

SEMITRANS[®] 5

Trench IGBT Modules

SKM 200 MLI 066 T

Target Data

Features

- Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- Integrated NTC temperature sensor

Typical Applications*

- UPS
- 3 Level Inverter

Remarks

 Case temperature limited to T_c =125°C max, recommended T_{op} = -40..+150°C

Absolute	Maximum Ratings	T _{case} = 25°C, unless otherwise speci				
Symbol	Conditions		Values	Units		
IGBT						
V _{CES}	T _j = 25 °C		600	V		
I _C	T _j = 175 °C	T _c = 25 °C	280	A		
		T _c = 80 °C	210	A		
I _{CRM}	I _{CRM} =2xI _{Cnom}		400	А		
V _{GES}			± 20	V		
t _{psc}	V_{CC} = 360 V; $V_{GE} \leq$ 15 V; VCES < 600 V	T _j = 150 °C	6	μs		
Inverse D	liode					
I _F	T _j = 175 °C	T _c = 25 °C	270	А		
		T _c = 80 °C	200	А		
I _{FRM}	I _{FRM} =2xI _{Fnom}		400	А		
I _{FSM}	$t_p = 10 \text{ ms}; \text{ half sine wave}$	T _j = 150 °C	1310	А		
Freewhee	eling Diode					
I _F	T _j = 175 °C	T _c = 25 °C	270	А		
		T _c = 80 °C	200	А		
I _{FRM}	I _{FRM} =2xI _{Fnom}		400	А		
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C	1310	А		
Module				<u>.</u>		
I _{t(RMS)}			500	А		
T _{vj}			- 40 + 175	°C		
T _{stg}			- 40 + 125	°C		
V _{isol}	AC, 1 min.		2500	V		

Characteristics T _{case} =		25°C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units
IGBT	_		_			
V _{GE(th)}	V_{GE} = V_{CE} , I_C = 3,2 mA		5	5,8	6,5	V
I _{CES}	V_{GE} = 0 V, V_{CE} = V_{CES}	T _j = 25 °C			0,01	mA
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 25 °C			1200	nA
V _{CE0}		T _j = 25 °C		0,9	1	V
		T _j = 150 °C		0,7	0,8	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		2,7	4,5	mΩ
		T _j = 150°C		5	6,5	mΩ
V _{CE(sat)}	I _{Cnom} = 200 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		1,45	1,9	V
		T _j = 150°C _{chiplev.}		1,7	2,1	V
C _{ies}				12,3		nF
C _{oes}	V_{CE} = 25, V_{GE} = 0 V	f = 1 MHz		0,76		nF
C _{res}				0,36		nF
Q_{G}	V _{GE} = -15V+15V			2254		nC
R _{Gint}	T _j = 25 °C			1		Ω
t _{d(on)}				93		ns
t _r	$R_{Gon} = 1 \Omega$	V _{CC} = 300V		72		ns
E _{on}	di/dt = 1700 A/µs	I _C = 200A		22		mJ
t _{d(off)} t _f	R _{Goff} = 1 Ω di/dt = 1700 A/μs	T _j = 150 °C V _{GE} = -15V/+15V		317 102		ns ns
E _{off}				79		mJ
R _{th(j-c)}	per IGBT	•		0,21		K/W

MLI-T

SEMITRANS[®] 5

Trench IGBT Modules

SKM 200 MLI 066 T

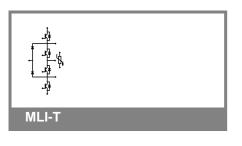
Target Data

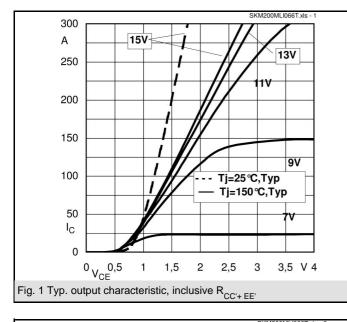
Features

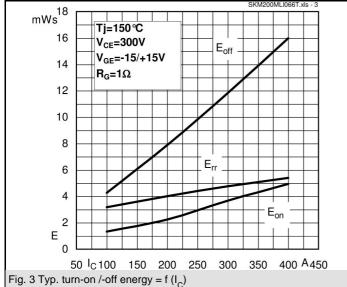
- Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- Integrated NTC temperature sensor

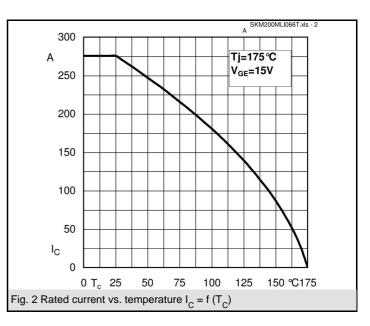
Typical Applications*

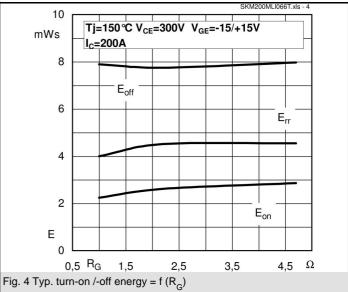
- UPS
- 3 Level Inverter


Remarks


 Case temperature limited to T_c =125°C max, recommended T_{op} = -40..+150°C


Characte	ristics					
Symbol	Conditions		min.	typ.	max.	Units
Inverse D						
$V_F = V_{EC}$	I_{Fnom} = 200 A; V_{GE} = 0 V			1,4	1,6	V
		$T_j = 150 \ ^\circ C_{chiplev.}$		1,4	1,6	V
V _{F0}		T _j = 25 °C		0,95	1	V
		T _j = 150 °C		0,85	0,9	V
r _F		T _j = 25 °C		2	3	mΩ
		T _j = 150 °C		2,7	3,5	mΩ
I _{RRM} Q _{rr}	I _F = 200 A di/dt = 1700 A/μs	T _j = 150 °C				A µC
E _{rr}	V _{GE} = -15 +15 V; V _{CC} = 300 V					mJ
R _{th(j-c)D}	per diode			0,39		K/W
Free-whe	eling diode (Neutral C	Clamp Diode)				
$V_F = V_{EC}$	I _{Fnom} = 200 A; V _{GE} = 0 V			1,4	1,6	V
		T_j = 150 °C _{chiplev.}		1,4	1,6	V
V _{F0}		T _j = 25 °C		0,95	1	V
		T _j = 150 °C		0,85	0,9	V
r _F		T _j = 25 °C		2	3	V
		T _j = 150 °C		2,7	3,5	V
I _{RRM} Q _{rr}	I _F = 200 A	T _j = 150 °C		152 30		A µC
E _{rr}	V _{GE} = -15+15 V; V _{CC} = 300 V			4		mJ
R _{th(j-c)FD}	per diode			0,39		K/W
R _{th(c-s)}	per module				0,038	K/W
M _s	to heat sink M6		3		5	Nm
M _t	to terminals M6		2,5		5	Nm
w					310	g
	ture sensor					
R ₁₀₀	T _s =100°C (R ₂₅ =5kΩ)			493±5%		Ω
						К


This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.


* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

