

Specification

BTHQ 128128AJA-FETF-06-LEDWHITE-COG_NT

Doc. No.: MSGF9622-09

Version April 2008

REVISION HISTORY: Description Written By Revision Date Approved By 28-Apr.-2008 New Release (Modified from DengWen 1.0 Justin Yeap MSGF9622-07 by removing touch panel).

Supplied by: Midas Components Limited, Electra House, 32 Southtown Road, Great Yarmouth, Norfolk, NR31 0DU

CONTENTS

- **1.0 GENERAL SPECIFICATION**
- 2.0 LCM NUMBERING SYSTEM
- **3.0 OUTLINE DRAWING**
- 4.0 INTERFACE PIN DESCRIPTION
- 5.0 BLOCK DIAGRAM
- 6.0 OPERATING PRINCIPLE & DRIVING METHOD
- 7.0 ABSOLUTE MAXIMUM RATINGS
- **8.0 ELECTRICAL CHARACTERISTICS**
- 9.0 ELECTRO-OPTICAL CHARACTERISTICS
- **10.0 BACKLIGHT SPECIFICATION**
- **11.0 STANDARD SPECIFICATION FOR RELIABILITY**
- 12.0 QUALITY ASSURANCE
- **13.0 PRECAUTIONS FOR USING LCD MODULE**
- **14.0 LOT NUMBERING SYSTEM**
- **15.0 PACKAGING STANDARD**
- **16.0 RoHS COMPLIANT PRODUCT**
- **17.0 LIMITED WARRANTY**
- **18.0 MANUFACTURER CONTACT**

1.0 **GENERAL SPECIFICATION**

Item	Contents	Unit
LCD type	FSTN Positive Transflective	-
Driving Scheme	1/128 Duty 1/12 Bias	-
LCD controller/ driver	NT7506H-BDT	-
Module size (W×H×T)	75.0 × 135.0× 7.8	mm
Viewing area (W×H)	69.0 × 69.0	mm
Viewing angle	6	O'clock
Number of dots	128 × 128	dots
Dot size (W×H)	0.48×0.48	mm
Dot pitch (W×H)	0.495×0.495	mm
Backlight	LED	-
Backlight color	White	-
Operating temperature	$-20 \sim 70$	°C
Storage temperature	-30 ~ 80	°C

2.0 LCM NUMBERING SYSTEM

$\underbrace{\mathbf{JIC}}_{(1)} - \underbrace{\mathbf{M}}_{(2)} \underbrace{\mathbf{S}}_{(3)} \underbrace{\mathbf{G}}_{(4)} \underbrace{\mathbf{F}}_{(5)} \underbrace{\mathbf{9622}}_{(6)} - \underbrace{\mathbf{09}}_{(7)}$

(1) JIC symbol

- (2) Custom-made LCD module
- (3) Display type (T: TN, S: STN/FSTN, H: HTN, C: CSTN)
- (4) Controller/driver package type (G: COG, T: TCP, F: COF, B: COB)
- (5) Interface connection type (F: FPC/COF, H: heatseal, Z: zebra connector, P: Pin, T: TAB)
- (6) Serial number

(7) Product revision

3.0 OUTLINE DRAWING

Supplied by: Midas Components Limited, Electra House, 32 Southtown Road, Great Yarmouth, Norfolk, NR31 0DU

Telephone: +44 (0)1493 602602 **Fax:** +44 (0)1493 665111 Email: sales@midasdisplays.com Website: www.midasdisplays.com

4.0 INTERFACE PIN DESCRIPTION

Pin No.	Symbol	Pin Description
1, 3	А	LED anode supply
2, 4	К	LED cathode supply
5	NC	NO Connection
6~10	$V0 \sim V4$	LCD driver supply voltage
11	C4+	Capacitor for voltage converter.
12	C2-	Capacitor for voltage converter.
13	C2+	Capacitor for voltage converter.
14	C1+	Capacitor for voltage converter.
15	C1-	Capacitor for voltage converter.
16	C3+	Capacitor for voltage converter.
17	C5+	Capacitor for voltage converter.
18	VOUT	Voltage converter input/ output pin.
19	VSS	Ground
20	VDD	Power supply
21~28	$DB7 \sim DB0$	8 bits data bus
29	RD	Read control input
30	WR	Write control input
31	RS	Determines whether the data bits are data or a command.
		RS= "H" display data
		RS= "L" control data
32	RESETB	Reset input .
		REST= "L" the setting are initialised.
33	CSB	Chip select pin
34	PS1	6800-series/ 8080-series interface select pin.
35	PS0	Parallel/ serial data input select pin.

Supplied by: Midas Components Limited, Electra House, 32 Southtown Road, Great Yarmouth, Norfolk, NR31 0DU

5.0 BLOCK DIAGRAM

5.1 Interface with 6800-series MPU

CSB	NT7506
RS	De
/RD	
MR .	
DB0 to DB7	
RESETB	
	PS0 PS1
	CSB RS /RD /WR DB0 to DB7 RESETB VDD VDD

5.2 Interface with 8080-series MPU

CSB	NT7506
RS	RS
/RD /WR	E_RD
DB0 to DB7	RW_WR DB0 to DB7
RESETB	RESETB
VDD	PS0
VSS	PS1
	CSB RS /RD /WR DB0 to DB7 RESETB VDD VSS

6.0 OPERATING PRINCIPLE & DRIVING METHOD

- 6.1 Please refer to NT7506 V2.2 IC data sheet.
- 6.2 Instruction Description (based on IC spec ver as stated in 6.1 where the product is designed). This instruction description is for reference only. Customer is encouraged to always refer to the latest IC specification.

Instruction	RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description
Read display data	1	1				Rea	ad dat	a			Read data from DDRAM
Write display data	1	0	Write data							Write data into DDRAM	
Read status	0	1	BUSY	ON/ OFF	RES	0	0	0	1	0	Read the internal status
ICON control register ON/OFF	0	0	1	0	1	0	0	0	1	ICON	ICON=0: ICON disable (default) ICON=1: ICON enable & set the page address to 16
Set page address	0	0	1	0	1	1	P3	P2	P1	P0	Set page address
Set column address MSB	0	0	0	0	0	1	0	Y7	Y6	Y5	Set column address MSB
Set column address LSB	0	0	0	0	0	0	Y4	Y3	Y2	Y1	Set column address LSB
Set modify-read	0	0	1	1	1	0	0	0	0	0	Set modify-read mode
Reset modify-read	0	0	1	1	1	0	1	1	1	0	Release modify-read
Display ON/OFF	0	0	1	0	1	0	1	1	1	P	D=0:disply OFF D=1:display ON
	0	0	0	1	0	0	0	0	2811	XL	2-byte instruction to
Set initial display line register	0	0	×	S6	S5	S4	S 3	S2	S1	S0	specify the initial display line to realize vertical scrolling
Set initial COM0	0	0	0	11	0	0	0	1	×	(×))	2-byte instruction to
Register	0	0	K	C6	C5	C4	СЗ	C2	91	CO	specify the initial COM0 to realize vertical scrolling
Set partial display	00	0	0	27	0	0	1	0	×	×	2-byte instruction to set
duty ratio	0	20) D7	D6	D5	D4	D3	D2	D1	D0	partial display duty ratio
Set N-line inversion	0	0	0	1	00	0	1	1	× N4	×	2-byte instruction to set
Release N-line	0		$\left(\right)$	1	1	0	0	1	0	0	N-line inversion register Release N-line inversion
inversion	0	0	9		'	0		. '			mode
Reverse display ON/OFF	0	0	1	0	1	0	0	1	1	REV	REV=0: normal display REV=1:reverse display
Entire display ON/OFF	0	0	1	0	1	0	0	1	0	EON	EON=0:normal display EON=1:entire display ON
Power control	0	0	0	0	1	0	1	VC	VR	VF	Control power circuit operation
Select DC-DC step-up	0	0	0	1	1	0	0	1	DC1	DC0	Select the step-up of the internal voltage converter
Select regulator resistor	0	0	0	0	1	0	0	R2	R1	R0	Select internal resistance ratio of the regulator resistor
Set electronic	0	0	1	0	0	0	0	0	0	1	2-byte instruction to

Supplied by: Midas Components Limited, Electra House, 32 Southtown Road, Great Yarmouth, Norfolk, NR31 0DU

volume register	0	0	×	×	EV5	EV4	EV3	EV2	EV1	EV0	specify the reference voltage
Select LCD bias	0	0	0	1	0	1	0	B2	B1	B0	Select LCD bias
SHL select	0	0	1	1	0	0	SHL	×	×	×	COM bi-directional selection SHL=0: normal direction SHL=1: reverse direction
ADC select	0	0	1	0	1	0	0	0	0	ADC	SEG bi-directional selection ADC=0: normal direction ADC=1: reverse direction
Oscillator on start	0	0	1	0	1	0	1	0	1	1	Start the built-in Oscillator
Set power save mode	0	0	1	0	1	0	1	0	0	Ρ	P=0: normal mode P=1: sleep mode
Release power save mode	0	0	1	1	1	0	0	0	0	1	Release power save mode
Reset	0	0	1	1	1	0	0	0	1	0	Initialize the internal functions
Set data direction	×	×	1	1	1	0	1	0	0	0	2-byte instruction to
& display data length (DDL)	×	×	D7	D6	D5	D4	D3	D2	D1	DO	specify the number of data bytes
NOP	0	0	1	1	1	0	0	0	16	211-	No operation
Test Instruction	0	0	1	1	1	1	×	×	2 X	36	Don't use this instruction
	6	5	Ĩ	K			~/ //C			JU,	PWM PWM0 0 0 9PWM 0 1 9PWM 1 0 12PWM 1 1 15PWM
Set white mode 🔨	0	Q	1	0	n0(C	0	1	0	0	0	
and 1 st /2 nd frame set pulse width	%	0	WB3	WB2	WB1	WB0	WA3	WA2	WA1	WA0	frame
Set white mode	0	0	(1))	2	0	0	1	0	0	1	Set white mode and 3 rd /4 th
and 3 rd /4 th frame, set pulse width	0	0	WD3	WD2	WD1	WD0	WC3	WC2	WC1	WC0	frame
Set light gray mode	0	0	1	0	0	0	1	0	1	0	Set light gray mode and
and 1 st /2 nd frame, set pulse width	0	0	LB3	LB2	LB1	LB0	LA3	LA2	LA1	LA0	1 st /2 nd frame
Set light gray mode	0	0	1	0	0	0	1	0	1	1	Set light gray mode and
and 3 rd /4 ^m frame, set pulse width	0	0	LD3	LD2	LD1	LD0	LC3	LC2	LC1	LC0	3 rd /4 th frame
											
Set dark gray	0	0	1	0	0	0	1	1	0	0	
frame, set pulse	0	0	DB3	DB2	DB1	DB0	DA3	DA2	DA1	DA0	Set dark gray mode and 1 st /2 nd frame
Set dark grav	0	0	1	0	0	0	1	1	0	1	
mode and 3 rd /4 th frame, set pulse width	0	0	DD3	DD2	DD1	DDO	DC3	DC2	2 DC1	DC0	Set dark gray mode and 3 rd /4 th frame

Set black mode and and 1st/2nd frame, set pulse width 0 0 BB3 BB2 BB1 BB0 BA3 BA2 BA1 BA0 1st/2nd frame Set black mode and 3rd/4th frame, 0 0 1 0 0 1 1 0 1 1 Set black mode and 0 BC1 3rd/4th frame 0 BD3 BD2 BD1 BD0 BC3 BC2 BC0 set pulse width

0

1

1

1

Supplied by:

Set black mode

Midas Components Limited, Electra House, 32 Southtown Road, Great Yarmouth, Norfolk, NR31 0DU

Telephone: +44 (0)1493 602602 Fax: +44 (0)1493 665111

0

1

0

0

0

Email: sales@midasdisplays.com Website: www.midasdisplays.com

0

ABSOLUTE MAXIMUM KATINGS $(1a = 25 \text{ C}, V_{SS} = 0 \text{ V})$									
Parameter	Symbol	Min	Тур.	Max	Unit				
Supply voltage for Logic	V _{DD}	-0.3	-	7.0	V				
Supply voltage for LCD	V ₀ -Vss	-0.3	-	+19.8	V				
Input voltage	V _{IN}	-0.3	-	V _{DD} +0.3	V				
Operating temperature	Тор	-20	-	70	°C				
Storage temperature	T _{ST}	-30	-	80	°C				

7.0 ABSOLUTE MAXIMUM RATINGS ($Ta = 25^{\circ}C, V_{SS} = 0 V$)

Remarks: it is a normal characteristic that the LCD color and contrast will change (sometimes unevenness can be seen) under low temperature and high temperature environment. When the application temperature returns back to room temperature, LCD color and contrast will reverse back to its original color and contrast within 24 hours and its functionality is not affected.

8.0 ELECTRICAL CHARACTERISTICS ($Ta = 25^{\circ}C, V_{SS} = 0 V, V_{DD} = 3.3V$)

				, 66	, 22
Parameter	Symbol	Min	Тур.	Max	Unit
Supply voltage for LCD	V _{LCD} or V _{OP}	13.05	13.25	13.45	V
Input voltage	V _{IH}	$0.8 V_{DD}$	-	V _{DD}	V
input voltage	V _{IL}	V_{SS}	-	$0.2 V_{DD}$	V
Logic supply current	I _{DD}	-	-	300	μΑ
LCM supply current	I _{LCM}	-	-	1500	μΑ

Remarks: Please kindly set the supply voltage for LCD, V_{LCD} within the recommended Vop range. For high duty ratio or grayscale display, small mismatch (even 1%) between the required supply voltage for LCD (Vop) with the IC driving voltage (V_{LCD}) can cause cross-talk or display dim issue. It is unlikely for LCD maker and IC maker to have such high precision (<1%) on the Vop and V_{LCD} respectively. Thus it is strongly recommended default- V_{LCD} fine tuning is needed at customer side to ensure best LCD visual performance. Default- V_{LCD} fine tuning can be done using software method (electronic volume setting adjustment, OTP or MTP) or hardware method (external resistor trim pot or voltage regulator).

9.0 ELECTRO-OPTICAL CHARACTERISTICS

No	Item		Symbol	Measuring Conditions		Min.	Тур.	Max.	Unit	Remark									
					70°C		80	150											
		Rise	Tr		25 °C		150	250											
1	Response			ψυ	-20 °C	-	2000	3000	me	Nata (a)									
1	Time		Tf										0 00	70 °C		120	200	1115	14010 (a)
		Fall		$\Phi = 0_{\circ}$ $\Theta = 0_{\circ}$	25 °C		200	300											
				T -	-20 °C		5000	7000											
			θ	$\phi=0^{\rm o}$	25 °C	30	35												
r	Viewing Ang	gle	θ	φ=180°	25 °C	30	35		Dog	Note (b)									
2	$(CR \ge 2)$		$CR \ge 2$) $\theta \qquad \phi = 90$		25 °C	30	35		Deg										
			θ	φ=270°	25 °C	30	35												
3	Contrast Rat	tio	CR	-	25 °C	8	20		-	Note (c)									

Supplied by:

Midas Components Limited, Electra House, 32 Southtown Road, Great Yarmouth, Norfolk, NR31 0DU

10.0 BACKLIGHT SPECIFICATION

10.1 LED Backlight Absolute Maximum Ratings (T_a=25°C)

Item	Symbol	Conditions	Min	Max	Unit
Absolute maximum forward current	If_{m}	-	-	2 × 60	mA
Peak forward current	If _p	1 msec plus, 1/10 duty cycle	-	2 × 200	mA
Reverse voltage	Vr	-	-	3	V
Power dissipation	P _b	-	-	2×105	mW
Operating temperature range	T _{opr}	-	-20	70	°C
Storage temperature range	T _{stg}	-	-30	80	°C

Supplied by: Midas Components Limited, Electra House, 32 Southtown Road, Great Yarmouth, Norfolk, NR31 0DU

Telephone: +44 (0)1493 602602 **Fax:** +44 (0)1493 665111

Item	Symbol	Min.	Тур.	Max.	Unit	Conditions
Forward voltage	Vf	3.1	3.3	3.5	V	If=2x30mA
Luminance	Lv	200	-	-	cd/m ²	T=25°C
Chromaticity	Х	0.26	-	0.30	-	
coordinates	Y	0.28	-	0.32	-	
Reverse current	Ir	-	-	20	μΑ	Vr=3V
Uniformity	Δ	70%	-	-	%	Min/max*100%

The luminance is the average value of 9 point. The measurement instrument is $BM{-7}$ luminance Colorimeter. The field = 1.0 ABS.

10.3 LED Backlight Circuit Diagram (LED 2*2=4 dies)

10.4 LED Electrical Characteristics

Supplied by:

Midas Components Limited, Electra House, 32 Southtown Road, Great Yarmouth, Norfolk, NR31 0DU

Telephone: +44 (0)1493 602602 **Fax:** +44 (0)1493 665111

11.0 STANDARD SPECIFICATION FOR RELIABILITY

	Environmental Test									
No.	Test Item	Content of Test	Test Condition	Applicable Standard						
1	Low temperature storage	Endurance test applying the low storage temperature for a long time.	-30+/-3°C for 96Hrs							
2	High Temperature Storage	Endurance test applying the high storage temperature for a long time.	80+/-3 °C for 96Hrs							
3	Moisture Temperature Operation	Endurance test applying the electric stress and temperature / humidity stress to the element for a long time.	40+/-3 °C, 90%RH for 240Hrs							
4	Temperature Cycling	Endurance test applying the low and high temperature cycle.	-30°C/30min, +80°C/30min, 10 cycles							
		Mechan	ical Test							
5	Drop Test	Endurance test applying the drop during transportation.	Packed, 100cm free fall (6 sides, 1 corner, 3edges)							

11.1 Standard specification of Reliability Test

Remarks:

1) For operation test, above specification is applicable when test pattern is changing during entire operation test.

2) Inspections after reliability tests are performed when the display temperature resumes back to room temperature.

3) It is a normal characteristic that some display abnormality can be seen during reliability test. If the display abnormality can resume back to normal condition at room temperature within 24hours, there is no permanent destruction over the display. The display still possesses its functionality after reliability tests.

11.2 Failure Judgment Criteria

After the reliability tests above, test sample shall be let return to room temperature and humidity for at least 4 hours before final tests are carried out.

Criterion Item	Failure Judgment Criteria
Electrical characteristic	Electrical short and open.
Mechanical characteristic	Out of mechanical specification
Optical characteristic	Out of the Appearance Standard

12.0 QUALITY ASSURANCE

12.1 Acceptable Quality Level (AQL)

Each lot should satisfy the quality level defined as follows:

- a) Inspection method: MIL-STD-105E Level II normal one time sampling
- b) AQL level

Category	AQL	Definition	
Major	0.25%	Functional defective as product	
Minor	1.00%	Satisfy all functions as product but not satisfy cosmetic standard	

12.2 Conditions of Inspection

The inspection should be performed under following conditions:

- a) Under 2 pieces of 30W white fluorescent lamps located 1m height from the LCD module.
- b) 30cm view distance vertically from the LCD panel.
- c) Under normal temperature $20 \sim 25^{\circ}$ C and normal humidity $60 \pm 15\%$ RH.
- d) LCD driving voltage at stated in the specification and within ± 0.5 V of the typical value at 25°C.

12.3 Cosmetic Screening Criteria

No	Defect	Judgment Criteria			
1	Spots/Dust /Bubble (Round type)	Size, d (mm) $d \le 0.15$ $0.15 < d \le 0.20$ $d > 0.20$	Acceptable	Acceptable quantity in active area Disregard 3 0	
2	Dust/Scratches/ Black streak (Line type)	Width, W (mm) $W \le 0.02$ $W \le 0.03$ $W \le 0.05$ $W > 0.05$	Length, L (mm) Disregard $L \le 1.0$ $L \le 2.0$ Disregard	Acceptable quantity in active area Disregard Disregard 3 0	Minor
3	Allowable density	Above defects should be separated more than 5mm each other.			Minor
4	Rainbow	Obvious uneven color (rainbow) shall not be noticeable.			Minor
5	Display condition	Dim display on the patterns, extra pattern and short circuit are not acceptable.			Major
6	No display or missing display	The patterns of dis missing display are	Major		

Note: d = (long length + short length) / 2

13.0 PRECAUTIONS FOR USING LCD MODULE

13.1 Handing Precautions

- 13.1.1 The display panel is made of glass and polarizer. Do not subject it to mechanical shock by dropping or impact which may cause chipping especially on the edges.
- 13.1.2 Do not touch, push or rub the exposed polarizers with anything harder than an HB pencil lead (glass, tweezers, etc.). The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully.
- 13.1.3 If the display surface becomes contaminated, breathe on the surface and gently wipe it with a soft dry cloth. If it is heavily contaminated, moisten

Supplied by: Midas Components Limited, Electra House, 32 Southtown Road, Great Yarmouth, Norfolk, NR31 0DU

cloth with Isopropyl alcohol or ethyl alcohol. Avoid using solvents like acetone (ketene), water, toluene, ethanol to clean the polarizer surface.

- 13.1.4 Please keep the temperature within specified range for use and storage. Polarization degradation, bubble generation or polarizer peel-off may occur with high temperature and high humidity.
- 13.1.5 Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.
- 13.1.6 Install the LCD Module by using the mounting holes. When mounting the LCD module make sure it is free of twisting, warping and distortion.
- 13.1.7 Exercise care to minimize corrosion of the electrode. Corrosion of the electrodes is accelerated by water droplets, moisture condensation or a current flow in a high-humidity environment.
- 13.1.8 NC terminal should be open. Do not connect anything.
- 13.1.9 If the logic circuit power is off, do not apply the input signals.
- 13.1.10 Avoid contacting oil and fats.
- 13.1.11 Condensation on the surface and contact with terminals due to cold will damage, stain or dirty the polarizers. After products are tested at low temperature they must be warmed up in a container before coming is contacting with room temperature air.
- 13.1.12 Wipe off saliva or water drops immediately, contact with water over a long period of time may cause deformation or color fading.

13.2 Electro-Static Discharge Control

- 13.2.1 Since this module uses a CMOS LSI, the same careful attention should be paid to electrostatic discharge as for an ordinary CMOS IC.
- 13.2.2 Be sure to ground the body when handling the LCD modules. Tools required for assembling, such as soldering irons, must be properly grounded.
- 13.2.3 To reduce the amount of static electricity generated, do not conduct assembling and other work under dry conditions. To reduce the generation of static electricity, be careful that the air in the work is not too dried. A relative humidity of 50%-60% is recommended.
- 13.2.4 The LCD module is coated with a film to protect the display surface. Exercise care when peeling off this protective film since static electricity may be generated.
- 13.2.5 When soldering the terminal of LCM, make certain the AC power source for the soldering iron does not leak.

13.3 Precaution for soldering to the LCM

- 13.3.1 Observe the following when soldering lead wire, connector cable and etc. to the LCD module.
 - Soldering iron temperature: 300 ~ 350°C.
 - Soldering time: ≤ 3 sec.
 - Solder: eutectic solder.

Above is a recommended approach. Due to different solder composition and processing method, it is recommended that customer to study and fine tuning their soldering process parameters accordingly.

13.3.2 If soldering flux is used, be sure to remove any remaining flux after finishing to soldering operation. (This does not apply in the case of a nonhalogen type of flux.) It is recommended that you protect the LCD surface with a cover during soldering to prevent any damage due to flux spatters.

13.4 Precautions for Operation

- Viewing angle varies with the change of liquid crystal driving voltage 13.4.1 (V_0) . Adjust V_0 to show the best contrast.
- 13.4.2 Driving the LCD in the voltage above the limit shortens its lifetime.
- Response time is greatly delayed at temperature below the operating 13.4.3 temperature range. However, it will recover when it returns to the specified temperature range.
- If the display area is pushed hard during operation, the display will 13.4.4 become abnormal. However, it will return to normal if it is turned off and then back on.
- 13.4.5 When turning the power on, input each signal after the positive/negative voltage becomes stable (below figure is a general illustration where typical value depends on individual product design).

13.5 Storage

13.5.1

When storing LCDs as spares for some years, the following precautions are necessary.

- Store them in a sealed polyethylene bag. If properly sealed, there is no need for desiccant.
- Store them in a dark place. Do not expose to sunlight or fluorescent light, keep the temperature between 0°C and 35°C.

13.5.2 Environmental conditions:

- Do not leave them for more than 168hrs, at 60°C. •
- Should not be left for more than 48hrs. at -20°C.

13.6 Safety

- 13.6.1 It is recommended to crush damaged or unnecessary LCD into pieces and wash them off with solvents such as acetone and ethanol, which should later be burned.
- 13.6.2 If any liquid leaks out of a damaged glass cell and comes in contact with the hands, wash off thoroughly with soap and water.

14.0 LOT NUMBERING SYSTEM

14.1 **Definition of Lot Number**

One lot means the delivery date and times to customer at one time.

<u>YYMMDD XXX</u>

- (1) Manufacturing date (COG bonding) (YY: Year, MM: Month, DD: Day)
- (2) Serial number starts from A01,A02.....A99,B01,B02.....

14.2 Location of datecode number

Supplied by: Midas Components Limited, Electra House, 32 Southtown Road, Great Yarmouth, Norfolk, NR31 0DU

15.0 PACKAGING STANDARD

Product No.	JIC-MSGF9622-09	Recycle	No	
Product Name	LCD Module	Recycle		
Quantity / each box	144 pcs	Box Material	Paper Carton	
Outer carton	46.5 cm $\times 40.5$ cm $\times 30.5$ cm	Box Type	New	
Box size	40.5cm × 40.5cm × 50.5cm			
Quantity / inner box	$12 \times 6 \times 2 = 144$ pcs	Weight	-ka	
Quantity /outer box	$12 \times 0 \times 2 = 144 \text{pcs}$		- <u>~</u> g	

There are 12 pcs LCD per each anti-static plastic plate. There are 6 layer plastic plates per each inner carton box.

There are 2 inner carton box per each outer carton box.

Standard of specific chemical substance

- 1. Cadmium and Cadmium Compounds
- 2. Hexavalent Chromium Compounds
- 3. Lead and Lead Compounds
- 4. Mercury and Mercury Compounds
- 5. Polybrominated Biphenyls (PBBs)
- 6. Polybrominated Diphenyl ethers (PBDEs)

Less than 100ppm Less than 1000ppm Less than 1000ppm Less than 1000ppm Less than 1000ppm Less than 1000ppm

17.0 LIMITED WARRANTY

Unless agreed between JIC and customer, JIC will replace or repair any of its LCD modules, which are found to be functionally defective when inspected in accordance with JIC LCD acceptance standards (copies available upon request) for a period of one year from date of shipments. Cosmetic/visual defects must be returned to JIC within 90 days of shipment. Confirmation of such date shall be based on freight documents. The warranty liability of JIC limited to repair and/or replacement on the terms set forth above. JIC will not be responsible for any subsequent or consequential events.

18.0 MANUFACTURER CONTACT:

18.1 Manufacturer Name:

JETUP ELECTRONIC (SHENZHEN) COMPANY LIMITED Factory Address: Sanyidui Industrial Zone, Zhoushi Road Jiuwei Community, Xixiang Street,Bao'an District, Shen Zhen,Guangdong, Postal Code 518102,People's Republic Of China. Telephone No : 86-755-27827222 Fax No : 86-755-27825120

Email: sales@midasdisplays.com Website: www.midasdisplays.com