SKM 150 MLI 066 T

SEMITRANS[®] 5

Trench IGBT Modules

SKM 150 MLI 066 T

Target Data

Features

- Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- Integrated NTC temperature sensor

Typical Applications*

- UPS
- 3 Level Inverter

Remarks

 Case temperature limited to T_c =125°C max, recommended T_{op} = -40..+150°C

Absolute Maximum Ratings		T _{case} =	= 25°C, unless otherwise specified			
Symbol	Conditions		Values	Units		
IGBT						
V _{CES}	T _j = 25 °C T _i = 175 °C		600	V		
I _C	T _j = 175 °C	T _c = 25 °C	200	А		
		T _c = 80 °C	150	А		
I _{CRM}	I _{CRM} =2xI _{Cnom}		300	А		
V _{GES}			± 20	V		
t _{psc}	V_{CC} = 360 V; $V_{GE} \le 15$ V; VCES < 600 V	T _j = 150 °C	6	μs		
Inverse [Diode					
I _F	T _j = 150 °C	T _c = 25 °C	200	A		
		T _c = 80 °C	145	A		
I _{FRM}	I _{FRM} =2xI _{Fnom}		300	А		
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C	1080	А		
Freewhe	eling Diode					
I _F	T _j = 150 °C	T _c = 25 °C	200	А		
		T _c = 80 °C	145	А		
I _{FRM}	I _{FRM} =2xI _{Fnom}		300	А		
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C	1080	А		
Module						
I _{t(RMS)}			500	А		
T _{vj}			- 40 + 175	°C		
T _{stg}			- 40 + 125	°C		
V _{isol}	AC, 1 min.		2500	V		

Characteristics T _{case} =			25°C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units	
IGBT							
V _{GE(th)}	V_{GE} = V_{CE} , I_C = 2,4 mA		5	5,8	6,5	V	
I _{CES}	V_{GE} = 0 V, V_{CE} = V_{CES}	T _j = 25 °C			0,0076	mA	
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 25 °C			600	nA	
V _{CE0}		T _j = 25 °C		0,9	1	V	
		T _j = 150 °C		0,85	0,9	V	
r _{CE}	V _{GE} = 15 V	T _j = 25°C		3,6	6	mΩ	
		T _j = 150°C		5,4	7,6	mΩ	
V _{CE(sat)}	I _{Cnom} = 150 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		1,45	1,9	V	
		T _j = 150°C _{chiplev.}		1,7	2,1	V	
C _{ies}				9,2		nF	
C _{oes}	V_{CE} = 25, V_{GE} = 0 V	f = 1 MHz		0,57		nF	
C _{res}				0,27		nF	
R _{Gint}	$T_j = °C$			2		Ω	
t _{d(on)}						ns	
t _r E _{on}	R _{Gon} = 2 Ω	$V_{\rm CC} = 300V$		0.7		ns	
E _{on}	R _{Goff} = 4 Ω	I _C = 150A T _i = 150 °C		0,7		mJ ns	
t _{d(off)} t _f	Goff T 22	V _{GE} = -8V/+15V				ns	
E _{off}		GE		4,7		mJ	
R _{th(j-c)}	per IGBT	1		0,29		K/W	

MLI-T

SKM 150 MLI 066 T

SEMITRANS[®] 5

Trench IGBT Modules

SKM 150 MLI 066 T

Target Data

Features

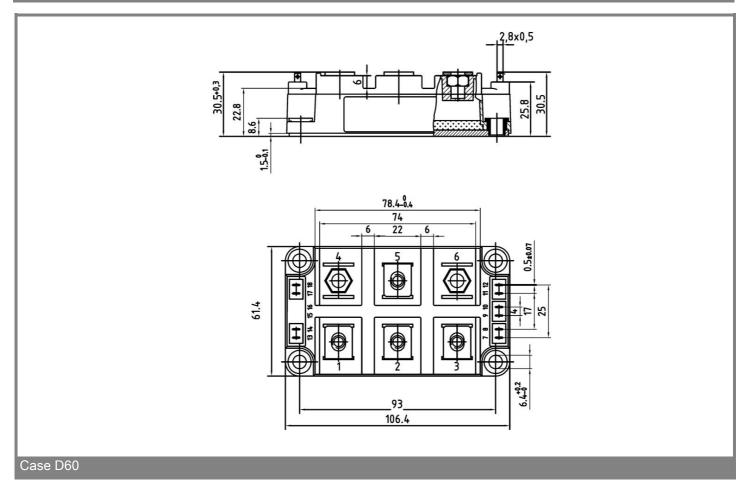
- Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- Integrated NTC temperature sensor

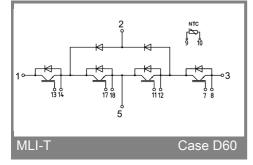
Typical Applications*

- UPS
- 3 Level Inverter

Remarks

 Case temperature limited to T_c =125°C max, recommended T_{op} = -40..+150°C


Characte	ristics					
Symbol	Conditions		min.	typ.	max.	Units
Inverse D						
$V_F = V_{EC}$	I_{Fnom} = 150 A; V_{GE} = 0 V	T _j = 25 °C _{chiplev.}		1,35	1,6	V
		$T_j = 150 \ ^\circ C_{chiplev.}$		1,35	1,6	V
V _{F0}		T _j = 25 °C		1	1,1	V
		T _j = 150 °C		0,9	1	V
r _F		T _j = 25 °C		2,3	3,3	mΩ
		T _j = 150 °C		3	4	mΩ
I _{RRM}	I _F = 150 A	T _j = 150 °C				А
Q _{rr}						μC
E _{rr}	V_{GE} = -8 V; V_{CC} = 300 V					mJ
R _{th(j-c)D}	per diode			0,52		K/W
	eling diode (Neutral (
$V_F = V_{EC}$	I_{Fnom} = 150 A; V_{GE} = 0 V			1,35	1,6	V
		$T_j = 150 \ ^\circ C_{chiplev.}$ $T_j = 25 \ ^\circ C$		1,35	1,6	V
V _{F0}				1	1,1	V
		T _j = 150 °C		0,9	1	V
r _F		T _j = 25 °C		2,3	3,3	V
		T _j = 150 °C		3	4	V
I _{RRM}	I _F = 150 A	T _j = 150 °C				А
Q _{rr}						μC
E _{rr}	V _{GE} = 0 V; V _{CC} = 600 V					mJ
$R_{th(j-c)FD}$	per diode			0,52		K/W
R _{th(c-s)}	per module				0,038	K/W
M _s	to heat sink M6		3		5	Nm
M _t	to terminals M6		2,5		5	Nm
w					310	g
Temperat	ture sensor					
R ₁₀₀	T _s =100°C (R ₂₅ =5kΩ)			493±5%		Ω
						к


This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

SKM 150 MLI 066 T

