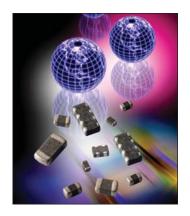

CAN BUS Varistor



GENERAL DESCRIPTION

The CAN BUS varistor is a zinc oxide (ZnO) based ceramic semiconductor device with non-linear voltage-current characteristics (bi-directional) similar to back-to-back Zener diodes and an EMC capacitor in parallel (see equivalent circuit model). They have the added advantage of greater current and energy handling capabilities as well as EMI/RFI attenuation. Devices are fabricated by a ceramic sintering process that yields a structure of conductive ZnO grains surrounded by electrically insulating barriers, creating varistor like behavior.

HOW TO ORDER

0402, 0603 Discrete

0405 Array

0612 Array

PERFORMANCE CHARACTERISTICS

AVX Part No.	V _w (DC)	V _w (AC)	V _B	I <u>L</u>	E _T	I _P	Cap.	Case Size	Elements
CAN0001	≤18	≤14	120	2	0.015	4	22	0603	1
CAN0002	≤18	≤14	70	2	0.015	4	22	0405	2
CAN0004	≤18	≤14	100	2	0.015	4	22	0612	4
CAN0005	≤18	≤14	33	2	0.015	4	37	0402	1

☐ Termination Finish Code
☐ Packaging Code

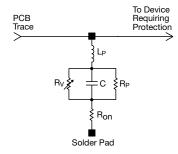
V _w (DC)	DC Working Voltage (V)
V _W (AC)	AC Working Voltage (V)

V_B Typical Breakdown Voltage (V @ 1mA_{DC})

 $\begin{array}{ll} V_{\text{\tiny C}} & & \text{Clamping Voltage (V @ I_{\text{\tiny VC}})} \\ I_{\text{\tiny VC}} & & \text{Test Current for V}_{\text{\tiny C}} \text{ (A, 8x20}\mu\text{S)} \end{array}$

I_L Maximum Leakage Current at the Working Voltage (μA)

 E_T Transient Energy Rating (J, 10x1000 μ S) I_P Peak Current Rating (A, 8x20 μ S)

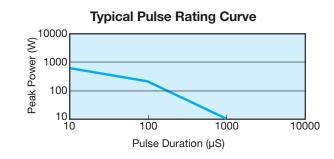

Cap Maximum Capacitance (pF) @ 1 MHz and 0.5Vrms

Temp Range -55°C to +125°C

10.0 0.0 Insertion Loss (dB) -10.0 -20.0 CANOODS -30.0 -40.0 -50.0 0 10 100 1000 10000 1 Frequency (MHz)

EQUIVALENT CIRCUIT MODEL

Discrete MLV Model



Where: R_V = Voltage Variable resistance (per VI curve)

 $R_p \geq 10^{12} \Omega$

C = defined by voltage rating and energy level

 R_{on} = turn on resistance L_{o} = parallel body inductance

