

FDMS7682 N-Channel PowerTrench[®] MOSFET 30 V, 6.3 m Ω

Features

- Max $r_{DS(on)} = 6.3 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 14 \text{ A}$
- Max $r_{DS(on)}$ = 10.4 m Ω at V_{GS} = 4.5 V, I_D = 11 A
- Advanced Package and Silicon combination for low r_{DS(on)} and high efficiency
- Next generation enhanced body diode technology, engineered for soft recovery
- MSL1 robust package design
- 100% UIL tested
- RoHS Compliant

General Description

This N-Channel MOSFET has been designed specifically to improve the overall efficiency and to minimize switch node ringing of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low $r_{DS(on)}$, fast switching speed and body diode reverse recovery performance.

Applications

- IMVP Vcore Switching for Notebook
- VRM Vcore Switching for Desktop and server
- OringFET / Load Switching
- DC-DC Conversion

Power 56

MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted

Symbol	Parameter			Ratings	Units	
V _{DS}	Drain to Source Voltage			30	V	
V _{GS}	Gate to Source Voltage		(Note 4)	±20	V	
	Drain Current -Continuous (Package limited)	T _C = 25 °C		22		
	-Continuous (Silicon limited)	T _C = 25 °C		59	_	
D	-Continuous	T _A = 25 °C	(Note 1a)	16	Α	
	-Pulsed			80		
E _{AS}	Single Pulse Avalanche Energy		(Note 3)	29	mJ	
D	Power Dissipation	ower Dissipation $T_{\rm C} = 25 ^{\circ}{\rm C}$		33	14/	
PD	Power Dissipation	T _A = 25 °C	(Note 1a)	2.5	W	
T _J , T _{STG}	Operating and Storage Junction Temperature Range			-55 to +150	°C	

Thermal Characteristics

$R_{\theta JC}$	Thermal Resistance, Junction to Case	3.7	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient (Note 1a	50	C/VV

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDMS7682	FDMS7682	Power 56	13 "	12 mm	3000 units

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	cteristics					
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \ \mu A, \ V_{GS} = 0 \ V$	30			V
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}$, referenced to 25 °C		15		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 24 V, V _{GS} = 0 V			1	μA
I _{GSS}	Gate to Source Leakage Current, Forward	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$			100	nA
On Chara	cteristics					
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \ \mu A$	1.25	1.9	3.0	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	I_D = 250 µA, referenced to 25 °C		-6		mV/°C
r _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 14 A		5.2	6.3	
		$V_{GS} = 4.5 \text{ V}, I_D = 11 \text{ A}$		8.0	10.4	mΩ
		V_{GS} = 10 V, I _D = 14 A, T _J = 125 °C		7.0	8.5	
g fs	Forward Transconductance	V _{DS} = 5 V, I _D = 14 A		70		S
Dynamic	Characteristics					
Ciss	Input Capacitance	V _{DS} = 15 V, V _{GS} = 0 V,		1416	1885	pF
C _{oss}	Output Capacitance	$v_{DS} = 13 v, v_{GS} = 0 v,$ f = 1 MHz		479	640	pF
C _{rss}	Reverse Transfer Capacitance			50	75	pF
R _g	Gate Resistance			0.7	2.4	Ω
Switching	g Characteristics					
t _{d(on)}	Turn-On Delay Time			9.4	19	ns
t _r	Rise Time	V _{DD} = 15 V, I _D = 14 A,		2.7	10	ns
t _{d(off)}	Turn-Off Delay Time	V_{GS} = 10 V, R_{GEN} = 6 Ω		22	35	ns
t _f	Fall Time			2.2	10	ns
Qg	Total Gate Charge	$V_{GS} = 0 V$ to 10 V		21	30	nC
Qg	Total Gate Charge	$V_{GS} = 0 \text{ V to } 4.5 \text{ V} \text{ V}_{DD} = 15 \text{ V},$		9.9	14	nC
Q _{gs}	Gate to Source Charge	I _D = 14 A		4.3		nC

Q_{gs} Q_{gd} Gate to Drain "Miller" Charge

Drain-Source Diode Characteristics

V _{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0 V, I_{S} = 2.1 A$	(Note 2)	0.74	1.2	V
	Source to Drain Diode Forward Voltage	$V_{GS} = 0 V, I_{S} = 14 A$	(Note 2)	0.83	1.3	v
t _{rr}	Reverse Recovery Time	I _F = 14 A, di/dt = 100 A/μs		27	43	ns
Q _{rr}	Reverse Recovery Charge			10	21	nC
t _{rr}	Reverse Recovery Time	I _F = 14 A, di/dt = 300 A/μs		20	36	ns
Q _{rr}	Reverse Recovery Charge			17	30	nC

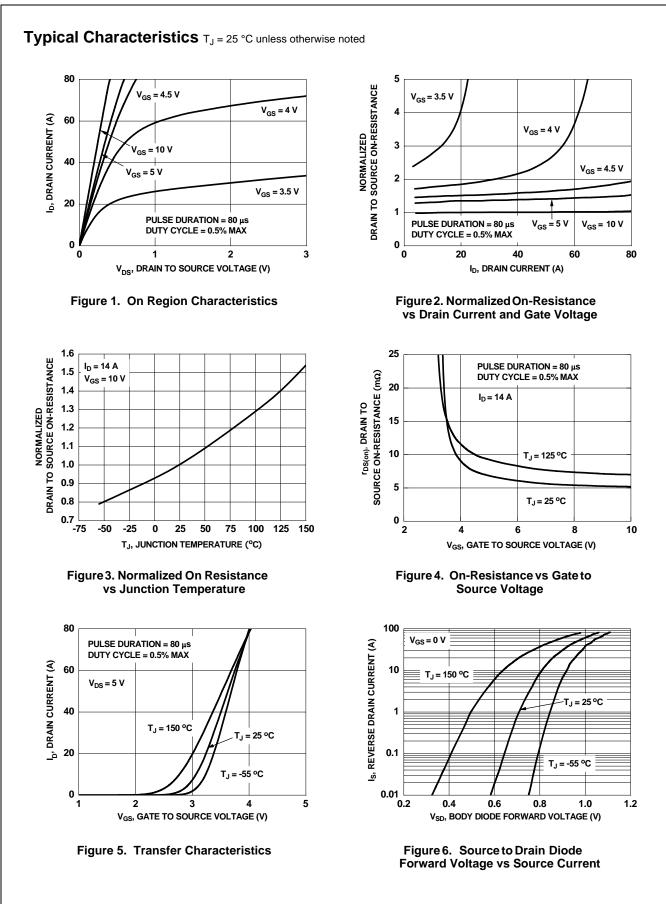
Notes:

1. R_{0,1A} is determined with the device mounted on a 1in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{0,1C} is guaranteed by design while R_{0CA} is determined by the user's board design.

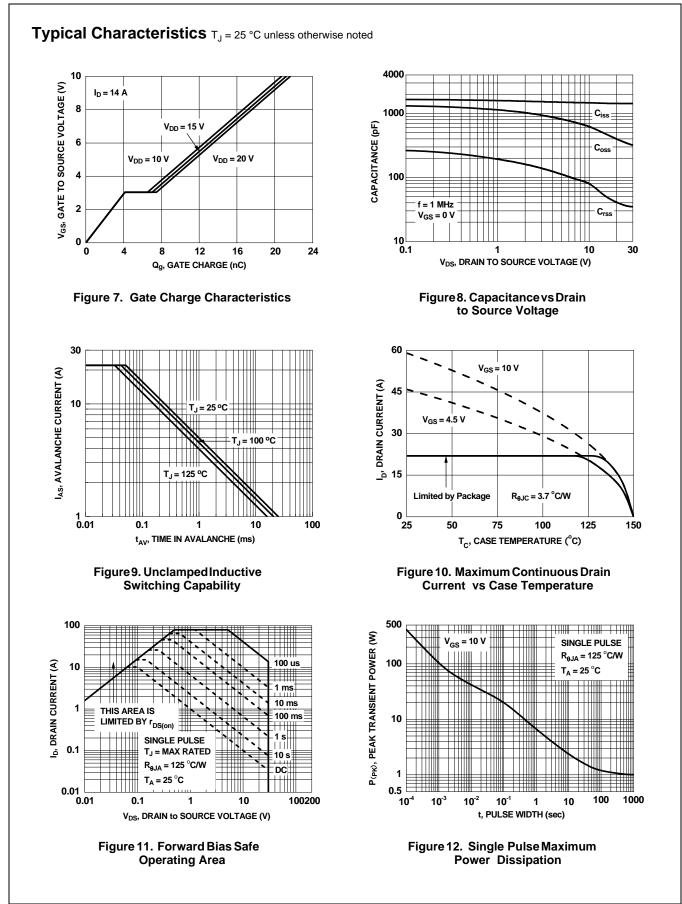
a) 50 °C/W when mounted on a 1 in² pad of 2 oz copper

b) 125 °C/W when mounted on a minimum pad of 2 oz copper.

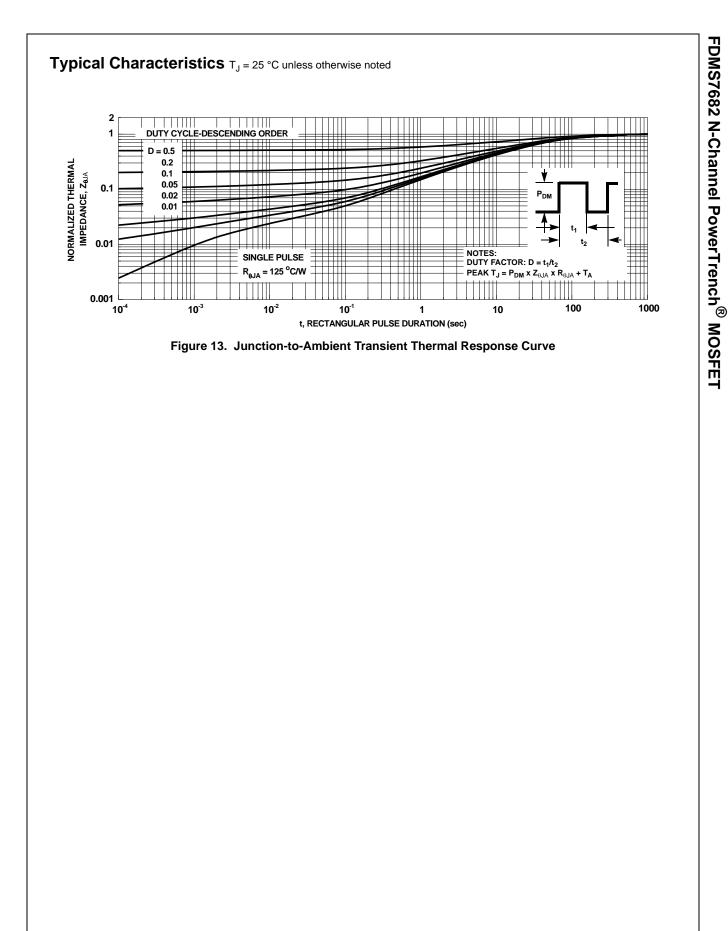
2.8

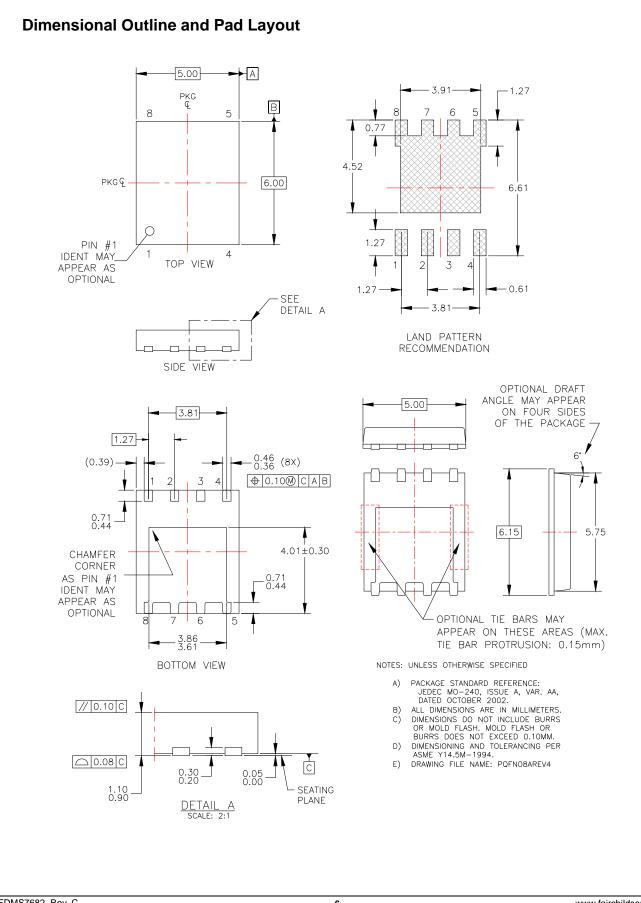

2. Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0%.

3. E_{AS} of 29 mJ is based on starting T_J = 25 °C, L = 0.3 mH, I_{AS} = 14 A, V_{DD} = 27 V, V_{GS} = 10 V. 100% test at L = 0.1 mH, I_{AS} = 21 A.


4. As an N-ch device, the negative Vgs rating is for low duty cycle pulse occurrence only. No continuous rating is implied.

nC


FDMS7682 N-Channel PowerTrench[®] MOSFET



4

Not In Production

Obsolete

FDMS7682 Rev. C

Rev. 148

Datasheet contains specifications on a product that is discontinued by Fairchild

Semiconductor. The datasheet is for reference information only.

7