

November 2011

FAN6756 — mWSaver™ PWM Controller

Features

- Single-Ended Topologies, such as Flyback and Forward Converters
- mWSaver[™] Technology
 - Achieves Low No-Load Power Consumption: Less than 30mW at 230V_{AC} (EMI Filter Loss Included)
 - Eliminates X Capacitor Discharge Resistor Loss with AX-CAP™ Technology
 - Linearly Decreases Switching Frequency to 23KHz
 - Burst Mode Operation at Light-Load Condition
 - Impedance Modulation in Standby Mode for "Deep" Burst Mode Operation
 - Low Operating Current (450µA) in Standby Mode
 - 500V High-Voltage JFET Startup Circuit to Eliminate Startup Resistor Loss
- Highly Integrated with Rich Features
 - Proprietary Asynchronous-Jitter to Reduce EMI
 - High-Voltage Sampling to Detect Input Voltage
 - Peak-Current-Mode Control with Slope Compensation
 - Cycle-by-Cycle Current Limiting with Line Compensation
 - Leading Edge Blanking (LEB)
 - Built-In 8ms Soft-Start
- Advanced Protections
 - Brown-In/Brownout Recovery
 - Internal Overload/Open-Loop Protection (OLP)
 - V_{DD} Under-Voltage Lockout (UVLO)
 - V_{DD} Over-Voltage Protection (V_{DD} OVP)
 - Over-Temperature Protection (OTP)
 - Current-Sense Short-Circuit Protection (SSCP)

Description

The FAN6756 is a next-generation Green Mode PWM controller with innovative mWSaver™ technology, which dramatically reduces standby and no-load power consumption, enabling conformance to worldwide Standby Mode efficiency guidelines.

An innovative AX-CAP™ method minimizes losses in the EMI filter stage by eliminating the X-cap discharge resistors while meeting IEC61010-1 safety requirements. Standby Mode clamps feedback voltage and modulates feedback impedance with a impedance modulator during Burst Mode operation, which forces the system to operate in a "deep" Burst Mode with minimum switching losses.

Protections ensure safe operation of power system in various abnormal conditions. Proprietary asynchronous jitter decreases EMI emission and built-in synchronized slope compensation allows more stable Peak-Current-Mode control over wide range of input voltage and load conditions. The proprietary internal line compensation ensures constant output power limit over entire universal line voltage range.

Requiring a minimum number of external components, FAN6756 provides a basic platform that is well suited for cost-effective flyback converter designs that require extremely low standby power consumption.

Applications

Flyback power supplies that demand extremely low standby power consumption, such as:

- Adapters for Notebooks, Printers, Game Consoles, etc.
- Open-Frame SMPS for LCD TV, LCD Monitors, Printer Power, etc.

Ordering Information

Part Number		Protections ⁽¹⁾			Operating	Package	Packing
Fait Number	OLP	OVP	ОТР	SSCP	Temperature Range	rackage	Method
FAN6756MRMY	A/R	L	L	A/R	-40 to +105°C	8-Pin, Small Outline	Tape & Reel
FAN6756MLMY	L	L	L	A/R	-40 to +105 C	Package (SOP)	rape α Reer

1

Note:

A/R = Auto Recovery Mode protection, L = Latch Mode protection.

Application Diagram

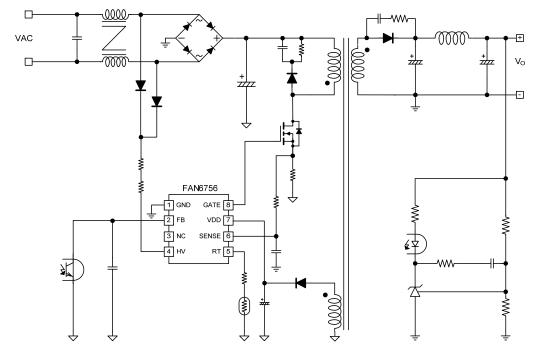
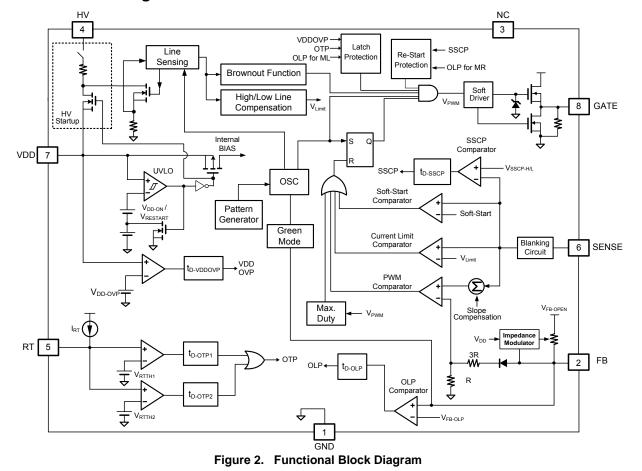
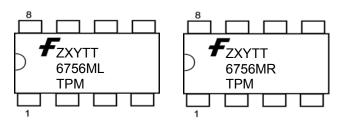




Figure 1. Typical Application Diagram

Internal Block Diagram

Marking Information

F - Fairchild Logo

Z - Plant Code

X - 1-Digit Year Code

Y - 1-Digit Week Code

TT - 2-Digit Die Run Code

T - Package Type (M=SOP)

P - Y: Green Package M - Manufacture Flow Code

Figure 3. Top Mark

Pin Configuration

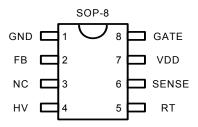


Figure 4. Pin Configuration (Top View)

Pin Definitions

Pin#	Name	Description
1	GND	Ground Pin. Placing a 0.1µF decoupling capacitor between VDD and GND is recommended.
2	FB	Feedback Pin. The output voltage feedback information from the external compensation circuit is fed into this pin. The PWM duty cycle is determined by comparing the FB signal with the current-sense signal from the SENSE pin.
3	NC	No Connection
4	HV	High-Voltage Startup. The HV pin is typically connected to the AC line input through two external diodes and one resistor (R_{HV}). This pin is used, not only to charge the V_{DD} capacitor during startup, but also to sense the line voltage. The line voltage information is used for brownout protection and power limit line compensation. This pin also is used to intelligently discharge the EMI filter capacitor when the removal of the AC line voltage is detected.
5	RT	Over-Temperature Protection. An external NTC thermistor is connected from this pin to the GND pin. Once the voltage of the RT pin drops below the threshold voltage, the controller latches off the PWM. The RT pin also provides external latch protection. If the RT pin is not connected to the NTC resistor for over-temperature protection, it is recommended to place a $100 \text{k}\Omega$ resistor to ground to prevent noise interference.
6	SENSE	Current Sense. The sensed voltage is used for Peak-Current-Mode control, short-circuit protection, and cycle-by-cycle current limiting.
7	VDD	Power Supply of IC. Typically a hold-up capacitor connects from this pin to ground. A rectifier diode, in series with the transformer auxiliary winding, connects to this pin to supply bias during normal operation.
8	GATE	Gate Drive Output. The totem-pole output driver for the power MOSFET; internally limited to $V_{\text{GATE-CLAMP}}$.

Absolute Maximum Ratings

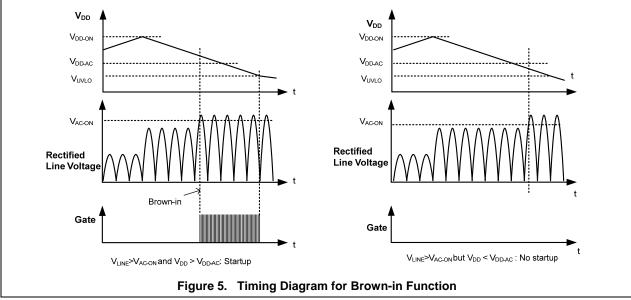
Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parame	Min.	Max.	Unit	
V _{VDD}	DC Supply Voltage ^(2,3)			30	V
V_{FB}	FB Pin Input Voltage		-0.3	7.0	V
V _{SENSE}	SENSE Pin Input Voltage		-0.3	7.0	V
V _{RT}	RT Pin Input Voltage		-0.3	7.0	V
V _{HV}	HV Pin Input Voltage		500	V	
P _D	Power Dissipation (T _A =50°C)		400	mW	
Θ_{JA}	Thermal Resistance (Junction-to-		150	°C/W	
TJ	Operating Junction Temperature		-40	+125	°C
T _{STG}	Storage Temperature Range		-55	+150	°C
TL	Lead Temperature (Wave Solderi	ng or IR, 10 Seconds)		+260	°C
ESD	Human Body Model, JEDEC:JESD22-A114	All Pins Except HV Pin ⁽⁴⁾		6000	V
ESD	Charged Device Model, JEDEC:JESD22-C101	All Pins Except HV Pin ⁽⁴⁾		2000	V

Notes:

- 2. All voltage values, except differential voltages, are given with respect to the network ground terminal.
- 3. Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.
- 4. ESD level with the HV pin is CDM=1250V and HBM=500V.

Recommended Operating Conditions


The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Тур.	Max.	Unit
R_{HV}	Resistance on HV Pin	150	200	250	kΩ

Electrical Characteristics

 V_{DD} =15V and T_A =25°C unless otherwise noted.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
V _{DD} Section	on		•			•
V _{OP}	Continuously Operating Voltage	Limited by V _{DD} OVP			22	V
$V_{\text{DD-ON}}$	Threshold Voltage to Startup	V _{DD} Rising	16	17	18	V
$V_{\text{DD-OFF}}$	Threshold Voltage to Stop Switching in Protection Mode	V _{DD} Falling	10	11	12	V
$V_{\text{DD-OLP}}$	Threshold Voltage to Turn-on HV Startup in Protection Mode	V _{DD} Falling	6	7	8	V
V _{UVLO}	Threshold Voltage to Stop Switching in Normal Mode	V _{DD} Falling	5.5	6.5	7.5	V
V _{RESTART}	Threshold Voltage to Enable HV Startup to charge V _{DD} in Normal Mode	V _{DD} Falling		5		V
$V_{\text{DD-LH}}$	Threshold Voltage to Release Latch Mode	V _{DD} Falling	3.5	4.0	4.5	V
$V_{DD\text{-AC}}$	Threshold Voltage for Brown-in		9.0	9.5	10.0	V
I _{DD-ST}	Startup Current	V _{DD-ON} – 0.16V			30	μA
I _{DD-OP1}	Supply Current in PWM Operation	V _{DD} =15V, V _{FB} =3V, Gate Open			1.8	mA
I _{LH}	Operating Current when V _{DD} <v<sub>DD-OFF in Protection Mode</v<sub>	V _{DD} =5V		70		μΑ
I _{DD-OP2}	Supply Current when PWM Stops	V _{DD} =15V, V _{FB} <1.4V, Gate Off		450		μΑ
I _{DD-OLP}	Internal Sink Current from $V_{\text{DD-OFF}}$ to $V_{\text{DD-OLP}}$ in Protection Mode	V _{DD-OLP} +0.1V	160	210	260	μA
$V_{\text{DD-OVP}}$	Threshold Voltage for V _{DD} Over-Voltage Protection		23.5	24.5	25.5	V
t _{D-VDDOVP}	V _{DD} Over-Voltage Protection Debounce Time		110	185	260	μs

Continued on the following page...

Electrical Characteristics (Continued)

 $V_{\text{DD}}\text{=}15V$ and $T_{\text{A}}\text{=}25^{\circ}\text{C}$ unless otherwise noted.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
HV Sectio	n	1				
I _{HV}	Supply Current from HV Pin	V _{AC} =90V (V _{DC} =120V), V _{DD} =0V	2.0	3.0	4.5	mA
$V_{AC\text{-}OFF}$	Threshold Voltage for Brownout	DC Source Series R=200kΩ to HV Pin	90	100	110	V
$V_{\text{AC-ON}}$	Threshold Voltage for Brown-In	DC Source Series R=200kΩ to HV Pin	100	110	120	V
ΔV_{AC}	V _{AC-ON} - V _{AC-OFF}	DC Source Series R=200kΩ to HV Pin	8	12	16	V
t _{D-AC-OFF}	Debounce Time for Brownout		40	65	90	ms
$V_{\text{HV-DIS}}$	X-Cap. Discharge Threshold	V_{FB} < V_{FB-G} R=200kΩ to HV Pin	V _{DC} ×0.45	V _{DC} ⁽⁵⁾ ×0.51	V _{DC} ×0.56	V
t _{D-HV-DIS}	Debounce Time for Triggering X-Cap. Discharge		30	40	50	ms
Oscillator	Section		•			
		Center Frequency	62	65	68	
f_{OSC}	Switching Frequency When V _{FB} >V _{FB-N}	Hopping Range (V _{FB} >V _{FB-N})	±3.7	±4.2	±4.7	kHz
t _{HOP}	Hopping Period	V _{FB} >V _{FB-N}		4.0	6.5	ms
f _{OSC-G}	Switching Frequency When V _{FB} <v<sub>FB-G</v<sub>	V _{FB} <v<sub>FB-G</v<sub>	20	23	26	kHz
f_{DV}	Frequency Variation vs. V _{DD} Deviation	V _{DD} =11V to 22V			5	%
f _{DT}	Frequency Variation vs. Temperature Deviation	T _A =-40 to 105°C			5	%
Feedback	Input Section	•	•		•	•
A _V	Feedback Voltage to Current- Sense Attenuation		1/4.5	1/4.0	1/3.5	V/V
Z_{FB}	Regular FB Internal Pull-High Impedance			8.5		kΩ
$V_{\text{FB-OPEN}}$	FB internal Biased Voltage	FB Pin Open	5.2	5.4	5.6	V
V_{FB-OLP}	Threshold Voltage for OLP		4.3	4.6	4.9	V
t _{D-OLP}	Debounce Time for OLP		45.0	57.5	70.0	ms
$V_{\text{FB-N}}$	Threshold Voltage for Maximum Switching Frequency		2.6	2.8	3.0	V
V_{FB-G}	Threshold Voltage for Minimum Switching Frequency		2.1	2.3	2.5	V
V _{FB-ZDC1}	Threshold Voltage for Zero-Duty Cycle		1.8	2.0	2.2	V
V _{FB-ZDCR1}	Threshold Voltage for Zero-Duty Cycle Recovery		1.9	2.1	2.3	V
V _{FB-ZDC2}	Threshold Voltage for Zero Duty Cycle in Standby Mode		2.35	2.55	2.75	V
V _{FB-ZDCR2}	Threshold Voltage for Zero-Duty Cycle Recovery in Standby Mode		2.4	2.6	2.8	V

Continued on the following page...

Electrical Characteristics (Continued)

 V_{DD} =15V and T_A =25°C unless otherwise noted.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
Current-S	ense Section			•		
t _{LEB}	Leading-Edge Blanking		230	280	330	ns
V _{LIMIT-L}	Current Limit Level at Low Line (V _{AC-RMS} =86V)	V _{DC} =122V, Series R=200kΩ to HV	0.43	0.46	0.49	V
V _{LIMIT-H}	Current Limit Level at High Line (V _{AC-RMS} =259V)	V _{DC} =366V, Series R=200kΩ to HV	0.36	0.39	0.42	V
V _{SSCP-L}	The Lower Threshold Voltage for SSCP	V _{DC} =122V, Series R=200kΩ to HV	30	50	70	mV
V _{SSCP-H}	The Upper Threshold Voltage for SSCP	V _{DC} =366V, Series R=200kΩ to HV	80	100	120	mV
t _{ON-SSCP}	Minimum On Time of Gate to Trigger SSCP	Vsense <vsscp-l h<="" td=""><td>4.00</td><td>4.55</td><td>5.10</td><td>μs</td></vsscp-l>	4.00	4.55	5.10	μs
t _{D-SSCP}	Debounce Time for SSCP	V _{SENSE} <v<sub>SSCP-L/H</v<sub>	110	170	230	μs
t _{SS}	Soft-Start Time	Startup	6.50	7.75	9.00	ms
GATE Sec	ction					
DCY_{MAX}	Maximum Duty Cycle		80	85	90	%
V_{GATE-L}	Gate Low Voltage	V _{DD} =15V, I _O =50mA			1.5	V
$V_{\text{GATE-H}}$	Gate High Voltage	V _{DD} =12V, I _O =50mA	8			V
t _r	Gate Rising Time	V _{DD} =15V, C _L =1nF		125		ns
t _f	Gate Falling Time	V _{DD} =15V, C _L =1nF		50		ns
t _{PD}	Propagation Delay to Output			100	250	ns
V _{GATE} - CLAMP	Gate Output Clamping Voltage	V _{DD} =22V	11.0	14.5	18.0	V
RT Sectio	n					
I _{RT}	Output Current of RT Pin			100		μA
V_{RTTH1}	Threshold Voltage for Over- Temperature Protection	0.7V < V _{RT} < 1.035V, After 14.5ms Latch Off	1.000	1.035	1.070	V
V_{RTTH2}	Threshold Voltage for Latch Triggering	V _{RT} < 0.7V, After 185µs Latch Off	0.65	0.70	0.75	V
R _{OTP}	Maximum External Resistance of RT Pin to Trigger Latch Protection		9.66	10.50	11.34	kΩ
t _{D-OTP1}	Debounce Time for Over-Temperature Protection Triggering	V _{RTTH2} < V _{RT} < V _{RTTH1}	11.0	14.5	18.0	ms
t _{D-OTP2}	Debounce Time for Latch Triggering	V _{RT} < V _{RTTH2}	110	185	260	μs
Internal O	ver-Temperature Protection Section					
T_{OTP}	Protection Junction Temperature ⁽⁶⁾			+135		°C
T _{Restart}	Restart Junction Temperature ⁽⁷⁾			T _{OTP} -25		°C

Notes:

- V_{DC} is $V_{AC} \times \sqrt{2}$.
- When activated, the output is disabled and the controller is latched. The threshold temperature to unlatch and restart output after OTP.

Typical Performance Characteristics

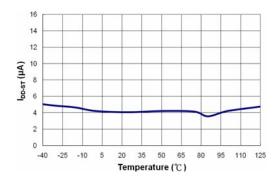


Figure 6. Startup Current (IDD-ST) vs. Temperature

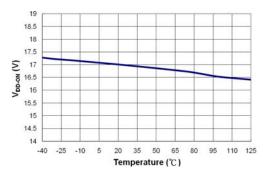


Figure 8. Start Threshold Voltage (V_{DD-ON}) vs. Temperature

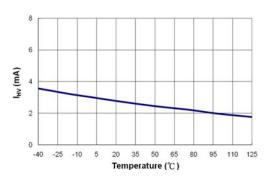


Figure 10. Supply Current Drawn from HV Pin (I_{HV}) vs. Temperature

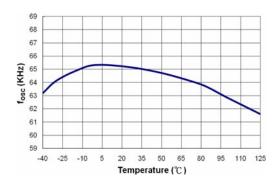


Figure 12. Frequency in Normal Mode (fosc) vs. Temperature

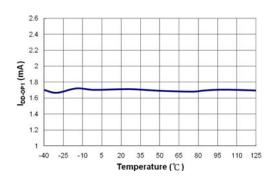


Figure 7. Operation Supply Current (I_{DD-OP1}) vs. Temperature

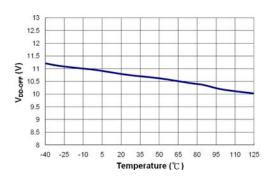


Figure 9. Minimum Operating Voltage (V_{DD-OFF}) vs. Temperature

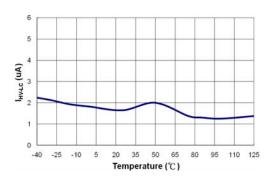
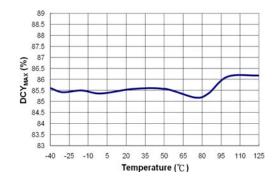
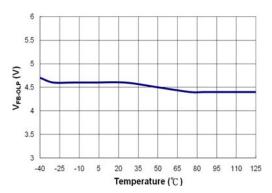
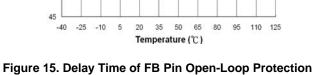
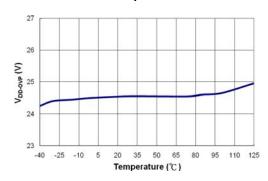


Figure 11. HV Pin Leakage Current After Startup (I_{HV-LC}) vs. Temperature


Figure 13. Maximum Duty Cycle (DCY_{MAX}) vs. Temperature


Typical Performance Characteristics (Continued)

70 65 60 60 45 -40 -25 -10 5 20 35 50 65 80 95 110 125 Temperature (°C)

Figure 14. FB Open-Loop Trigger Level (V_{FB-OLP}) vs. Temperature

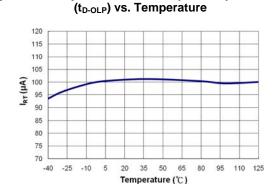
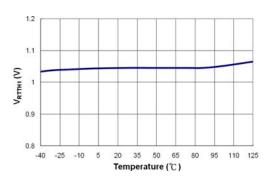



Figure 16. V_{DD} Over-Voltage Protection (V_{DD-OVP}) vs. Temperature

Figure 17. Output Current from RT Pin (I_{RT}) vs. Temperature

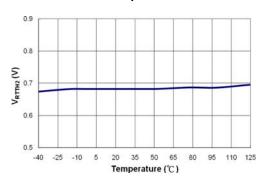
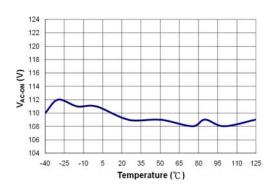



Figure 18. Over-Temperature Protection Threshold Voltage (V_{RTTH1}) vs. Temperature

Figure 19. Over-Temperature Protection Threshold Voltage (V_{RTTH2}) vs. Temperature

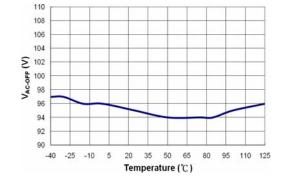


Figure 20. Brown-In (V_{AC-ON}) vs. Temperature

Figure 21. Brownout (V_{AC-OFF}) vs. Temperature

Functional Description

Current Mode Control

FAN6756 employs Peak-Current Mode control, as shown in Figure 22. An opto-coupler (such as the H11A817A) and a shunt regulator (such as the KA431) are typically used to implement the feedback network. Comparing the feedback voltage with the voltage across the R_{sense} resistor makes it possible to control the switching duty cycle. A synchronized positive slope is added to the sensed current signal to guarantee stable Current-Mode control over a wide range of input voltages. The built-in slope compensation stabilizes the current loop and prevents sub-harmonic oscillation.

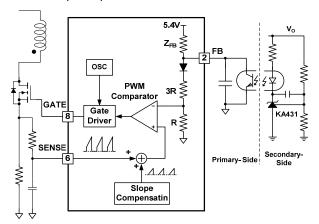


Figure 22. Current Mode Control Circuit Diagram

Leading-Edge Blanking (LEB)

Each time the power MOSFET is switched on, a turn-on spike occurs on the sense resistor. To avoid premature termination of the switching pulse, a leading-edge blanking time, t_{LEB} , is introduced. During this blanking period, the current-limit comparator is disabled and cannot switch off the gate driver.

mWSaver™ Technology

Green-Mode

FAN6756 modulates the PWM frequency as a function of the FB voltage to improve the medium and light load efficiency, as shown in Figure 23. Since the output power is proportional to the FB voltage in Current-Mode control, the switching frequency decreases as load decreases. In heavy-load conditions, the switching frequency is fixed at 65kHz. Once V_{FB} decreases below V_{FB-N} (2.8V), the PWM frequency starts linearly decreasing from 65kHz to 23kHz to reduce switching losses. As V_{FB} drops to V_{FB-G} (2.3V), where switching frequency is decreased to 23kHz, the switching frequency is fixed to avoid acoustic noise.

When V_{FB} falls below $V_{FB-ZDC1}$ (2.0 V) as load decreases further, FAN6756 enters Burst Mode where PWM switching is disabled. Then the output voltage starts to drop, causing the feedback voltage to rise. Once V_{FB} rises above $V_{FB-ZDCR1}$ (2.1V), switching resumes. Burst Mode alternately enables and disables switching, thereby reducing switching loss for lower power consumption, as shown in Figure 24.

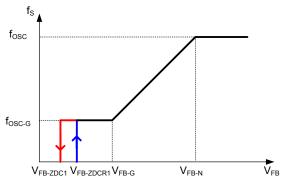


Figure 23. V_{FB} vs. PWM Frequency

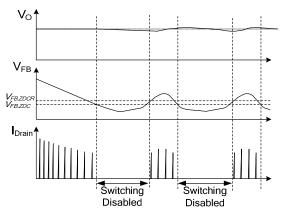


Figure 24. Burst Switching in Green Mode

Standby Mode & Feedback Impedance Switching

Standby Mode is defined as a special operational mode to minimize power consumption at extremely light-load or no-load condition where, not only the switching loss, but also power consumption of FAN6756 itself, are reduced further than in Green Mode. Standby Mode is initiated when the non-switching state of burst switching in Green Mode persists longer than 10ms for three consecutive burst switchings (as shown in Figure 25). To prevent entering Standby Mode during dynamic load change, there is 900ms delay. If there are more than 104 consecutive switching pulses during the 900ms delay, FAN6756 does not go into Standby Mode.

Once FAN6756 enters Standby Mode, the feedback impedance, Z_{FB} , is modulated by the impedance modulator, as shown in Figure 26. When V_{FB} is under a threshold level, the impedance modulator clamps V_{FB} and disables switching. When V_{DD} drops to 7V (0.5V higher than $V_{DD\text{-}OFF}$), the impedance modulator controls Z_{FB} , allowing V_{FB} to rise and resume switching operation. As shown in Figure 27, by clamping V_{FB} to disable switching, while modulating Z_{FB} to enable switching, the system is forced into deep Burst Mode to reduce switching loss.

Deep Burst Mode maintains V_{DD} as low as possible so power consumption can be minimized. When FAN6756 enters Standby Mode, several blocks are disabled and the operation current is reduced from 1.8mA (I_{DD-OP1}).

The feedback voltage thresholds where FAN6756 enters and exits Burst Mode change from $V_{FB\text{-}ZDC1}$

(2.0V) and V_{FB-ZDCR1} (2.1V) to V_{FB-ZDC2} (2.55V) and V_{FB-ZDCR2} (2.6V) in deep Burst Mode. This reduces the switching loss more by increasing the energy delivered to the load per switching operation, which eventually reduces the total switching for a given load condition.

FAN6756 exits Standby Mode after more than 104 consecutive switching pulses in deep Burst Mode. Once FAN6756 exits Standby Mode, the feedback impedance is modulated to $8.5 \mathrm{k}\Omega$ to keep original loop response. FAN6756 also exits Standby Mode when opto-coupler transistor current is virtually zero and V_{FB} rises above 0.75V while switching is suspended in deep burst mode.

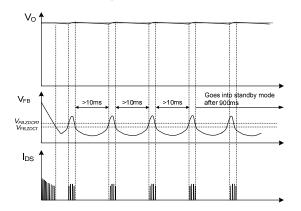


Figure 25. Entering Standby Mode

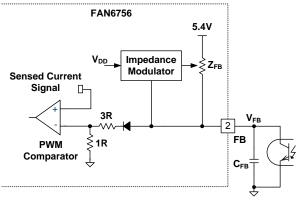


Figure 26. Feedback Impedance Modulation

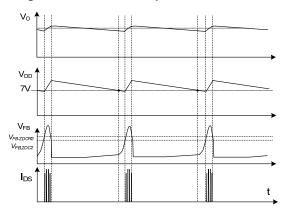


Figure 27. Deep Burst Operation in Standby Mode

High-Voltage Startup and Line Sensing

The HV pin is typically connected to the AC line input through two external diodes and one resistor (R_{HV}), as shown in Figure 28. When the AC line voltage is applied, the V_{DD} hold-up capacitor is charged by the line voltage through the diodes and resistor. After V_{DD} voltage reaches the turn-on threshold voltage ($V_{\text{DD-ON}}$), the startup circuit charging V_{DD} capacitor is switched off and V_{DD} is supplied by the auxiliary winding of the transformer. Once FAN6756 starts, it continues operating until V_{DD} drops below 6.5V (V_{UVLO}). IC startup time with a given AC line input voltage is given as:

$$t_{STARTUP} = R_{HV} \cdot C_{DD} \cdot \ln \frac{V_{AC-IN} \cdot \frac{2\sqrt{2}}{\pi}}{V_{AC-IN} \cdot \frac{2\sqrt{2}}{\pi} - V_{DD-ON}}$$
(1)

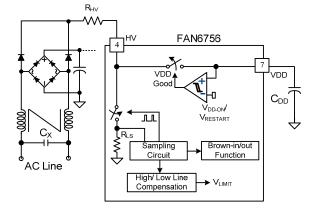


Figure 28. Startup Circuit

The HV pin detects the AC line voltage using a switched voltage divider that consists of external resistor (R_{HV}) and internal resistor (R_{LS}), as shown in Figure 28. The internal line-sensing circuit detects line voltage using a sampling circuit and peak-detection circuit. Since the voltage divider causes power consumption when it is switched on, the switching is driven by a signal with a very narrow pulse width to minimize power loss. The sampling frequency is adaptively changed according to the load condition to minimize power consumption in light-load condition.

Based on the detected line voltage, brown-in and brownout thresholds are determined as:

$$V_{BROWN-IN} (RMS) = \frac{R_{HV}}{200k} \cdot \frac{V_{AC-ON}}{\sqrt{2}}$$
 (2)

$$V_{BROWNOUT} (RMS) = \frac{R_{HV}}{200k} \cdot \frac{V_{AC-OFF}}{\sqrt{2}}$$
 (3)

Since the internal resistor (R_{LS} =1.6k Ω) of the voltage divider is much smaller than R_{HV} , the thresholds are simply given as s function of R_{HV} .

Note:

8. V_{DD} must be larger than V_{DD-AC} to start, even though the sensed line voltage satisfies Equation (2), as shown in Figure 5.

AX-CAP™ Discharge

The EMI filter in the front end of the switched-mode power supply (SMPS) typically includes capacitor across AC line connector. Most of the safety regulations, such as UL 1950 and IEC61010-1, require the capacitor be discharged to a safe level within a given time when the AC plug is abruptly removed from its receptacle. Typically, discharge resisters across the capacitor are used to make sure that capacitor is discharged naturally, which introduces power loss as long as it is connected to the receptacle.

The innovative AX- CAP^{\intercal} technology intelligently discharges the filter capacitor only when the power supply is unplugged from the power outlet. Since the AX-CAP discharge circuit is disabled in normal operation, the power loss in the EMI filter can be virtually removed.

The discharge of the capacitor is achieved through the HV pin. Once AC outlet detaching is detected, the PWM gate remains off and V_{DD} drops to $_{VDD\text{-}OFF}$. Then V_{DD} is charged up, which discharges the filter capacitor.

High/Low Line Compensation for Constant Power Limit

FAN6756 has pulse-by-pulse current limit as shown in Figure 29, which limits the maximum input power with a given input voltage. If the output consumes beyond this maximum power, the output voltage drops, triggering the overload protection.

As shown in Figure 29, based on the line voltage, $V_{\text{LINE}}^{\text{PK}}$; the high/low line compensation block adjusts the current limit level, V_{LIMIT} , defined as:

$$V_{LIMIT} = \frac{V_{LIMIT-H} - V_{LIMIT-L}}{2} \cdot \frac{R_{LS}}{R_{HV}} \cdot V_{LINE}^{PK} + \frac{3 \cdot V_{LMIT-L} - V_{LIMIT-H}}{2}$$
(4)

To maintain the constant output power limit regardless of line voltage, the cycle-by-cycle current limit level, V_{LIMIT} , decreases as line voltage increases. The current limit level is proportional to the R_{HV} resistor value and power limit can be tuned using the R_{HV} resistor. Figure 30 shows how the pulse-by-pulse current limit changes with the line voltage for different R_{HV} resistors.

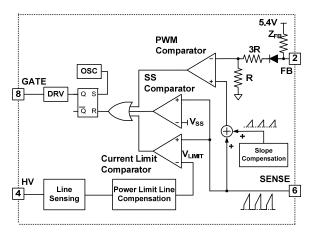


Figure 29. Pulse-by-Pulse Current Limit Circuit

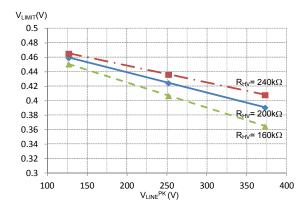


Figure 30. Current Limit vs. Line voltage

Soft-Start

An internal soft-start circuit progressively increases the pulse-by-pulse current limit level of MOSFET for 8ms during startup to establish the correct working conditions for transformers and capacitors.

Protections

FAN6756 provides full protection functions, including Overload / Open-Loop Protection (OLP), V_{DD} Over-Voltage Protection (OVP), Over-Temperature Protection (OTP), and Current-Sense Short Circuit Protection (SSCP). SSCP is implemented as Auto-Restart Mode, while OVP and OTP are implemented as Latch Mode protections. OLP is Auto-Restart Mode for FAN6756MR and Latch Mode for FAN6756ML.

When an Auto-Restart Mode protection is triggered, switching is terminated and the MOSFET remains off, causing V_{DD} to drop. When V_{DD} drops to the $V_{\text{DD-OFF}}$ (11V), the protection is reset. When V_{DD} drops further to $V_{\text{DD-OLP}}$ (7V), the internal startup circuit is enabled, and the supply current drawn from HV pin charges the hold-up capacitor. When V_{DD} reaches the turn-on voltage of 17V, FAN6756 resumes normal operation. In this manner, the auto restart alternately enables and disables the switching of the MOSFET until the abnormal condition is eliminated.

When a Latch Mode protection is triggered, PWM switching is terminated and the MOSFET remains off, causing V_{DD} to drop. When V_{DD} drops to the $V_{\text{DD-OLP}}$ (7V), the internal startup circuit is enabled without resetting the protection and the supply current drawn from HV pin charges the hold-up capacitor. Since the protection is not reset, the IC does not resume PWM switching even when V_{DD} reaches the turn-on voltage of 17V, disabling HV startup circuit. Then V_{DD} drops again down to 7V. In this manner, the Latch Mode protection alternately charges and discharges V_{DD} until there is no more energy in DC link capacitor. The protection is reset when V_{DD} drops to 4V, which is allowed only after power supply is unplugged from the AC line.

V_{DD} Over-Voltage Protection (OVP)

 V_{DD} over-voltage protection prevents IC damage from voltage exceeding the IC voltage rating. When the V_{DD} voltage exceeds 24.5V, the protection is triggered. This protection is typically caused by an open circuit in the secondary-side feedback network.

Over-Temperature Protection (OTP) and External Latch Triggering

The RT pin provides adjustable Over-Temperature Protection (OTP) and external latch triggering function. For OTP, an NTC thermistor, R_{NTC} , usually in series with a resistor R_{A} , is connected between the RT pin and ground. The internal current source, I_{RT} (100µA), introduces voltage on RT as:

$$V_{RT} = I_{RT} \cdot (R_{NTC} + R_A) \tag{5}$$

At high ambient temperature, R_{NTC} decreases, reducing V_{RT} . When V_{RT} is lower than V_{RTTH1} (1.035V) for longer than $t_{D\text{-}OTP1}$ (14.5ms), the protection is triggered and FAN6756 enters Latch Mode protection.

The OTP can be trigged by pulling down the RT pin voltage using an opto-coupler or transistor. Once V_{RT} is less than V_{RTTH2} (0.7V) for longer than $t_{D\text{-}OTP2}$ (185 μ s), the protection is triggered and FAN6756 enters Latch Mode protection.

When OTP is not used, it is recommended to place a $100k\Omega$ resistor between this pin and ground to prevent noise interference.

Open-Loop/Overload Protection (OLP)

Because of the pulse-by-pulse current limit capability, the maximum peak current is limited, and therefore the maximum input power is also limited. If the output consumes more than this limited maximum power, the output voltage (V_O) drops below the set voltage. Then, the currents through the opto-coupler and transistor become virtually zero and V_{FB} is pulled HIGH. Once V_{FB} is higher than V_{FB-OLP} (4.6V) for longer than t_{D-OLP} (57.5ms), OLP is triggered. OLP is also triggered when the feedback loop is open by soldering defect.

Sense Short-Circuit Protection (SSCP)

FAN6756 provides safety protection for Limited Power Source (LPS) test. When the current-sense resistor is short circuited by a soldering defect during production, the current sensing information is not properly obtained, resulting in unstable operation of power supply.

To protect the power supply against a short circuit across the current-sense resistor, FAN6756 shuts down when current sense voltage is very low; even with a relatively large duty cycle. As shown in Figure 31, the current-sense voltage is sampled $t_{\text{ON-SSCP}}$ (4.55µs) after the gate turn-on. If the sampled voltage (Vs-cs) is lower than VsscP for 11 consecutive switching cycles (170µs), the FAN6756 shuts down immediately. VsscP varies linearly with line voltage. At 122V DC input, it is typically 50mV (VsscP-L); at 366V DC, it is typically 100mV (VsscP-H).

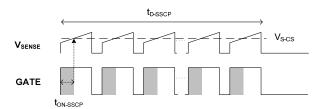


Figure 31. Timing Diagram of SSCP

Two-Level Under-Voltage Lockout (UVLO)

As shown in Figure 32, as long as protection is not triggered, the turn-off threshold of V_{DD} is fixed internally at V_{UVLO} (6.5V). When a protection is triggered, the V_{DD} level to terminate PWM gate switching is changed to $V_{DD\text{-}OFF}$ (11V), as shown in Figure 33. When V_{DD} drops below $V_{DD\text{-}OFF}$, the switching is terminated and the operating current from V_{DD} is reduced to $I_{DD\text{-}OLP}$ to slow down the discharge of V_{DD} until V_{DD} reaches $V_{DD\text{-}OLP}$. This delays re-startup after shutdown by protection to minimize the input power and voltage/current stress of switching devices during a fault condition.

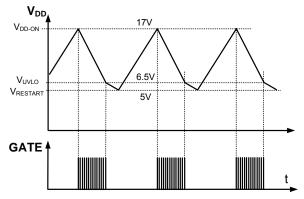


Figure 32. V_{DD} UVLO at Normal Mode

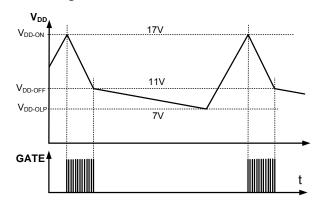


Figure 33. V_{DD} UVLO at Protection Mode

Gate Output / Soft Driving

The BiCMOS output stage has a fast totem-pole gate driver. The output driver is clamped by an internal 14.5V Zener diode to protect the power MOSFET gate from over voltage. A soft driving is implemented to minimize Electromagnetic Interference (EMI) by reducing the switching noise.

Typical Application Circuit

Application PWM Controller		Input Voltage Range	Output
65W Notebook Adapter	FAN6756	85V _{AC} ~ 265V _{AC}	19V/3.42A

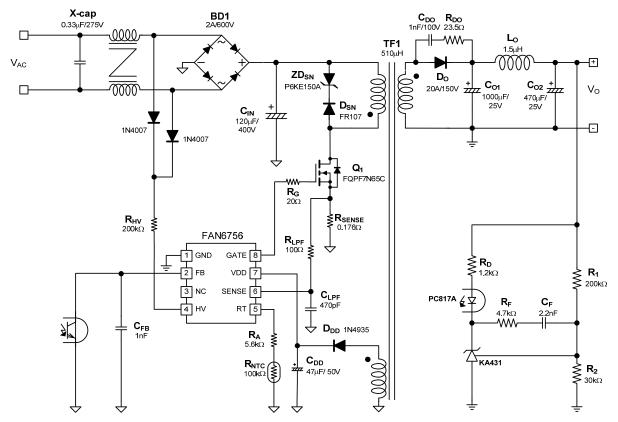


Figure 34. Schematic of Typical Application Circuit

Transformer Schematic Diagram

■ Core: Ferrite Core RM-10

■ Bobbin: RM-10

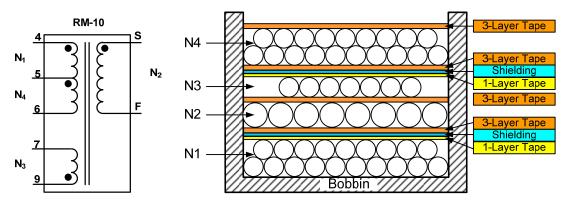


Figure 35. Transformer Specification

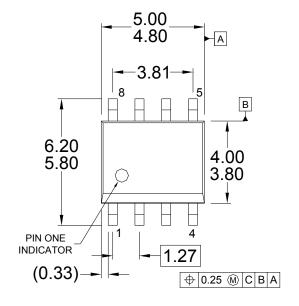
Winding Specification

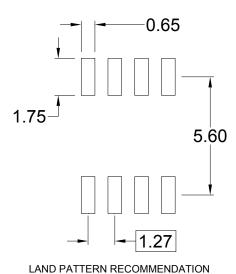
	Pin (Start> Finish)	Wire	Turns	Winding Method	Remark				
N1	4 → 5	0.5φ×1	19	Solenoid Winding	Enameled Copper Wire				
Insul	Insulation: Polyester Tape, t = 0.025mm, 1-Layer								
Shiel	Shielding: Adhesive Tape of Copper Foil, t = 0.025×7mm, 1.2 Layers Open Loop, Connected to Pin 4.								
Insul	ation: Polyester Tape t = 0.025m	m, 3-Layer							
N2	$S \to F$	0.9φ×1	8	Solenoid Winding	Triple Insulated Wire				
Insul	ation: Polyester Tape, t = 0.025n	nm, 3-Layeı	ſ						
N3	9 → 7	0.4φ×1	7	Solenoid Winding	Enameled Copper Wire				
Insul	ation: Polyester Tape, t = 0.025n	nm, 1-Layeı	ſ						
Shiel	lding: Adhesive Tape of Copper F	oil, t = 0.02	25×7mm, 1	.2 Layers Open Loop, Conr	nected to Pin 4.				
Insul	Insulation: Polyester Tape t = 0.025mm, 3-Layer								
N4	5 → 6	0.5φ×1	19	Solenoid Winding	Enameled Copper Wire				
Insul	Insulation: Polyester Tape t = 0.025mm, 3-Layer								

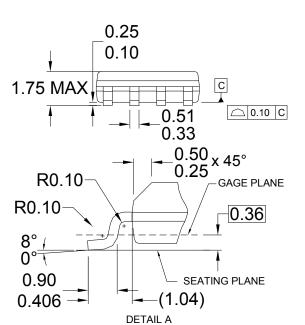
Electrical Characteristics

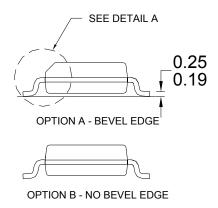
	Pin	Specification	Remark
Primary-Side Inductance	4-6	510μH ±5%	1kHz, 1V
Primary-Side Effective Leakage Inductance	4-6	20μH Maximum	Short All Other Pins

Typical Performance


Power Consumption


Input Voltage	Output Power	Actual Output Power	Input Power	Specification
	No Load	0W	0.024W	Input Power < 0.03W
230V _{AC}	0.25W	0.232W	0.339W	Input Power < 0.5W
	0.5W	0.495W	0.643W	Input Power < 1W


Efficiency


Output Power	16.25W	32.5W	48.75W	65W	Average
115V/ 60Hz	88.48%	88.58%	87.45%	86.22%	87.68%
230V/ 60Hz	88.00%	87.89%	87.92%	87.47%	87.82%

Physical Dimensions

NOTES: UNLESS OTHERWISE SPECIFIED

- A) THIS PACKAGE CONFORMS TO JEDEC MS-012, VARIATION AA, ISSUE C,
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS DO NOT INCLUDE MOLD FLASH OR BURRS.
- D) LANDPATTERN STANDARD: SOIC127P600X175-8M.
- E) DRAWING FILENAME: M08AREV13

Figure 36. 8-Pin, Small Outline Package (SOP-8)

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/.

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

 2Cool™
 FlashWriter®*

 AccuPower™
 FPS™

 Auto-SPM™
 F-PFS™

 AX-CAP™*
 FRFET®

 BitSiC™
 Global Power Resource

 Build it Now™
 Green FPS™

 CorePLUS™
 Green FPS™ e-Series™

CorePOWER™ Gmax™

CROSSVOLT™ GTO™

CTL™ IntelliMAX™

Current Transfer Logic™ ISOPLANAR™

DEUXPEED® Making Small Speakers Sound Louder

Dual Cool™ and Better™
EcoSPARK® MegaBuck™
EfficientMax™ MICROCOUPLER™
ESBC™ MicroFET™

ESBC™ MicroPak™ MicroPak2™ Fairchild® Miller Drive™ Fairchild Semiconductor® MotionMax™ FACT Quiet Series™ Motion-SPM™ mWSaver™ FAST® OptoHiT™ FastvCore™ OPTOLOGIC® FETBench™ OPTOPLANAR® PowerTrench[®] PowerXS™

Programmable Active Droop™

QFET®
QS™
Quiet Series™
RapidConfigure™

Saving our world, 1mW/W/kW at a time™ SignalWise™

SmartMax™ SMART START™

Solutions for Your Success™

Solutions for Your SPM®
STEALTH™
SuperFET®
SuperSOT™-3
SuperSOT™-8
SuperSOT™-8
SupreMOS®
SyncFET™
Sync-Lock™
SysteM
GENERAL®*

The Power Franchise®
the pwerf
franchise
TinyBoost™
TinyBuck™
TinyCalc™
TinyCopic®
TiNYOPTO™
TinyPower™
TinyPwm™
TinyWire™
TranSiC™
TriFault Detect™
TRUECURRENT®*

µSerDes™

UHC[™]
Ultra FRFET™
UniFET™
VCX™
VisualMax™
VoltagePlus™
XS™

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN, NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS, THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 159