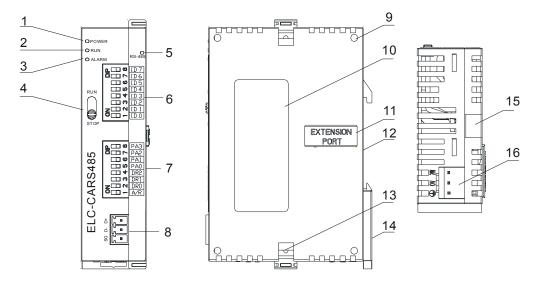
#### 5 ELC-CARS485

ELC-CARS485 is a serial Modbus distributed I/O adapter module which uses the standard low cost ELC I/O. As a standard Modbus slave, ELC-CARS485 is compatible with any valid master.

#### 5.1 Features

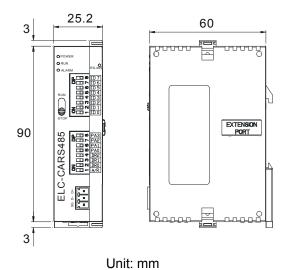
- Supports up to 256 digital I/O points
- Supports up to 8 analog / specialty modules
- Configurable interface parameters

# 5.2 Specification


# ■ Functions Specification

| Communication               |                                                                                                                                                                            |  |  |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Transmission method         | RS-485                                                                                                                                                                     |  |  |
| Electrical isolation        | 500VDC                                                                                                                                                                     |  |  |
| Туре                        | Removable 3-pin connector                                                                                                                                                  |  |  |
| Transmission cable          | 2 twisted isolation cables                                                                                                                                                 |  |  |
| Valid communication address | 1 ~ F0 (decimal: 1 ~ 240)                                                                                                                                                  |  |  |
| Series transmission speed   | 1,200/2,400/4,800/9,600/19,200/38,400/57,600/115,200 bps (bits per second)                                                                                                 |  |  |
| Communication mode          | 7,E,1-ASCII / 7,O,1-ASCII / 7,E,2-ASCII / 7,O,2-ASCII / 7,N,2-ASCII / 8,E,1-ASCII / 8,O,1-ASCII / 8,N,1-ASCII / 8,N,2-ASCII / 8,E,1-RTU / 8,O,1-RTU / 8,N,1-RTU/ 8,N,2-RTU |  |  |

# ■ Electrical Specification


| Power supply voltage          | 24VDC (-15% ~ 20%) (with DC input polarity reverse protection)                                                                                                           |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                               | ESD (IEC 61131-2, IEC 61000-4-2): 8KV Air Discharge, 4KV Contact Discharge EFT (IEC 61131-2, IEC 61000-4-4): Power Li4ne: 2KV, Digital I/O: 1KV                          |
| Noise Immunity                | Analog & Communication I/O: 1KV  Damped-Oscillatory Wave: Power Line: 1KV, Digital I/O: 1KV  RS (IEC 61131-2, IEC 61000-4-3): 80MHz ~ 1000MHz ,  1.4GHz ~ 2.0GHz , 10V/m |
| Operation/storage temperature | Operation: 0°C ~ 55°C (temperature), 50 ~ 95% (humidity), pollution degree 2;<br>Storage: -25°C ~ 70°C (temperature), 5 ~ 95% (humidity)                                 |
| Vibration/Shock<br>Immunity   | Standard: IEC61131-2, IEC 68-2-6 (TEST Fc)/IEC61131-2 & IEC 68-2-27 (TEST Ea)                                                                                            |
| Certificates                  | C € ଔ us , Operating temperature code: T5                                                                                                                                |

# 5.3 Product Profile and Outline

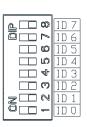


| POWER indicator                        | 9. Mounting hole for extension unit   |
|----------------------------------------|---------------------------------------|
| 2. RUN indicator                       | 10. Nameplate                         |
| 3. ALARM indicator                     | 11. Extension port for extension unit |
| 4. RUN/STOP switch                     | 12. DIN rail mounting slot (35mm)     |
| 5. RS485 indicator                     | 13. Fastening hole for extension unit |
| 6. Address setup DIP switch            | 14. DIN rail clip                     |
| 7. Communication mode setup DIP switch | 15. Mounting rail for extension unit  |
| 8. RS-485 communication port           | 16. Power input                       |

# Dimension

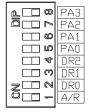


# 5.4 Installation and Wiring


#### ■ Switch Definition : RUN/STOP



| Status     | Explanation                                                                                                                                                                                                       |  |  |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| RUN        | 1. RUN indicator on ELC-CARS485 is On.                                                                                                                                                                            |  |  |
| RUN → STOP | 2. Al/AO extension unit in RUN status.  1. Al/AO extension unit switches from RUN to STOP status.  2. Y points on DI/DO extension unit are all Off.                                                               |  |  |
| STOP       | 1. RUN indicator on ELC-CARS485 is Off. 2. Al/AO extension unit in STOP status. 3. Communication control is not allowed in Al/AO extension unit. 4. Communication control is not allowed in Dl/DO extension unit. |  |  |
| STOP → RUN | ELC-CARS485 re-detects the number of points in DI/DO unit and the number of AI/AO units.     AI/AO extension unit switches from STOP to RUN status.                                                               |  |  |


# ■ Modbus Address Setup DIP Switch:

| DIP Switch<br>Setting | Explanation                                                                                                                   |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------|
| H'01 ~ H'F0           | Valid ELC-CARS485 addresses, the dip switches are weighted as follows: ID0 ~ ID7 are: $2^0$ , $2^1$ , $2^2$ , $2^6$ , $2^7$ . |
| H'00, H'F1 ~<br>H'FF  | In the Modbus protocol, H'00 is defined as broadcast mode. H'F1 ~ H'FF are incorrect ELC-CARS485 addresses.                   |



# ■ Communication Mode Setup DIP Switch:

| PA3                                                      | PA2 | PA1 | PA0 | A/R | Communication mode |
|----------------------------------------------------------|-----|-----|-----|-----|--------------------|
| OFF                                                      | OFF | OFF | OFF | ON  | 7,E,1-ASCII        |
| OFF                                                      | OFF | OFF | ON  | ON  | 7,O,1-ASCII        |
| OFF                                                      | OFF | ON  | OFF | ON  | 7,E,2-ASCII        |
| OFF                                                      | OFF | ON  | ON  | ON  | 7,O,2-ASCII        |
| OFF                                                      | ON  | OFF | OFF | ON  | 7,N,2-ASCII        |
| OFF                                                      | ON  | OFF | ON  | ON  | 8,E,1-ASCII        |
| OFF                                                      | ON  | ON  | OFF | ON  | 8,O,1-ASCII        |
| OFF                                                      | ON  | ON  | ON  | ON  | 8,N,1-ASCII        |
| ON                                                       | OFF | OFF | OFF | ON  | 8,N,2-ASCII        |
| OFF                                                      | ON  | OFF | ON  | OFF | 8,E,1-RTU          |
| OFF                                                      | ON  | ON  | OFF | OFF | 8,O,1-RTU          |
| OFF                                                      | ON  | ON  | ON  | OFF | 8,N,1-RTU          |
| ON                                                       | OFF | OFF | OFF | OFF | 8,N,2-RTU          |
| Other settings of PA3, PA2, PA1, PA0 and A/R are invalid |     |     |     |     |                    |



| DR2 | DR1 | DR0 | Series Transmission speed |
|-----|-----|-----|---------------------------|
| OFF | OFF | OFF | 1,200 bit/s               |
| OFF | OFF | ON  | 2,400 bit/s               |
| OFF | ON  | OFF | 4,800 bit/s               |
| OFF | ON  | ON  | 9,600 bit/s               |
| ON  | OFF | OFF | 19,200 bit/s              |
| ON  | OFF | ON  | 38,400 bit/s              |
| ON  | ON  | OFF | 57,600 bit/s              |
| ON  | ON  | ON  | 115,200 bit/s             |

# 5.5 Modbus Register assignments

# ■ Discrete Input and Output register mapping

| Communication address | Devices                | Attribute | Data type | Length     |
|-----------------------|------------------------|-----------|-----------|------------|
| H'0400 ~ H'047F       | X: X000 ~ X177 (Octal) | R         | bit       | 128 points |
| H'0500 ~ H'057F       | Y: Y000 ~ Y177 (Octal) | R/W       | bit       | 128 points |

#### ■ Specialty Module register mapping

| Communication address | Devices                                      | Attribute              | Data<br>type | Length |
|-----------------------|----------------------------------------------|------------------------|--------------|--------|
| H'1600 ~ H'1630       | 1 <sup>st</sup> specialty module: CR0 ~ CR48 |                        | word         | 49     |
| H'1640 ~ H'1670       | 2 <sup>nd</sup> specialty module: CR0 ~ CR48 |                        | word         | 49     |
| H'1680 ~ H'16B0       | 3 <sup>rd</sup> specialty module: CR0 ~ CR48 | Please refer to the CR | word         | 49     |
| H'16C0 ~ H'16F0       | 4 <sup>th</sup> specialty module: CR0 ~ CR48 | attribute of           | word         | 49     |
| H'1700 ~ H'1730       | 5 <sup>th</sup> specialty module: CR0 ~ CR48 | each<br>specialty      | word         | 49     |
| H'1740 ~ H'1770       | 6 <sup>th</sup> specialty module: CR0 ~ CR48 | module.                | word         | 49     |
| H'1780 ~ H'17B0       | 7 <sup>th</sup> specialty module: CR0 ~ CR48 |                        | word         | 49     |
| H'17C0 ~ H'17F0       | 8 <sup>th</sup> specialty module: CR0 ~ CR48 |                        | word         | 49     |

#### Note:

A maximum of 8 specialty modules are allowed. The first specialty module is first unit installed on the right hand side of the ELC-CARS485 adapter.

# Adapter configuration and status registers

| Communication address | Attribute | Content          | Explanation                                                                         |
|-----------------------|-----------|------------------|-------------------------------------------------------------------------------------|
| H'0000                | R         | Model name       | Model code of the ELC-CARS485 = H'0200.                                             |
| H'0001                | R         | Firmware version | The current firmware version is displayed in hex, e.g. V0.1 is indicated as H'0010. |

| Communication address | Attribute | Content                                            | Explanation                                                                                                                                |
|-----------------------|-----------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| H'0002                | R         | Issue date                                         | The issue data of the firmware is displayed in hex, e.g. H'1FD0 = K8150 indicates that the firmware is issued on the morning of August 15. |
| H'0003                | R/W       | RUN/STOP<br>ELC-CARS485                            | H'0003 = 1, the ELC-CARS485<br>RUN;<br>H'0003 = 0, the ELC-CARS485<br>STOP.                                                                |
| H'0004                | R         | Communication format                               | The communication parameters for the ELC-CARS485.                                                                                          |
| H'0005                | R         | Baud rate                                          | The baud rate of the ELC-CARS485.                                                                                                          |
| H'0006                | R         | Communication address                              | The communication address of ELC-CARS485.                                                                                                  |
| H'0007                | R         | Number of DI/DO points                             | High byte stores the number of input points. Low byte stores the number of output points.                                                  |
| H'0008                | R         | Error code                                         | The current error. See 4.4 for the meaning of error codes.                                                                                 |
| H'0009                | R         | Historical error code                              | The number of errors that have occurred. Range: 0 ~ 32                                                                                     |
| H'0017                | R         | Number of specialty modules                        | The number of specialty modules detected.                                                                                                  |
| H'0018                | R         | Model code of the 1st specialty module             | The model code of the 1 <sup>st</sup> specialty module connected to the ELC-CARS485.                                                       |
| H'0019                | R         | Model code of the 2 <sup>nd</sup> specialty module | The model code of the 2 <sup>nd</sup> specialty module connected to the ELC-CARS485.                                                       |
| H'001A                | R         | Model code of the 3 <sup>rd</sup> specialty module | The model code of the 3 <sup>rd</sup> specialty module connected to the ELC-CARS485.                                                       |
| H'001B                | R         | Model code of the 4 <sup>th</sup> specialty module | The model code of the 4 <sup>th</sup> specialty module connected to the ELC-CARS485.                                                       |
| H'001C                | R         | Model code of the 5 <sup>th</sup> specialty module | The model code of the 5 <sup>th</sup> specialty module connected to the ELC-CARS485.                                                       |
| H'001D                | R         | Model code of the 6 <sup>th</sup> specialty module | The model code of the 6 <sup>th</sup> specialty module connected to the ELC-CARS485.                                                       |
| H'001E                | R         | Model code of the 7 <sup>th</sup> specialty module | The model code of the 7 <sup>th</sup> specialty module connected to the ELC-CARS485.                                                       |
| H'001F                | R         | Model code of the 8 <sup>th</sup> specialty module | The model code of the 8 <sup>th</sup> specialty module connected to the ELC-CARS485.                                                       |

# 5.6 Supported Function Codes

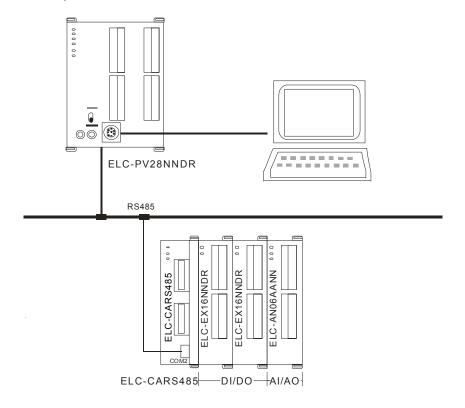
ELC-CARS485 complies with the standard Modbus protocol, supporting the 7 function codes, H'01, H'02, H'03, H'05, H'06, H'0F, and H'10. Please refer to the standard Modbus protocol for the specific data format of each function code.

| Function code | Function               | Data type | Applicable address                                                           |
|---------------|------------------------|-----------|------------------------------------------------------------------------------|
| H'01          | Read output bit status | bit       | DO area: H'0500 ~ H'057F                                                     |
| H'02          | Read input bit status. | bit       | DI area: H'0400 ~ H'047F                                                     |
|               |                        |           | Special function area: H'0000 ~ H'001F                                       |
|               |                        |           | CR of the 1st Al/AO unit: H'1600 ~ H'1630                                    |
|               |                        |           | CR of the 2nd Al/AO unit: H'1640 ~ H'1670                                    |
| H'03          | Dood register(s)       | word      | CR of the 3rd Al/AO unit: H'1680 ~ H'16B0                                    |
| Н 03          | Read register(s)       | word      | CR of the 4th Al/AO unit: H'16C0 ~ H'16F0                                    |
|               |                        |           | CR of the 5th Al/AO unit: H'1700 ~ H'1730                                    |
|               |                        |           | CR of the 6th Al/AO unit: H'1740 ~ H'1770                                    |
|               |                        |           | CR of the 7th Al/AO unit: H'1780 ~ H'17B0                                    |
| H'03          | Read register(s)       | word      | CR of the 8th Al/AO unit: H'17C0 ~ H'17F0                                    |
| H'05          | Write single bit       | bit       | DO area: H'0500 ~ H'057F                                                     |
|               |                        | word      | RUN/STOP ELC-CARS485 module: H'0003                                          |
| H'06          | Write single register  |           | Applicable to CR with write attribute in the 1st ~ 8th Al/AO extension unit. |
| H'0F          | Write multiple bits    | bit       | DO area: H'0500 ~ H'057F                                                     |
|               | Write multiple         |           | RUN/STOP ELC-CARS485 module: H'0003                                          |
| H'10          | registers              | word      | Applicable to CR with write attribute in the 1st ~ 8th Al/AO extension unit. |

# ■ Example:

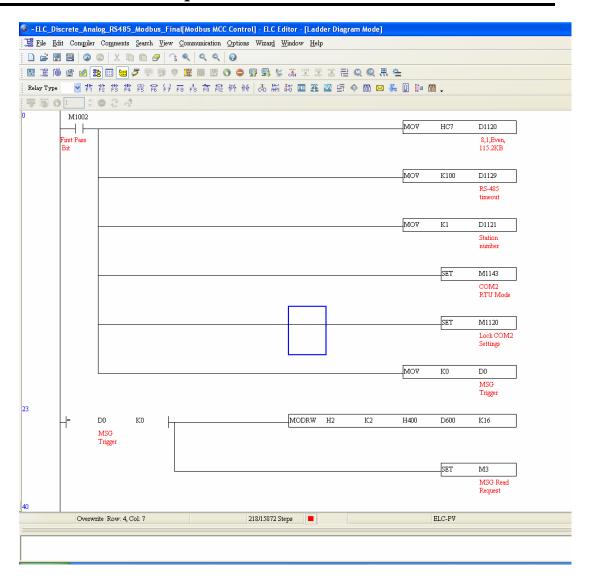
- Use function code 03 to read CR0 and CR1 in the 1st Al/AO extension unit: (ASCII mode)
- The request message sent from master ELC to ELC-CARS485 is ": 01 03 16 00 00 02 E4 CR LF"
- The responding message sent from ELC-CARS485 to the master ELC is ": 01 03 04 00 88 00 00 70 CR LF"

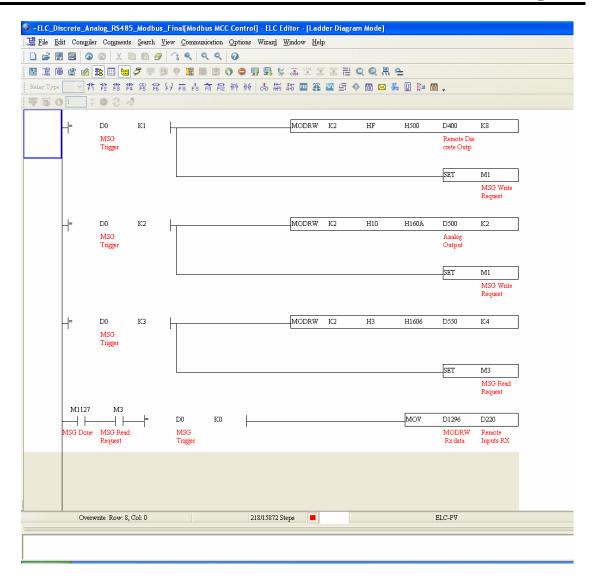
#### Note:


- 1. ELC-CARS485 can only read and write one Al/AO extension unit at a time.
- 2. ELC-CARS485 is able to read/write a maximum of 16 words at a time.
- Error Codes

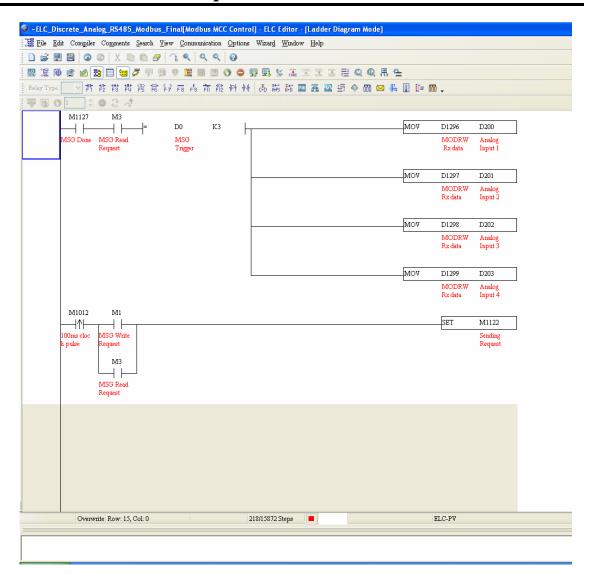
| Code | Indication              | Explanation                                          |
|------|-------------------------|------------------------------------------------------|
| 0001 | Incorrect function code | The ELC-CARS485 does not support this function code. |

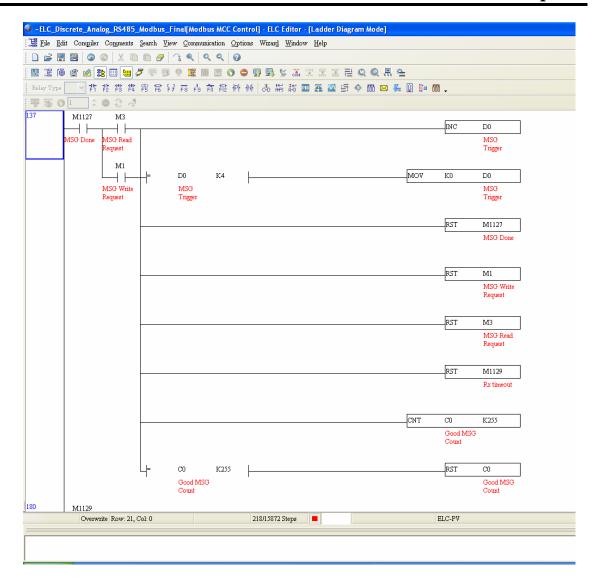
| Code | Indication                     | Explanation                                                  |
|------|--------------------------------|--------------------------------------------------------------|
| 0002 | Incorrect operand address      | The function code is not valid for the operand address       |
| 0003 | Incorrect data                 | The data read/written exceeds the maximum length.            |
| 0004 | The ELC-CARS485 in STOP        | The ELC-CARS485 is in STOP mode.                             |
| 000B | Incorrect communication format | The length of data received by the ELC-CARS485 is too short. |
| 000C | Incorrect communication format | The length of data received by the ELC-CARS485 is too long.  |


# 5.7 Application example: ELC processor as the Modbus master

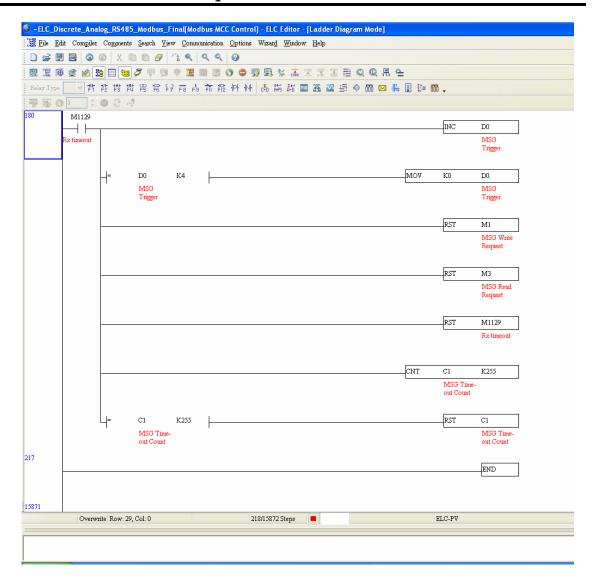

As a Modbus slave, the ELC-CARS485 is compatible with any valid Modbus master. This example uses an ELC controller as the Modbus master. The PC downloads the ladder program to the ELC controller via the RS-232 programming port (COM1). When controller executes the ladder program, it will issue Modbus commands through the RS-485 communication port (COM2), monitoring inputs and controlling outputs through the ELC-CARS485 adapter. See the figure below for the system overview:




The station No. of the ELC-CARS485 is node "2". The master ELC-PV controller is node 1. Read the state of "X0  $\sim$  X15" with the ELC-PV controller from the ELC-CARS485. Also, write to control outputs "Y0  $\sim$  Y7" in the first ELC-EX16NNDR. Then write the value from "D500  $\sim$  D501" in the ELC-PV controller to "CR10  $\sim$  CR11" in the ELC-AN06AANN module. Finally, read the values in "CR6  $\sim$  CR9" in ELC-AN06AANN.


# ELC Distributed I/O Adapters






# ELC Distributed I/O Adapters





# ELC Distributed I/O Adapters



#### **Explanations:**

- (1) Set up the communication parameters at the beginning of the program, conditioned with the power-up bit. The communication parameters for the master and slave must be the same, e.g. both devices must be configured form the same baud rate, bits/byte, parity, stop bits and RTU/ASCII mode. Each device must also have a unique node address. For this example, each device is configured for: 115200 baud, 8 bits/byte, Even parity, 1 stop bit and RTU mode.
- (2) When the ELC controller transitions to run mode, the value of "D0" will be initialized to "0".
- (3) When the value of "D0" is "0", the ELC controller will read the state of "X0  $\sim$  X15" (H400 H40F) in the ELC extension modules and save it in "D220".
- (4) When the value of "D0" is "1", the ELC controller will write to "Y0 ~ Y7" with the data in the low byte of "D400".
- (5) When the value of "D0" is "2", the ELC controller will write the values in "D500~D501" to "CR10~CR11" in the 1st special module (ELC-AN06 for this example).
- (6) When the value of "D0" is "3", the ELC controller will read the values from "CR6 ~ CR9" in

- the special module (ELC-AN06) and buffer it in "D200  $\sim$  D203". The Modbus reply header information will be written to D550-D553.
- (7) When the value of "D0" is "4", and the fourth message has been executed, the ELC controller will re-initialize the value of "D0" to K0, to begin the message cycle again.

# **MEMO**