
 

  
 

 
 

AVR474: ATAVRSB202 Firmware User's Guide  

Features 
• Provides all needed safety measures for a lithium-ion battery 

- Voltage 
- Current 
- Temperature 

• High accuracy voltage and current measurements 
• Communication 

- TWI/SMBus 1.1 compatible 
- Command set based on Smart Battery specification 

• HMAC-SHA2 authentication 

1 Introduction 
This document describes an example Smart Battery implementation using the 
Atmel® ATAVRSB202 evaluation kit. The implementation demonstrates how to use 
the Atmel ATmega16HVB/32HVB to gain optimal safety and measurement 
accuracy for a lithium-ion rechargeable battery pack. All code is available under a 
limited license agreement to allow for easy evaluation and further development. 

The SB202 targets smart batteries with two, three, or four lithium-ion and lithium-
polymer cells in series. The product is based on the same firmware source code, 
but compiled differently for each configuration. The SB202 hardware for evaluation 
of the ATmega16HVB/32HVB device and the SB202 executable file are available 
as the Atmel ATAVRSB202 evaluation kit. 

Figure 1-1. Atmel SB202 evaluation kit hardware. 
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2 Overview 
The main purpose of a Smart Battery implementation is to protect the battery from 
overcharging, over-discharging, and use outside its temperature and current limits. It 
also estimates the battery’s remaining capacity, and communicates this to a 
host/application.  

Often, smart batteries offer a method for authenticating the battery. The 
authentication makes it possible to ensure that only a compatible battery is used for 
an application. This allows the manufacturer of the application to guarantee that the 
application will work as intended with regard to battery lifetime and safety. 

The Atmel ATmega16HVB/32HVB has dedicated autonomous hardware to protect 
against short circuit and excessive currents in both directions. Other safety 
conditions, such as cell voltage level and operating temperature, are handled by the 
CPU. To ensure good performance, the coulomb-counter ADC and the voltage ADC 
(CCADC and VADC) are used to gather accurate information about the operating 
conditions of the battery. The CPU/firmware collects and processes this information, 
and responds accordingly. The dedicated and specialized hardware modules are 
described in the datasheet, and this application note demonstrates how they can be 
used to their best. 

The CCADC can be set to trigger an interrupt at fixed intervals, and operates in 
power-save mode. For this reason it is used as a timebase in this implementation. 
The CCADC accumulates (averages) the current for one second, and every time a 
conversion is completed, the main loop will run one loop and the 
ATmega16HVB/32HVB will go back to sleep. How deep it can sleep depends on 
whether all modules started in the main loop are finished or not, and whether or not 
there is ongoing communication. 

A hardware TWI module is used for communication. All transmissions have to be 
initiated by the host/application, but the battery can answer. 

The Atmel SB202 is designed for 2s, 3s, and 4s applications. The #define 
“BATTPARAM_CELLS_IN_SERIES” in the header file determines whether the code 
should target the 2s, 3s, or 4s configuration. The hardware must be configured for 
use with different cell counts. This is described in the hardware user’s guide. 
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Figure 2-1. Overview of how the Atmel SB202 firmware operates. 
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3 Battery safety 
Making sure the battery is not a safety risk for the user is the most important task for 
the Atmel ATmega16HVB/32HVB. A lithium-ion battery can become very hot and 
even explode if overcharged or if too much current is drawn from it, and so good 
protection is needed for a commercial battery. 
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Figure 3-1. Overview of the battery safety system. 

 

3.1 Battery protection hardware module 
The hardware battery protection on the Atmel ATmega16HVB/32HVB disables both 
FETs when too much current flows in or out of the battery. It has three limits for 
discharging and two for charging. The limits can be set to different currents and 
reaction times. This allows a very fast short-circuit detection, but allows for lower 
charge/discharge spikes without cutting supply to the host/application. Table 3-1 
shows an example of how the three discharge limits can be set up. 

Table 3-1. Example timings for battery protection. 
Current exceeds Duration for discharge FET to be disabled 

2A 20ms 

3A 2ms 

6A 125µs 

In this implementation, the lowest discharge current limit (called discharge high-
current protection) is disabled to allow faster discharges during testing. The 
parameters are stored in the EEPROM and used to configure the module at startup. 
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Multiple charge over-/high-current protections in a row indicate a malfunctioning 
charger. In that case, the charge FET is disabled and will not be enabled again until a 
discharge current higher than standby is detected. That way, the battery is protected 
even if disconnected from the charger and connected again. 

3.2 Firmware-based battery protection 
The firmware-based battery monitoring of the operating conditions is protecting the 
battery from over-voltage, under-voltage, and hazardous temperatures. 

3.2.1 Current 

Because the battery lifetime is decreased by high charge and discharge currents, the 
current flowing in/out of batteries should be limited to a reasonable level, which can 
be determined according to the battery characteristics data and a realistic application 
scenario. It might also be desired to use more sophisticated current limitation 
schemes/algorithms than simple thresholds. This is left up to the end user to 
implement. 

3.2.2 Temperature 

Very high or very low operating temperatures reduce the lifetime of the battery, and 
moreover, high temperature can also be a sign that the battery is damaged. 
Therefore, it is common practice to disable charging/discharging when the 
temperature is outside a certain temperature range. This is a good idea both for 
general safety and battery lifetime. This implementation checks the temperatures 
every four seconds (to minimize active time and power consumption). This is 
considered sufficient for most batteries, as rapid thermal changes are not expected. 

By default, cell temperature monitoring is disabled because no thermistor is soldered 
on the Atmel SB202 at assembly. Thermistors are, however, provided with the SB202 
kit. See Section 11.3 for more information. Instead, the internal Atmel 
ATmega16HVB/32HVB temperature reference is assumed to be the same as the cell 
temperature. 

If the temperature is too high or too low, either the charge or discharge FET will be 
disabled, depending on in which direction the current is flowing. It will not be enabled 
again until the temperature is within the allowed limits. 

If the internal temperature of the ATmega16HVB/32HVB is outside the operating 
limits (-20°C to 80°C), the ATmega16HVB/32HVB will turn itself off and the FETs will 
automatically be disabled. 

All the temperature limits for the battery are stored in the EEPROM. 

3.2.3 Voltage 

By checking the voltage, the battery can protect itself from overcharging and over-
discharging. Both of these conditions reduce the battery lifetime and are a safety risk. 
Therefore, when a charge current is flowing, the cells are continuously checked for 
over-voltage, and similarly, while discharging, they are checked for under-voltage. 

When the voltage is too high, the charge FET will be disabled. It will not be enabled 
again until a discharge current higher than standby is flowing. The protection works 
the same for the discharge FET; after an under-voltage condition, the discharge FET 
will not be enabled again until a charge current is detected. 
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When the discharge FET is disabled, its body diode is conducting in the charge 
direction. However, the diode causes a voltage drop that reduces the voltage 
difference between the charger and the battery stack, which again causes a reduced 
charging current. If the battery voltage is high (~3.55V and up), virtually no charge 
current will flow when the charger is charging with a standard 4.2V. 

This condition can occur if the cell voltage drops below the low-voltage limit due to 
high current drawn from the battery (for example, 3C). In this case, the remaining 
capacity of the battery is still fairly high. When the discharge FET is disabled by hitting 
the low-voltage limit, the battery cell will recover and the voltage will increase. The 
voltage can increase from 2.7V to 3.6V, which is high enough to limit the charging. 

To handle this scenario, the discharge FET is enabled if the battery voltage is above 
a given threshold or if a charging current is detected (a few mA is enough). 

If the voltage drops very low (for example, 0.2V below minimum operating voltage for 
the cell), the Atmel ATmega16HVB/32HVB turns itself off to limit further discharging 
of the battery. To avoid shutting down on short discharge spikes such as due to high 
outrush current when inserting the battery in an application, for example, the voltage 
has to be low for two seconds before power-off is performed. 

The voltage is also used for: 

• Checking whether cell balancing should be activated or not on the Atmel SB202 
• Check when the battery is fully charged or discharged; useful for gas gauging 

modules 
• Disabling deep under-voltage recovery (DUVR) mode. When the voltage is high 

enough, DUVR mode is disabled, and the firmware can control the FETs 
All limits for the voltage protection are stored in the EEPROM. 
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4 Battery parameters/settings 
Most battery parameters are stored in the EEPROM for easy reconfiguration. Those 
values are in “physical” units; that is, mA, minutes, etc. Internally the Atmel SB202 
uses other units to reduce computation complexity to a minimum. Therefore, at 
startup, some parameters in the EEPROM are converted into other units and stored 
in the SRAM. 

Changes to some settings that require that the code be recompiled affect more than 
just a value in the EEPROM. Most obvious are settings for the number of cells and 
the availability of external temperature sensors.  

All parameters and settings are located and commented in the 
battery_pack_parameters.h/c files. Battery characteristics data are stored in the 
firmware module that uses them; for example, cc_gas_gauging and 
voltage_based_SoC. 
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5 Clocks and calibration 
The Atmel ATmega16HVB/32HVB’s internal fast RC oscillator is used as the system 
clock. It runs at a nominal frequency of 8MHz, but the system clock prescaler should 
be fused to 1/8 for the SB202, resulting in a system clock with a frequency of 1MHz. 

The fast RC oscillator varies over temperature. However, this can be avoided by 
calibrating the fast RC at runtime with the use of the slow RC oscillator, whose 
frequency can be determined as a linear function of temperature. This makes it 
possible to calibrate the fast RC oscillator with sufficient accuracy to have reliable 
UART communication. The calibration is run every time the chip temperature has 
changed by 2°C. 

When the slow RC period is known (calculated), it is known how many fast RC ticks 
should occur during that period for it to be running at 1MHz. When calibrating, the 
number of fast RC ticks during eight slow RC periods is counted, and the calibration 
register is adjusted until the number is as correct as the adjustment allows for. The 
calibration register is only adjusted one step at a time to avoid changing the 
frequency too much. 

5.1 Real-time counter 
There is no need for an accurate real-time counter (RTC) on the Atmel SB202. Real-
time is only used for knowing approximately when a number of minutes have passed, 
and is not used for any calculations. 

The RTC is clocked by the ULP RC oscillator through the CCADC conversion time. 
Since the actual ULP RC period can be calculated through slow RC, it is possible to 
improve the accuracy of the RTC if needed. 
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6 Initialization flow (after reset) 
During initialization, all peripheral and firmware modules are configured, calibrated, 
and prepared for operation. Upon the very first startup (that is, power-up after 
programming), CCADC offset adjustment is also performed. The initialization 
sequence is listed below. 

1. Set up the watchdog, and check if too many watchdog resets have occurred. If it 
has, it indicates a major problem, and the battery should be disabled. (Nothing is 
done in this implementation.) 

2. Disable unused peripherals and pins to reduce the power consumption. 
3. Check that the battery parameters and signature row is correct (CRC16). If they 

are not, the part can be measuring wrong values and have wrong limits for 
battery protection. So, the battery should be disabled if the checks fail. (Nothing is 
done in this implementation.) 

4. Calibrate the bandgap. If it fails, the readings from the ADC modules cannot be 
trusted, and, therefore, the battery will be disabled. 

5. Initialize the hardware battery protection module. 
6. Set up the VADC module with gain coefficients and offsets from the signature 

row. 
7. Values to convert between internal units from the CCADC to mA/mAh are 

calculated from the shunt resistor value stored in the EEPROM. 
8. Some frequently used limits from the battery parameters are converted to internal 

units to avoid doing that calculation every second. 
9. The VADC runs one scan of all available inputs to have values for the first main 

loop and also to check if the DUVR mode can be disabled. 
10. If a serious failure has not occurred earlier in the initialization process, the 

CCADC and coulomb counter gas gauging modules are configured. The 
remaining capacity for the CC-based gas gauging is set by using the state of 
charge (SoC) from the voltage-based gas gauging. It is, however, marked as 
inaccurate and updated as soon as the voltage-based gas gauging has an 
accurate estimation. 

11. If it is the very first start-up, it will measure the CCADC offset. This process takes 
up to 30 seconds. 

12. Finally, the communication is initialized and global interrupts enabled before 
entering the main loop. 
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7 Main loop 
The purpose of the main loop is to gather and react to data from the interrupts. It runs 
through all available data and checks that all are within the limits. If errors are 
discovered during charging or discharging, the corresponding FET is disabled and an 
error flag is set. If no error flags are set at the end of the main loop, the FETs will be 
enabled again. Because the main loop is run once per second, the FETs will be 
disabled for a minimum of one second when the firmware detects an error. 

Figure 7-1. Simplified flowchart for the main loop. 
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The hardware battery protection module prevents the FETs from being enabled within 
one second after a battery protection event (caused by too high current) has been 
triggered. Because the current protection is handled by hardware, the main loop 
doesn’t have to check for that before enabling the FETs. 
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8 Interrupts 
The implementation is interrupt-based: All processing is based on interrupt triggers, 
and interrupts (and flags) are an essential part of the implementation. The interrupts 
used in the implementation are listed in Table 8-1. 

Table 8-1. Interrupts used in the Atmel SB202 Smart Battery application. 
Interrupt source/function name Description 

Voltage regulator monitor interrupt 
VREGMON_ISR() 

Stores all interrupt settings for the various modules and enters power-
save until the voltage regulator is okay again or CREG is empty. If the 
voltage regulator is okay, restores the interrupts and continues operation. 
See the Atmel ATmega16HVB/32HVB datasheet for a description of how 
the voltage regulator monitor works 

Watchdog timeout interrupt 
WDT_Timeout_ISR () 

Only used by the voltage regulator monitor interrupt to wake the device 
up and check if the voltage regulator is okay 

Timer 0 output compare match interrupt  
RCCAL_InputCapture_ISR() 

Captures the number of fast RC clocks during one slow RC period. See 
Chapter 5, Clocks and calibration, on page 8 

Battery protection interrupt 
BATTPROT_BatteryProtection_ISR() 

Triggered when the hardware battery protection module disables the 
FETs due to excessive currents or short circuit. Sets a flag, which is used 
to alert the host. If it was an overcharge, it increases the number of times 
this has happened to be able to detect a malfunctioning charger. 

CCADC accumulating conversion complete interrupt  
Ccadc_Acc_ISR() 

If the CCADC is set to negative polarity, the result is negated; otherwise it 
is just stored as is. The main loop will then process the result. If polarity 
switching compensation (see Section 10.2) is activated, the 
compensation is done here. 

Voltage ADC conversion complete interrupt 
VADC_ISR() 

Flags that a channel or group of channels is complete. The main loop will 
then process the result. If there are more channels to scan in the ongoing 
sweep, sets the MUX and starts the VADC again. Otherwise turns the 
VADC off. 

TWI (SMBus) interrupt request 
TWI_ISR() 

Maintains the TWI (SMBus) state machine to implement the 
communication 

Timer 1 overflow interrupt 
T1OVF_ISR( ) 

Provides timer tick for the code. The timeout period is 2.048ms 

Timer 1 output compare match B interrupt 
T1_COMPB_ISR() 

Checks the hold time of the button pushed. After the hold time is larger 
than the predefined period, the LED will be lit to indicate the volume of 
capacity or the error code. The LED on time is set at LED_ON_TIMEOUT 

Timer 1 output compare match A interrupt 
T1CMPA_ISR() 

Reduces the LED on time until it is zero, and then turn off the LEDs 

Pin change interrupt 0 
PCINT0_ISR 

Checks the button input, and will trigger if there is a pin change on the 
button. This enables the timers to show status codes on the LEDs 
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9 FET control 
If an error occurs that requires the current flow to be cut, the FET will get disabled 
immediately and an error flag will be set. The FET will not be enabled again until all 
errors have disappeared; that is, all error flags are cleared. 

The flags are divided into different variables in the code, but only the flag name is 
used here. 

Table 9-1. FET control conditions. 
Flag name Clearing conditions Description 

CriticalConditonDetected Will never get cleared Set if the bandgap or VADC can’t be calibrated/initialized, and 
will keep both FETs disabled all the time 

ChecksumFailure Will never get cleared Set if either the signature or EEPROM battery parameters 
CRC is wrong. Is not done in this implementation, but the 
battery should be disabled if the checksums are wrong 

InDUVR Cleared when DUVR mode is 
disabled 

Set at start-up and if the code detects that the DUVR mode 
has been enabled again. Will prevent both FETs from being 
enabled, but the DUVR has control over the charge FET so 
charging is possible 

SystemIsInStandby Cleared if the current is higher 
than the active current threshold 
in either direction 

Set if the current is less than the active current threshold. By 
default, that is 10mA 

ReoccuringChargeProtection Cleared when an active discharge 
current is detected 

Set if a too-high charge current is detected too many times in a 
row, which indicates a malfunctioning charger. Will disable the 
charge FET when set and prevent it from being enabled again 
until cleared 

ChargingProhibited Cleared when an active discharge 
current is detected 

Set if a too-high voltage is detected. Will prevent the charge 
FET from being enabled while set 

DischargingProhibited Cleared when an active charge 
current is detected 

Set if a too-low voltage is detected. Will prevent the discharge 
FET from being enabled while set 

VoltageTooHigh Cleared if the last voltage was 
below the maximum for all cells 

Set if the last voltage was too high for any cell. Disables the 
charge FET 

VoltageTooLow Cleared if the last voltage was 
above the minimum for all cells 

Set if the last voltage was too low for any cell. Disables the 
discharge FET 

CellTemperatureTooHigh Cleared if the last temperature 
reading is below the maximum 
limit 

Set if any cell temperature (or the internal temperature 
reference of the Atmel ATmega16HVB/32HVB if no thermistor 
is connected) is too high. Will disable either the charge or 
discharge FET when set, depending on which direction the 
current is flowing. Will prevent both FETs from being enabled 
while set 

CellTemperatureTooLow Cleared if the last temperature 
reading is above the minimum 
limit 

Set if any cell temperature (or the internal temperature 
reference of the ATmega16HVB/32HVB if no thermistor is 
connected) is too low. Will disable either the charge or 
discharge FET when set, depending on which direction the 
current is flowing. Will prevent both FETs from being enabled 
while set 
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10 CCADC 
The result from the CCADC is used to check the current level, compute the average 
current over one minute (approximated to save memory), and compute the 
accumulate charge that has flowed in and out of the battery. Only the accumulated 
result from the CCADC is used when checking limits and accumulating charge. The 
CCADC is set to a one-second conversion time and to trigger an interrupt when 
conversion is complete. That way it can also be used to update the RTC. The actual 
timing will depend on the temperature, but as described in Chapter 5, Clocks and 
calibration, page 8, the RTC does not need to be very accurate. 

The actual conversion time is important when accumulating current for counting the 
charge that has flowed through the battery. The CCADC is clocked by the slow RC 
oscillator, and its period can be calculated from the internal temperature reference of 
the Atmel ATmega16HVB/32HVB and the slow RC temperature predication value that 
is stored in the signature row. The cc_gas_gauging module is responsible for 
accumulating the capacity and compensates for the actual slow RC period. 

If polarity switching is enabled, the CCADC accumulating conversion complete 
interrupt is responsible for storing the result so that it is always positive for a charging 
current and negative for a discharging current. 

When a new current result is ready from the CCADC, it is passed to the 
battery_current_monitoring module by the main loop, where it is added to the one-
minute average current. The average is calculated as shown in Equation 10-1. 
Method for calculating average current. The scaling is used to improve accuracy 
and is removed when the average is returned. 

NOTE An exponential filter is used to estimate a one-minute moving average current. This is 
done to save memory, as a one-minute moving average is very SRAM-consuming. 

Battery_current_monitoring also gives easy access to the current and offset 
calibrated current for other modules that need it. 

Equation 10-1. Method for calculating average current. 

4)lt value: ING (defauRRENT_SCALAVERAGE_CUn

currentaverage Old  average New
n

=

+
=

128
2**4*124

 

10.1 CCADC offset 
The CCADC has a certain offset. When accumulating charge, it can be cancelled out 
by switching polarity at a fixed interval. But as it is possible to measure the offset, it’s 
nice to use that to correct the measurement when it’s used as momentary current. It 
helps the most on low current when checking whether the battery is in standby mode 
or not. 

The offset is measured the first time the battery is started and takes 20-30 seconds, 
during which both FETs will be disabled. It discards the first sample after every switch 
and compares the average of the other samples between positive and negative 
CCADC polarity. Half the difference is the offset, and that can then be added or 
removed (depending on polarity setting) to later measurements to get a more correct 
value. 
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Switching polarity too often is not a good idea because the first accumulating 
conversion after a polarity switch is not correct. 

10.2 Challenges with polarity switching 
The ACC conversion from the CCADC is calculated from the average of 256 
instantaneous conversions by hardware (one-second conversion time). But every 
time the polarity is switched, the first two to three instantaneous current conversions 
are wrong. The first one is completely off, the second quite wrong and the third is 
almost always correct, and if not, then only slightly wrong. 

Figure 10-1. Example ICC samples before and after a polarity switch. 

 

This is caused by settling time in the CCADC, which requires two to three ICC 
conversions to settle. In the example in Figure 10-1, the error for a one-second 
conversion time and a constant current of -185 would be: 

%86.0%
185*256

)185*256()101140(185*254
−=

−+−+
=error  

To remove the problem as much as possible, the two or three samples after the 
switch should be removed from the ACC result for that second and replaced with an 
average of the ICCs before and after them. 

To do that, the part has to wake up three or four extra times after a polarity switch to 
read the ICC results, and that adds active time and, therefore, power consumption. It 
also adds complexity and code space. 

The Atmel SB202 takes a simpler approach that still removes most of the error. The 
sum of the two samples after the switch is small compared to one ICC sample, so 
they are already considered “removed.” And instead of adding the average of the ICC 
readings around them, only the ICC sample from just before the polarity switch is 
used. As that sample is available when switching the polarity, practically no runtime is 
added.  

With the same assumptions as in last error calculation, the error will now be: 

%095.0%
185*256

185*256)182*2)101140(185*254(
=

−++−+
=error  

NOTE In Figure 10-1, the results are not polarity compensated, so the result from before the 
switch is negated before using it in the error calculation. 

Since the ACC result has the same range for different conversion times, the result is 
downscaled by the hardware. Therefore, the ICC result also has to be downscaled 
before it is added to the ACC result. 

For different values of samples and downscale from Table 10-1, the ACC result is: 

[ ] downscale
samples

n
nICCACC >>
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
∑
=

=
1
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Table 10-1. ICC samples for different ACC conversion times. 

Conversion time Samples Downscale 

1s 256 3 

500ms 128 2 

250ms 64 1 

125ms 32 0 

To replace the two “missing” ICC samples, the ICC sample from just before the switch 
has to be divided by four (doubled and then scaled down three bits) before adding it 
to the ACC result. 

10.3 Shunt calibration 
The result from the CCADC is the voltage drop over the external shunt resistor, which 
on the Atmel SB202 has a value of 5mΩ, ±1%. The shunt resistance is used with the 
result from the CCADC to calculate the current.  As a calibration option, the shunt 
value can be changed at runtime by sending a new shunt resistance value via the 
communication interface. 

An ammeter can be used to measure the exact current flowing in/out of the batteries. 
This information can then be used to calculate what the shunt resistance really is. 
This is described in more detail in the Atmel AVR491 application note. 

The shunt resistance can be set between 4000µΩ and 16000µΩ using the 
ShuntCalibration command (0x2A). Other values are possible, but require changes to 
the code to avoid computational overflows. 
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11 VADC 
The Atmel ATmega16HVB/32HVB MCU has a five-channel VADC for measuring cell 
voltage, chip temperature, and cell/battery temperature. The chip temperature uses 
an internal diode. External thermistors are required to measure the battery cell 
temperatures. 

Immediately after a CCADC ACC result is ready, a new VADC scan is configured and 
started. This is to ensure that the data are ready when the main loop can process 
them (because the VADC conversion takes a long time compared to the processing 
of the data). Ideally, the VADC should only run while the CPU is busy processing 
information. Otherwise, energy is wasted in noise-reduction-mode/idle-mode sleep, or 
even active mode, just waiting for the conversion to complete. In reality, noise-
reduction sleep is used whenever it is required to wait for a conversion to complete. 

Configuring the VADC scan means to set which channels should be sampled. It 
depends on how many cells and thermistors are used. The cell voltages are sampled 
every second, but temperatures are sampled only every fourth second as they do not 
change that fast. The ADC input channels are scanned in the same order as they are 
processed in the main loop. This is to ensure that the CPU can process data while 
converting the next sample. 

When one channel is finished, the VADC conversion complete interrupt routine sets a 
data ready flag to notify the main loop. This allows the main loop to process, for 
example, the result from cell one voltage while the VADC is sampling cell two voltage. 
The interrupt routine advances to the next input channel in the scan (reconfigure the 
VADC mux) or, if the scan is completed, turns off the ADC sample. 

11.1 VADC calibration  
To ensure optimum accuracy when using the VADC, all results must be corrected for 
offset and gain error. The offset and gain compensation can be read from the HVB 
signature row. Please refer to the datasheet for more details. 

Equation 11-1. Offset and gain compensation of the VADC result. 
)2(;)( 14bydownscaledADCADCADCADC gainoffsetresultdcompensate ⋅−=  

11.2 Chip temperature 
To calculate the chip temperature, the VADC result is multiplied by the VPTAT value 
from the signature row and scaled down as described in the datasheet. Further, it is 
multiplied by 10 to get results in 0.1K, as required according to the SBS specification. 

All temperatures are stored in 0.1K. 

NOTE The VADC result for the internal temperature reference only requires gain 
compensation. Offset compensation is not required. 

11.3 Cell temperature 
Because no thermistors (NTC) are soldered on the Atmel SB202 during assembly, 
cell temperature reading (and processing) is disabled by default. Instead, the chip 
temperature is assumed to be the same as the cell temperature when evaluating the 
system temperature. 
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To use one or two thermistors, connect them as described in the Atmel AVR455 
application note and change two defines in battery_pack_parameters.h (search for 
CELLTEMPERATURE_INPUTS and read the comments just above it). 

To convert the VADC result to mV, the result has to be offset calibrated, multiplied 
with a gain coefficient, and then scaled down. The downscaling is chosen to 
maximize accuracy so the VADC module by default returns 200*voltage in mV. 

Equation 11-2. How to calculate voltage on the VADC according to the datasheet. 

16384
)(

10
1 gainoffsetresult

mV

ADCADCADC
ADC

⋅−
⋅=  

Equation 11-3. How the Atmel SB202 calculates the scaled voltage from the VADC 
result. 

8192
)(

_
gainoffsetresult

mVscaled

ADCADCADC
ADC

⋅−
=  

The thermistors supplied with the SB202 are Mitsubishi RH16-3h103f, and the NTC 
firmware module in the ntc_rh163h103f.c file converts the scaled voltage from the 
VADC module to Kelvin or degrees Celsius. To use another NTC, other data used by 
the firmware module have to be used. 

11.4 Cell voltage 
To get the real voltage from the VADC result, an offset has to be added and the result 
multiplied with a gain coefficient and then scaled down, as written in the datasheet. 
This conversion between the VADC result and the actual voltage is calculated only 
once per conversion; later use of the cell voltage thus does not spend time converting 
the VADC result to volts. 
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12 Gas gauging 
Gas gauging is estimating how much capacity and runtime is left in the battery. The 
Atmel ATmega16HVB/32HVB can achieve high accuracy gas gauging by means of 
its very accurate VADC and CCADC. The great storage capability in flash, SRAM, 
and EEPROM allows the use of accurate battery models. 

The Atmel SB202 uses a combination of voltage- and coulomb-counter-based gas 
gauging. The voltage-based gas gauge is used to initialize the remaining capacity, 
which the coulomb counter then will increase/decrease during use. 

12.1 Gas gauging strategy on the SB202 
At start-up, the voltage-based gas gauging estimates the state of charge (SoC) using 
an approximation of the internal resistance of the battery. The remaining capacity is 
calculated from that SoC and from the latest full-charge capacity stored in the 
EEPROM. This provides a reasonable initial estimate of the SoC and remaining 
capacity, though it is not as accurate as the estimate will be when the open-circuit 
voltage (OCV) is measured, or when the battery has been charged to full capacity 
once. For this reason, a flag is used to indicate that the SoC/remaining capacity is 
“inaccurate” and that a better estimation should be performed as soon as possible. 

The SoC from the voltage-based gas gauging module is considered accurate when 
the current has been below the standby current limit for 30 minutes or more. 
(Threshold for standby current is specified in firmware and stored in EEPROM.) The 
first time this happens after start-up, the remaining capacity is updated and is no 
longer flagged as inaccurate. 

Remaining capacity is updated every second by the coulomb counter, and it is used 
to calculate all the information the SB202 can provide to the host/application. 

Because the end-of-discharge voltage is reached sooner when high currents are 
drawn from the battery, the calculation of the runtime to empty takes the current level 
into account. The calculation uses characterization data for the specific battery cell 
type to determine how the available capacity changes at different current levels 
compared to when using only a very small current. Ideally, the characteristic data 
should be updated as the battery gets older, as the battery characteristics change 
slightly over time, but this is not offered in this application. 

12.2 Voltage-based gas gauging 
Voltage-based gas gauging works quite well to determine the SoC from the open 
circuit voltage (OCV, that is, at no or low current). But as soon as “more” current is 
flowing, the battery’s internal resistance effects reduce the terminal voltage. The 
resistance changes with temperature, SoC, and battery age, which makes it 
challenging to accurately estimate the SoC from only the OCV.  

Two other problems with voltage-based gas gauging are: 

• It only gives the state of charge in percents and no indication of the capacity of the 
battery, which makes it hard to give an accurate runtime for the battery 

• When the current stops, the voltage does not immediately return to the OCV. How 
long it will take depends on the battery, but generally it takes about 30 minutes 
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However, the combination of OCV-based estimation and coulomb-counting-based 
estimation provides a good overall estimation that is not very sensitive to 
temperature, aging, etc. 

12.3 Coulomb counter gas gauging 
A coulomb counting approach keeps track of how much current is charged into the 
battery and discharged from it. It is very accurate, even at high currents. The 
disadvantage of the coulomb-counting-based gas gauging is that it can measure 
changes only. This means that it does not offer information about the absolute charge 
level, and, therefore, an initial charge state is also required.  

When doing coulomb-counter-based gas gauging, the current charge/remaining 
capacity has to be estimated using a voltage-based approach at start-up and also 
possibly after a long time in standby. If the initial voltage-based SoC estimate is 
wrong, the coulomb-counter-based estimate will also be wrong. It can, however, 
calibrate itself when reaching a fully discharged and fully charged state. 

By using a coulomb counter, the full charge capacity can be updated as the battery 
gets older with the following method: 

It is known when the battery is fully charged and fully discharged, so how much 
charge has been used between these states is the full-charge capacity. A full charge 
on a lithium-ion cell is reached when the charge current has dropped low enough, 
often down to the range of 10 - 15mA. Full discharge is a bit trickier to gauge, as the 
end-of-discharge (EoD) voltage will be reached before the battery is actually empty 
when discharging with high currents because of the internal resistance. So the EoD 
has to be reached at a low enough current for it to be a full discharge. 

The fact that the battery will typically never get fully discharged because the 
host/application shuts down represents a challenge when trying to estimate the 
remaining charge and runtime to empty. 
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13 Battery characterization data 
The Atmel SB202 needs a table for SoC versus OCV, a table for how much less 
capacity is available at higher currents, and, optionally, but recommended, the full 
charge capacity. 

The SB200 can be used together with the PC demonstration software to log all data 
that is available from the SB202, and can, therefore, be used as a platform for 
characterizing batteries. 

13.1 Full-charge capacity 
The full-charge capacity of the battery is often different from the design capacity. The 
battery will update the full-charge capacity if it determines it is not correct.  

The full-charge capacity as well as the design capacity should be the amount of 
capacity available at a very low current; that is, about 10mA. 

This parameter is stored in the EEPROM in the battery_pack_parameters module. 

13.2 State of charge vs. voltage 
The voltage-based gas gauging uses a table of the OCV at different SoCs from 0% to 
100%. The SB202 does a linear interpolation between the two closest points in the 
table, so the SoCs don’t have to be at a fixed interval. This allows having fewer 
values between 70% and 30%, where the OCV is almost linear for most batteries, 
and more values near the end of the discharge, where the voltage changes a lot 
more. 

NOTE The SB202 requires having values at exactly 100% and 0%. 

The table is stored in the voltage_based_SoC module. 

13.3 Remaining capacity compensation 
Because of the internal battery resistance and the fact that it increases towards the 
end of a discharge, it is not possible to get as much capacity out of a battery at higher 
currents. Therefore the SB202 needs to know how much less capacity is available at 
different currents to know how much longer the battery can sustain the current load. 

The SB202 supports an arbitrary number of currents in the remaining capacity 
compensation table and will interpolate between the two closest. If the current is 
higher than the highest value in the table, it will predict the compensation value by 
using the two highest values. 

The internal resistance of the battery varies with the temperature, but this is not yet 
supported by this implementation. 
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14 Cell balancing 
When using multi-cell battery packs, it is important that they are balanced with regard 
to cell voltage to get maximum capacity from the battery pack. To understand why, 
understanding the lithium-ion charge cycle is required: 

The charger will charge with either the maximum charge current or the maximum 
charge voltage. In the beginning of the charge cycle, when the battery is almost 
empty, the charge current will reach the maximum limit. Hence, when the battery 
starts building a certain charge level, the charge voltage will increase and eventually 
reach the voltage limit (typically 4.2V per Li-ion cell), and thus be the limiting factor for 
the charger. An intelligent charger will not allow the charge voltage of the battery pack 
to increase above this level, and, as a result, the charge current will decrease. These 
two stages are called constant current charge and constant voltage charge. 

The problem is that when using two cells, the charger will have the voltage limit at 
8.4V. If one cell is more charged than the other, that is, in misbalance, it will reach the 
maximum charge voltage sooner than the other cell. In this case, the most charged 
cell could have reached 4.2V, while the least charged is at 4.1V. In this situation, the 
voltage of the battery stack is 8.3V and the charger will not notice that one of the 
battery cells has reached its maximum charge voltage. The charger will continue the 
constant current charge and the voltage will continue to increase until the battery 
pack voltage is 8.4V. This means that the most charged cell may reach 4.25V, which 
is the absolute maximum voltage for safety reasons, and the Atmel SB202 will disable 
the charge FET. 

When this happens, neither cell is fully charged as a lithium-ion cell should be 
charged at maximum charge voltage for quite some time. If the problem arises, there 
is a high risk that the cell misbalance will continue to get worse and worse. As a 
result, if the cells are highly misbalanced, the charger will not be able to operate as 
intended and the battery pack will not be charged to its maximum capacity. 

The solution used by the SB202 is to discharge the most charged cell until the voltage 
difference between the cells is low enough. The threshold, called 
BATTPARAM_MISBALANCE_VOLTAGE_THRESHOLD, is stored in EEPROM in the 
battery_pack_parameters module. 

As misbalancing is primarily an issue while charging a battery pack, cell balancing is 
active only while charging the battery. During discharging, activation of cell balancing 
would have limited effect. Be aware that if two highly misbalanced cells are operating 
together, it may take several charge-discharge cycles to balance the cells. 

In the Atmel ATmega16HVB/32HVB, the balancing FETs are internal, and no external 
FETs are required. The filtering resistors limit the maximum balancing current that 
can flow through the internal FETs. It should be noted that as the balancing FETs are 
internal, the dissipated power will affect the temperature of the chip. Depending on 
the maximum balancing current, the internal temperature can be raised up to 30 
degrees in room temperature. The cell balancing should, therefore, be disabled at a 
certain level if the external temperature NTC is not used to monitor the battery cell 
temperatures. 

For 2s battery packs, the cell balancing algorithm is as simple as balancing the top 
most cell of the two cells. For 3s and 4s battery packs, the algorithm is more complex. 
The ATmega16HVB/32HVB can balance up to two cells at a time as long as they are 
not adjacent to each other. For example, cells one and three can be balanced at the 
same time, but not cells one and two. For a 3s and 4s implementation, the cell with 
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the highest voltage will be balanced, and if the second highest cell voltage is not an 
adjacent cell, this will also be balanced. 

The algorithm will not balance the third highest voltage cell if the second one is 
adjacent to the highest cell and can’t be balanced. This would only make the lowest 
cells more unbalanced, and are, therefore, not balanced until they reach the voltage 
of the highest cells.  

In addition, in order to increase the charging efficiency, the algorithm permits the cell 
balancing to take place only if the remaining state of charge is larger than 80%. 
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Figure 14-1. Flowchart of cell balancing for a four-cell application. 

START

Order cells by voltage
(cell1 =  lowest, cell4 = highest)

Find voltage differences relative to the 
lowest cell (diff_h, diff_m)

Is diff_h > 
mb_threshold?

Turn on balancing 
for cell4YES

Is diff_m > 
mb_threshold?

Is cell4 physically 
next to cell3? YES

YES
Turn on balancing 

for cell3

NO

END

NO

NO

 

15 Power management 
To save battery power, the Atmel ATmega16HVB/32HVB should sleep as much as 
possible in power-save mode. However, it should not enter power-save if a peripheral 
module that does not operate in power-save mode is being used. In this 
implementation, that means the VADC and the timers. 
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The VADC might still be running at the end of the main loop if the main loop is 
executed faster than one VADC scan. In that case the ATmega16HVB/32HVB will 
enter ADC noise-reduction mode and wake up by the VADC interrupt when the 
conversion is finished. 

The timers are used by the fast RC calibration and the communication. When they 
are used, the part can only enter idle mode. As the calibration is initiated from the 
firmware, it is always known when the calibration is running. It is, however, more 
difficult to determine if the communication is active, as this is caused by an external 
event. 

A transmission is started by a start bit that triggers the external interrupt request. The 
interrupt routine then starts the timer to know when to sample the bits in the message. 
The challenge is that a start bit can be received after the check to determine if 
communication is active. The solution is to set sleep mode to idle in the external 
interrupt routine. 

The ATmega16HVB/32HVB will enter power-off if one of the following conditions 
occurs:  

• The chip temperature is outside the ATmega16HVB/32HVB limit (see Section 
3.2.2) 

• The battery voltage is very low (see Section 3.2.3) 



 

26 AVR474 
8237A-AVR-03/11 

16 Communication 
The Atmel SB202 uses the SMBus interface to communicate with the 
host/application. The host has to initiate the communication, and the SB202 will 
communicate only if asked. On some errors, according to the SMBus specification, a 
timeout mechanism on the SCL line is used to detect the errors. 

The command set is the SBS specification 1.1 from http://www.sbs-forum.org. The 
specification is not followed completely, some commands are not fully supported, and 
some reserved commands are used. See Chapter 17 for the list of commands. 

16.1 SMBus interface (TWI) 
The Atmel ATmega16HVB/32HVB has built-in, optimized TWI controller supporting 
SMBus implementation. The SB202 only has SMBus slave operation mode: slave 
transmitter mode and slave receiver mode. 

The state changes are implemented in the TWI serial interrupt. From the SB202 side, 
one transaction starts from slave address matching, which can wake up the 
ATmega16HVB/32HVB from power-save mode. But for the following command and 
data transmission in the same transaction, the device must be kept in active mode or 
idle mode because the data arrival cannot awake devices from a sleep mode deeper 
than idle mode.  

The SB202 accepts received messages with or without the packet error-checking 
code (PEC). When transmitting, the SB202 is always prepared to send the PEC after 
sending the message. If the host does not want a PEC, it can send a NACK signal 
after the last data byte to notify the SB202. 

The communication speed is determined by the SMBus host. The speed can range 
from 10kHz to 100kHz. 

16.2 Protocol 
The SBS specification uses the SMBus protocol. The SB202 is compatible with 
SMBus specification 1.1.  According the SBS specification, the battery pack address 
is fixed at 0x16. 

The SB202 supports four different types of messages: 

• Read word 
• Write word 
• Read block 
• Write block 
A word command always has two bytes of data, and a block command always has 32 
bytes, which is different from the SBS block commands, which have variable lengths. 

After the start signal, the host sends a byte (eight bits), including the seven most-
significant bits, the slave address, and the LSB, the read/write flag (0 means write 
and 1 means read).  

All the command codes are one byte, and are divided into word commands and block 
commands. Both sides should have to agree what every command is. 

The SB202 firmware supports the PEC implementation. The PEC is a CRC8 with 
polynomial 0x8D (CRC8-CCITT) calculated from the command and all data bytes. 

http://www.sbs-forum.org/�
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16.2.1 Read commands 

On read commands, the host first writes the command to the Atmel SB202, and then 
restarts the communication with the read flag. After that, the slave places the data 
bytes on the SDA line one by one. 

16.2.2 Write command 

On write commands, the host sends the command byte and data bytes consecutively 
to the SB202. After SB202 receives one byte, it replies with a one-bit ACK or non-
ACK signal. After the last data byte, the SB202 sends out an ACK signal to ask for a 
PEC byte from the host. But if the host does not support the PEC function, it will send 
a stop (P) signal, from which the slave can know the message is finished. 

Figure 16-1. A read word command. 
 1 7 1 1 8 1 1 1 7 1 1 8 1 8 1 8 1 1

Master S Slave AddressWr  CMD  P R/SSlave AddressRd  A  A  /AP

Slave    A  A     A Data Byte  Data Byte PEC 

Figure 16-2. A write word command. 
 1 7 1 1 8 1 8 1 8 1 8 1 1

Master S Slave Address Wr  CMD  Data Byte  Data Byte  PEC  P

Slave    A  A  A  A  /A  

Figure 16-3. A read block command. 
 1 7 1 1 8 1 1 1 7 1 1 8 1  8 1 8 1 1

Master S Slave Address Wr  CMD  P R/S Slave Address Rd  A   A  /A P

Slave    A  A     A Data Byte0  …  Byte 31 PEC  

Figure 16-4. A write block command. 
 1 7 1 1 8 1 8 1  8 1 8 1 1

Master S Slave Address Wr  CMD  Data Byte0  … Data Byte31  PEC  P

Slave    A  A  A   A  /A  

16.2.3 Errors 

If errors occur during the communication, the SB202 can extend the clock low on the 
SCL line for more than 25ms. And after that, the SB202 can release the TWI line and 
reset the TWI controller. The errors include: 

• Wrong command returned by the SB202 
• Frame error on data sent from the SB202 
• PEC incorrect on data sent from the SB202 

16.3 Authentication 
The SB202 contains both an AES encryption algorithm and a SHA256-based HMAC 
that can be used for challenge-response authentication. It allows the host to make 
sure the connected battery is a model it is compatible with. 

Both algorithms cannot be used at the same time, and the decision must be made at 
compile time using two defines, AUTH_USE_AES and AUTH_USE_HMAC_SHA2.  
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AES uses a 16-byte (128-bit) key, and a challenge and response size of 16 bytes. 
HMAC-SHA256 uses a 32-bytes (256-bit) key, and challenge and response size of 31 
bytes. The use of AES and HMAC-SHA2 is identical except for the difference in 
challenge and response size.  

Both the battery and the host have to know the key in advance. Typically, all batteries 
of the same model will have the same key preloaded, and the host may have a 
couple of keys to support different battery models. 

The default key for HMAC-SHA256 is “This is a long key for HMAC-SHA2.” The key 
preprogrammed into the SB202 at assembly for AES is “You cannot pass!” But a real 
application should not use a key consisting only of printable characters. 

Both AES and HMAC-SHA256 are considered secure and are approved by, among 
others, the NSA. No known attack (other than brute-force) is known for either one (as 
of May 2008). Both algorithms run in constant time to avoid timing-based side-
channel attacks. Nevertheless, the strength of the authentication also relies on other 
factors, which may be exploited in side-channel attacks, such as how the key is 
stored in the memory, how the challenge response is performed, and much more. If a 
very high security level is required, the application developer is encouraged to learn 
good cryptology practice and apply it. 

From a pure brute-force perspective, the authentication methods used in this 
application note will be quite strong: On the AES 128-bit key, a brute-force attack 
would take, on average, 2127 (1.7*1038) tries to find the right key. If someone wants to 
break the key in one year (32.6*106 sec), and uses 1 million (106) computers in 
parallel, it will demand that each computer can do: 

sec/102.5
10106.32

107.1
sec

24
66

38

trieskey
computers
Keys

⋅=
⋅⋅

⋅
=

⋅
 

This is equal to approximately 5200 million-million complete AES encryptions of 16 
bytes using a 128-bit key per nanosecond. So, even with a good portion of luck, one 
should not expect to identify the key within a fair amount of time based on brute force 
attacks. Still, it is left to the designer to ensure that the cryptographic method used is 
sufficiently strong for the desired purpose, and that it is used with best practices. 

16.3.1 Authentication procedure 

The host first has to ask what model the battery is to figure out which key to use. The 
next step is to send random data to the battery. The battery then executes the AES or 
HMAC-SHA256 algorithm on the data with the shared key. When the host reads the 
response from the battery, it can verify that the battery has used the correct key and 
can be quite sure it is the model it says it is. 

The step-by-step procedure is as follows: 

1. The host sends the authenticate command (an SBS write block command) to the 
battery. The first byte is always 0x01 in this implementation (it is used by the 
battery to know when a new challenge has arrived). After that, 16 bytes of 
random data should be sent for AES and 31 bytes for HMAC-SHA256. 

2. The battery then runs the algorithm on the received data. Note that HMAC-
SHA256 also includes the status byte (as the first byte in the data) in the 
calculations, so when verifying the response, the host also has to do that. It also 
means that the message length used when padding in the SHA256 algorithm 
should be calculated from a challenge length of 32 bytes. 
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3. The host sends the authenticate command again to read the changed data, but 
this time as an SBS read block command. The first byte is a status byte, 
(described in Table 16-1) and the rest is the response. For HMAC-SHA256, the 
last byte of the response has to be truncated to fit in the 32-byte block message.  

4. The host then verifies the data from the battery and checks that the algorithm was 
run with the correct key 

Table 16-1. Read authentication status byte. 
Status byte Description 

0x01 Authentication has not started yet 

0x02 Authentication has started, but not finished 

0x04 Authentication is finished 

0x08 An error occurred 

16.3.2 Importance of random data 

It is very important that the host does not send the same challenge for every 
authentication. If it does, a battery can hard-code the response and won’t have to 
know the key, rendering the authentication useless for determining if a compatible 
battery is connected. The same issue applies if only a few different data combinations 
are used. 

The best way to protect against this sort of attack is to send pseudo-random data 
concatenated with some unique data for each host/application. The unique data can, 
for example, be a serial number. Much more information about this can be found on 
the Internet and in books about cryptology. Search for “replay attack.” 
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17 List of communication commands 

17.1 SBS-compliant commands 
The following commands are almost implemented as defined in the Smart Battery 
Data Specification Revision 1.1, available at http://www.sbs-forum.org. The Atmel 
SB202 does not support using and returning data in power (mW) instead of current 
(mA), so the commands that should support both only support current. 

• ManufacturerAccess 
• RemainingCapacityAlarm 
• RemainingTimeAlarm 
• AtRate 
• AtRateToFull 
• AtRateToEmpty 
• AtRateOK 
• Voltage 
• Current 
• AverageCurrent 
• RelativeStateOfCharge 
• AbsoluteStateOfCharge 
• RemainingCapacity 
• FullChargeCapacity 
• RunTimeToEmpty 
• AverageTimeToEmpty 
• AverageTimeToFull 
• ChargingCurrent 
• ChargingVoltage 
• CycleCount 
• DesignCapacity 
• DesignVoltage 
• SpecificationInfo 
• ManufacturerDate 
• SerialNumber 
• ManufacturerName 
• DeviceName 
• DeviceChemistry 
• ManufacturerData 

17.2 Non-SBS-compliant commands 
Most of the following commands exist in the Smart Battery Data Specification, but 
they are implemented a bit differently in the SB202. Some new commands are also 
used, either with the optional SBS commands or reserved commands. 

 

http://www.sbs-forum.org/�
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BatteryMode 0x03 
Read word. 
The bits defined and described in SBS are used, but they are not set to their default values (as 
the SB202 doesn’t support the default settings) and changing them is not possible. 
Some reserved bits are replaced with cell balancing information and FET status. 

Bit Description 

15 CAPACITY_MODE 
Set to 0 – “Report in mA or mAh” 

14 CHARGER_MODE 
Set to 1 – “Disable broadcasts of ChargingVoltage and ChargingCurrent” as the 
SB202 cannot initiate communication 

13 ALARM_MODE 
Set to 1 – “Disable AlarmWarning broadcast” as the SB202 cannot initiate 
communication 

12 BALANCING_CELL3 
Set when cell 3 is being discharged to keep the cells balanced 

11 BALANCING_CELL2 
Set when cell 2 is being discharged to keep the cells balanced 

10 BALANCING_CELL1 
Set when cell 1 is being discharged to keep the cells balanced 

9 PRIMARY_BATTERY 
Set to 0 – “Battery operating in its secondary role” 

8 CHARGE_CONTROLLER_ENABLED 
Set to 0 – “Internal Charge Control Disabled” 

7 CONDITION_FLAG 
Set to 0 – “Battery OK” 

6 BALANCING_CELL4 
Set when cell 4 is being discharged to keep the cells balanced 

5 DUVRD from FCSR 
Is set to the deep under-voltage recovery disabled bit from the FET control and 
status register 

4 CPS from FCSR 
Set to the current protection status bit from the FET control and status register 

3 DFE from FCSR 
Set to the discharge FET enabled bit from the FET control and status register 

2 CFE from FCSR 
Set to the charge FET enabled bit from the FET control and status register 

1 PRIMARY_BATTERY_SUPPORT 
Set to 0 – Function not supported 

0 INTERMAL_CHARGE_CONTROLLER 
Set to 0 – Function not supported  
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Temperature 0x08 
Read word 
This should return the battery pack temperature. The SB202 will return the chip temperature in 
0.1 Kelvin. TemperatureNTC1/TemperatureNTC2 can be used for getting the battery 
temperature 
 

MaxError 0x0C 
This command is not supported 
 

RemainingCapacity 0x0F 
Read word 
According to the specification, this should return the remaining capacity at 0.2C discharge 
current. The SB202 will return the remaining capacity at the average current 
 

BatteryStatus 0x16 
Read word. 
This command is basically implemented as specified in SBS, except that reserved bits are 
used and the error codes are not supported. 

Bit Description 
15 OVER_CHARGED_ALARM 

Controlled by the chargingProhibited flag 

14 TERMINATE_CHARGE_ALARM 
Controlled by the voltageTooHigh flag 

13 VREGMON_TRIGGERED 
Reserved bit in SBS, is set if the voltage regulator monitor triggered since the last 
time BatteryStatus was read. It is cleared when read 

12 OVER_TEMP_ALARM 
Controlled by the cellTemperatureTooHigh flag 

11 TERMINATE_DISCHARGE_ALARM 
Is set when remaining capacity is below a defined limit 
(SBS_TERMINATE_DISCHARGE_LIMIT) and cleared when a charge is detected. 
Recommended to use REMAINING_CAPACITY_ALARM instead, as it is 
configurable at runtime 

10 BATTERY_PROTECTION_TRIGGERED 
Set if the battery protection hardware module has disabled the FETs since the last 
time this command was read. Will be cleared when read 

9 REMAINING_CAPACITY_ALARM 
Set if the remaining capacity is lower than the value set by the 
RemainingCapacityAlarm command. Updated once every minute 

8 REMAINING_TIME_ALARM 
Set if AverageTimeToEmpty is less than the value set by the RemainingTimeAlarm 
command. Updated once every minute 

7 INITIALIZED 
Controlled by be inverse of the criticalConditionDetected flag 
Because both FETs will be disabled when that flag is set, the host/application can 
only detect that criticalConditionDetected is set if it also is connected to a charger 
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6 DISCHARGING 
Set if the current in the last second was a discharge 

5 FULLY_CHARGED 
Set when the battery is considered fully charged and cleared as soon as a 
discharge current higher than standby is detected 

4 FULLY_DISCHARGED 
Set when there is no capacity left in the battery at all. 
TERMINATE_DISCHARGE_ALARM and the remaining capacity/time alarm 
functions can be used to get earlier warnings. Is cleared when 
RelativeStateOfCharge is above 20% 

3-0 Error Codes 
Not supported  

 

Authentication 0x24 
Read and write block 
Described in Section 16.3 
 

ShuntCalibration 0x2A 
Read and write word 
Non-SBS command. Is used to set the shunt resistor value in EEPROM. The value is set in 
micro-ohms and supports values between 4000 and 16000µΩ; however, no check is done on 
the value. Reading this command can be used to ensure the write command was successfully 
received 
 

FETDisable 0x2B 
Write word 
Non-SBS command. This command can be used to individually force the charge and 
discharge FETs to be disabled, which can be useful for demonstration and testing purposes. If 
bit 0 is high in the word, the charge FET will be disabled and kept disabled until this command 
is sent again with bit 0 low. Bit 1 works the same way for the discharge FET. 
Note that this command cannot force the FETs to be enabled; it can only force them to be 
disabled 
 

StorageMode 0x2C 
Write word 
Non-SBS command. This command will force the ATmega16HVB/32HVB to enter power-off 
mode. To make sure a power-off really is wanted, the word sent has to be 0xFADE, or this 
command will do nothing 
 

 

 

TemperatureNTC2 0x2D 
Read word 
Non-SBS command. If a second NTC is connected, this will return its temperature in 0.1 
Kelvin. If no NTC is connected, 0 Kelvin is returned 
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TemperatureNTC1 0x2E 
Read word 
Non-SBS command. If the first NTC is connected, this will return its temperature in 0.1 Kelvin. 
If no NTC is connected, 0 Kelvin is returned 
 

VoltageCell4 0x3C 
Read word 
Returns the voltage over cell 4 in mV. If only three cells are used, it will return 0 
 

VoltageCell3 0x3D 
Read word 
Returns the voltage over cell 3 in mV. If only two cells are used, it will return 0 
 

VoltageCell2 0x3E 
Read word 
Returns the voltage over cell 2 in mV 
 

VoltageCell1 0x3F 
Read word 
Returns the voltage over cell 1 in mV 
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