
Features:

- Darlington complementary
- High DC current gain at $I_c = 10 \text{ A}$: $h_{FE} = 4,000$
- Collector emitter sustaining voltage V_{CEO(sus)} = 100 V(Minimum)
- Monolithic construction with built-in base emitter shunt resistor

Application:

Designed for use general-purpose amplifier and low -frequency switching applications

TO-3

Pin 1. Base

- 2. Emitter
- 3. Collector (Case)

Dimension	Millimetres		
Dilliension	Minimum	Maximum	
Α	38.75	39.96	
В	19.28	22.23	
С	7.96	9.28	
D	11.18	12.19	
E	25.2	26.67	
F	0.92	1.09	
G	1.38	1.62	
Н	29.9	30.4	
I	16.64	17.3	
J	3.88	4.36	
K	10.67	11.18	

Dimensions : Millimetres

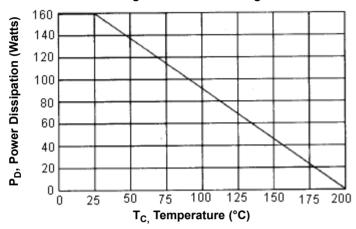
TO-3

Darlington
20 Amperes
Complementary Silicon
Power Transistor

Maximum Ratings

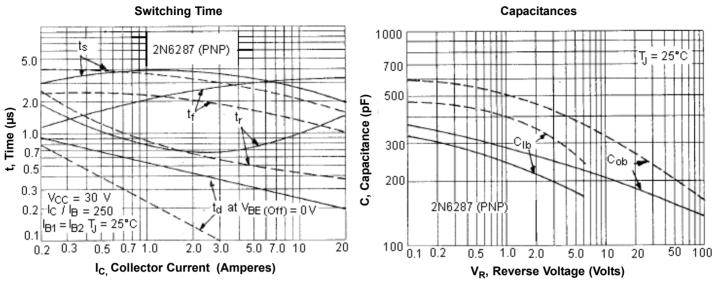
Characteristic	Symbol	2N6287	Unit
Collector - emitter voltage	V _{CEO}	100	V
Emitter - base voltage	V _{CBO}	100	V
Collector - emitter voltage	V _{EBO}	5	V
Collector current - continuous - Peak	I _C	20 40	А
Base current	I _B	0.5	Α
Total power dissipation at T _C = 25°C Derate above 25°C	P _D	160 0.915	W W/°C
Operating and storage junction temperature range	T _{J,} T _{STG}	-65 to +200	°C

www.element14.com www.farnell.com www.newark.com

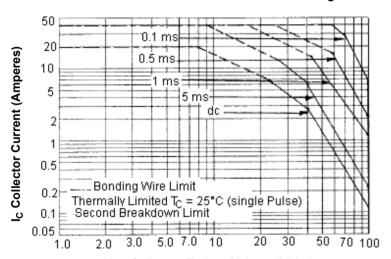


Thermal Characteristics

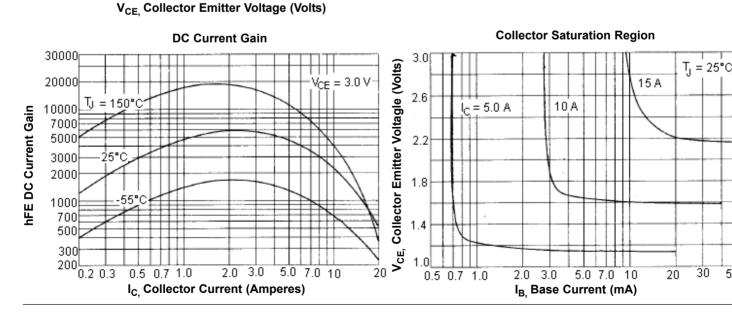
Characteristic	Symbol	Maximum	Unit
Thermal resistance junction to case	$R_{ heta jc}$	1.09	°C/W


Electrical Characteristics (T_C = 25°C Unless Otherwise Noted)

Characteristic	Symbol	Minimum	Maximum	Unit
OFF Characteristics				
Collector - emitter sustaining voltage (1) $(I_C = 100 \text{ mA}, I_B = 0)$	V _{CEO (SUS)}	100	-	V
Collector - emitter breakdown voltage (1) $(V_{CE} = 50 \text{ V}, I_B = 0)$	I _{CEO}	-	1	mA
Collector cut off current (V_{CE} = 100 V, $V_{BE (off)}$ = 1.5 V) (V_{Ce} = 100 V, $V_{BE (off)}$ = 1.5 V, T_{C} = 150°C)	I _{CEX}	-	0.5 5	mA
Emitter cut off current $(V_{EB} = 5 \text{ V}, I_{C} = 0)$	I _{EBO}	-	2	mA
ON Characteristics (1)				
DC current gain $(I_C = 7.5 \text{ A}, V_{CE} = 3 \text{ V})$ $(I_C = 20 \text{ A}, V_{CE} = 3 \text{ V})$	h _{FE}	75 100	18,000	-
Collector - emitter saturation voltage ($I_C = 10 \text{ A}, I_B = 40 \text{ mA}$) ($I_C = 20 \text{ A}, I_B = 200 \text{ mA}$)	V _{CE (sat)}	-	2 3	V
Base - emitter saturation voltage (I _C = 20 A, I _B = 200 mA)	V _{BE (sat)}	-	4	
Base - emitter on voltage (I _C = 10 A, V _{CE} = 3 V)	V _{BE (on)}	-	2.8	V
Dynamic Characteristics				
Current capacitance (V _{CB} = 10 V, I _E = 0, f = 1 MHz)	C _{ob}	-	600	pF
Small - signal current gain ($I_c = 10 \text{ A}, V_{CE} = 3 \text{ V}, f = 1 \text{ KHZ}$)	h _{fe}	300	-	-

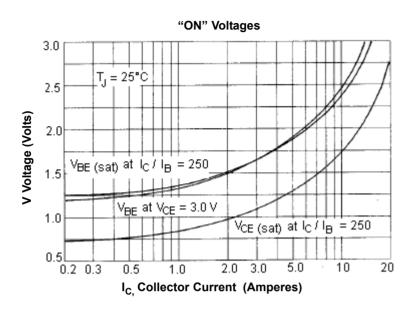

(1) Pulse Test: Pulse width ≤ 300 µs, Duty Cycle ≤ 2%

multicomp



Active - Region Safe Operating Area (SOA)

There are two limitation on the power handling ability of a transistor:average junction termperature and second breakdown safe operating area curves indicate I_C-V_{CF} limits of the transistor that must be observed for reliable operation i.e., the transistor must not be subjected to greater dissipation than curves indicate The data of SOA curve is base on $T_{J(PK)} = 200^{\circ}C;T_c$ is variable depending on conditions, second breakdown pulse limits are valid for duty cycles to 10% provided $T_{J(pK)}$ < 200°C, at high case temperatures, thermal limitation will reduce the power that can be handled to values less than the limitations imposed by second breakdown


www.element14.com www.farnell.com www.newark.com

50

13/12/11 V1.1 Page <3>

Part Number Table

Description	Part Number	
Silicon Power Transistor	2N6287	

Important Notice: This data sheet and its contents (the "Information") belong to the members of the Premier Farnell group of companies (the "Group") or are licensed to it. No licence is granted for the use of it other than for information purposes in connection with the products to which it relates. No licence of any intellectual property rights is granted. The Information is subject to change without notice and replaces all data sheets previously supplied. The Information supplied is believed to be accurate but the Group assumes no responsibility for its accuracy or completeness, any error in or omission from it or for any use made of it. Users of this data sheet should check for themselves the Information and the suitability of the products for their purpose and not make any assumptions based on information included or omitted. Liability for loss or damage resulting from any reliance on the Information or use of it (including liability resulting from negligence or where the Group was aware of the possibility of such loss or damage arising) is excluded. This will not operate to limit or restrict the Group's liability for death or personal injury resulting from its negligence. Multicomp is the registered trademark of the Group. © Premier Farnell plc 2011.

