Power Derating Curve

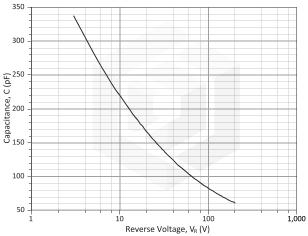


Figure 5: Typical Junction Capacitance versus Reverse Voltage Characteristics

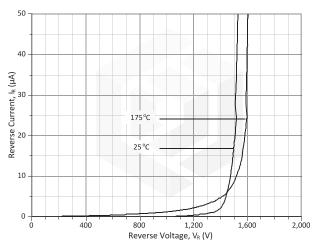


Figure 2: Typical Reverse Characteristics

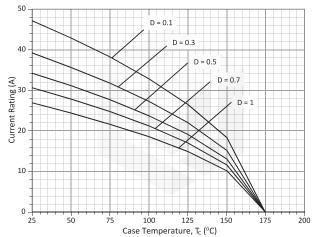


Figure 4: Typical Current Derating Curves (D = t_p/T , t_p = 400 μs^1)

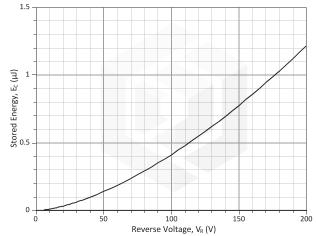


Figure 6: Typical Switching Energy versus Reverse Voltage Characteristics

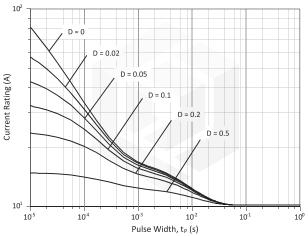


Figure 7: Typical Current versus Pulse Duration Curves at T_c =150 $^{\circ}$ C

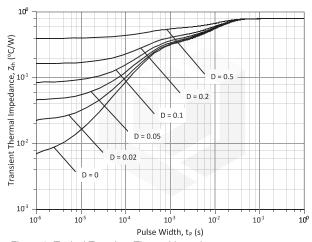
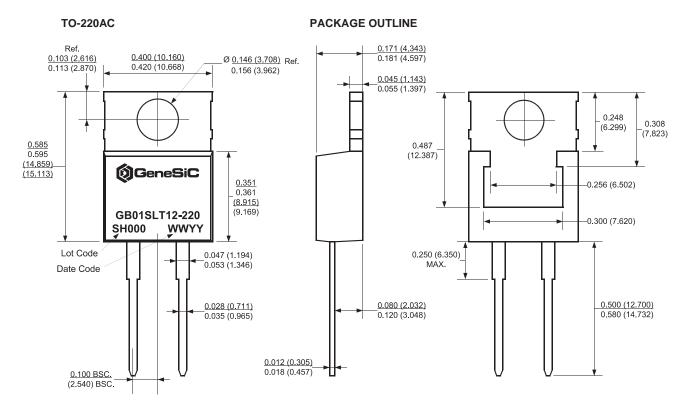



Figure 8: Typical Transient Thermal Impedance

Package Dimensions:

NOTE

- 1. CONTROLLED DIMENSION IS INCH. DIMENSION IN BRACKET IS MILLIMETER.
- 2. DIMENSIONS DO NOT INCLUDE END FLASH, MOLD FLASH, MATERIAL PROTRUSIONS

Revision History					
Date	Revision	Comments	Supersedes		
2010/12/14	1	Second generation release	GA10SLT12-220		

Published by GeneSiC Semiconductor, Inc. 43670 Trade Center Place Suite 155 Dulles, VA 20166

GeneSiC Semiconductor, Inc. reserves right to make changes to the product specifications and data in this document without notice.

GeneSiC disclaims all and any warranty and liability arising out of use or application of any product. No license, express or implied to any intellectual property rights is granted by this document.

Unless otherwise expressly indicated, GeneSiC products are not designed, tested or authorized for use in life-saving, medical, aircraft navigation, communication, air traffic control and weapons systems, nor in applications where their failure may result in death, personal injury and/or property damage.