11. Transceiver Link Debugging Using the System Console

This chapter describes how to use the Transceiver Toolkit in the Quartus® II software. The Transceiver Toolkit in the Quartus II software allows you to quickly test the functionality of transceiver channels and helps you improve the signal integrity of transceiver links in your design.

You can use an example design available on the Altera® website if you want to immediately start using the Transceiver Toolkit, or you can create a custom design.

In today’s high-speed interfaces, stringent bit error rate (BER) requirements are not easy to meet and debug. You can use the Transceiver Toolkit in the Quartus II software to check and improve the signal integrity of transceiver links on your board before you complete the final design, saving you time and helping you find the best physical medium attachment (PMA) settings for your high-speed interfaces.

This chapter contains the following sections:

- “Transceiver Toolkit Overview”
- “Transceiver Link Debugging Design Examples” on page 11–3
- “Setting Up Tests for Link Debugging” on page 11–3
- “Using Tcl in System Console” on page 11–13
- “Usage Scenarios” on page 11–14
- “Quick Guide to Using the Transceiver Toolkit in the Quartus II Software” on page 11–18

Transceiver Toolkit Overview

The underlying framework for the Transceiver Toolkit is the System Console. The System Console performs low-level hardware debugging of your design. The System Console provides read and write access to the IP cores instantiated in your design. Use the System Console for the initial bring-up of your PCB and low-level testing.

For information about the System Console, refer to the Analyzing and Debugging Designs with the System Console chapter in volume 3 of the Quartus II Handbook. For more information about getting training to use the System Console, refer to the Altera Training page of the Altera website.

The Transceiver Toolkit allows you to perform run-time tasks, including performing high-speed link tests for the transceivers in your devices. The Transceiver Toolkit allows you to test your high-speed interfaces in real-time. To launch the Transceiver Toolkit, in the main Quartus II window, on the Tools menu, click Transceiver Toolkit.
Transceiver Toolkit User Interface

The Transceiver Toolkit has an intuitive GUI that you open from the Tools menu of the Quartus II software. It is designed to be run from within the System Console framework. The interface is a window that consists of four panes. A left navigation System Explorer shows you connection information for the system you are testing, including designs, design instances, and scripts.

Once you load a project in the System Console, all the design information is populated under the System Explorer. The Messages pane shows error messages and warnings for any actions you perform in other panes. You can enter Tcl commands through the Tcl Console pane. Most of the actions you can perform in the GUI can also be performed with Tcl commands. Most Tcl commands are listed in this chapter.

The Transceiver Toolkit Channel Manager GUI consists of three tabs, including the Transmitter Channels tab, the Receiver Channels tab, and the Transceiver Links tab. These tabs have various control buttons, which you click to open the Auto Sweep Control panel and the EyeQ panel. From these three tabs you can also open Control Channel and Control Link panels, which allow you to view and modify transceiver and test settings.

You can open Link Control Channel

For more information, refer to About the Transceiver Toolkit in Quartus II Help.

Transceiver Auto Sweep

You can sweep ranges for your transceiver PMA settings and run tests automatically with the auto sweep feature. You can store a history of the test runs and keep a record of the best PMA settings. You can then use these settings in your final design.

For more information, refer to the Transceiver Auto Sweep Panel in Quartus II Help.

Transceiver EyeQ

You can determine signal integrity with the EyeQ feature. The EyeQ feature in the Transceiver Toolkit allows you to create a bathtub curve or eye diagram (Stratix V) to have a metric other than BER to measure signal quality. After you run the EyeQ feature you can view the data in the Report pane of the Transceiver Toolkit and export the data in Comma-Separated Value (.csv) format for further analysis.

For more information about the EyeQ feature, refer to Working with the Transceiver Toolkit in Quartus II Help.

For more information, refer to AN 605: Using the On-Chip Signal Quality Monitoring Circuitry (EyeQ) Feature in Stratix IV Transceivers.

Control Links

You can test the transmitter and receiver channel links in your design in manual mode with the channel control features. The channel control panels allow you to view and manually modify settings for transmitter and receiver channels while the channels are running.
For more information about the Transceiver Toolkit, refer to Working with the Transceiver Toolkit in Quartus II Help.

Transceiver Link Debugging Design Examples

Altera provides design examples to assist you with setting up and using the Transceiver Toolkit. To learn more about the version of the Quartus II software used to create these design examples, the target device, and development board details, refer to the readme.txt of each example. Each example is verified and tested with the Quartus II software version referenced in the readme.txt. However, you may be able to use these examples with a later version of the Quartus II software.

If you are recompiling the design examples for a different board, refer to “Changing Pin Assignments” on page 11–8 to determine which pin assignments you must edit.

Download the Transceiver Toolkit design examples from the On-Chip Debugging Design Examples page of the Altera website.

For a quick guide to using design examples with the Transceiver Toolkit, refer to “Working with Design Examples” on page 11–19.

Setting Up Tests for Link Debugging

Testing signal integrity for high-speed transceiver links involves using data patterns, such as pseudo-random binary sequences (PRBS). Although the sequences appear to be random, they have specific properties that you can use to measure the quality of a link. In the example designs available on the Altera website, data patterns are generated by a pattern generator and are then transmitted by the transmitter. The transceiver on the far end can then be looped back so that the same data is then received by the receiver portion of the transceiver. The data obtained is then checked by a data checker to verify any bit errors.
Figure 11–1 and Figure 11–2 show examples of the test setup for the transceiver link debugging tool. The figures show a setup that is similar to the design examples that you can download from the On-Chip Debugging Design Example page of the Altera website. You can also have the transmitter on one FPGA and the receiver on a different FPGA.

Figure 11–1. Transceiver Link Debugging Tool Test Setup

Figure 11–2 shows a similar test setup for the second design example described in this section, except that there are four sets of transceivers and receivers rather than one.

Figure 11–2. Transceiver Link Debugging Tool Test Setup (Four Channels)

The design examples use the Qsys system integration tool and contain the following components:
Chapter 11: Transceiver Link Debugging Using the System Console

Transceiver Link Debugging Design Examples

- Custom PHY IP Core or Low Latency PHY IP Core
- Avalon-ST Data Pattern Generator
- Avalon-ST Data Pattern Checker
- JTAG-to-Avalon Master Bridge

For a quick guide to set up tests for link debugging with the Transceiver Toolkit, refer to “Working with Design Examples” on page 11–19.

Custom PHY IP Core

You can use the Custom PHY IP core to test all possible parallel data widths of the transceivers in these design examples. You can configure the Custom PHY IP core as 8, 10, 16, 20, 32 or 40-bit. The sweep tools disable word alignment during sweep, which is enabled to simplify timing closure. You can also use the Data Format Adapter IP component as required. You can have one or multiple channels in your design.

You use Qsys to define and generate the Custom PHY IP core. The Custom PHY IP core in the design examples that you can download from the On-Chip Debugging Design Example page of the Altera website are generated for Stratix IV and Stratix V devices.

To use the Custom PHY IP core with the Transceiver Toolkit, perform the following steps:

1. Set the following parameters to meet your project requirements:
 - Number of lanes
 - Bonded group size
 - Serialization factor
 - Data rate
 - Input clock frequency
2. Turn on Avalon data interfaces.
3. Disable 8B/10B
4. Set Word alignment mode to manual
5. Disable rate match FIFO
6. Disable byte ordering block

For more information about the protocol settings used in the Custom PHY IP core, refer to the “Custom PHY IP User Core” section of the *Altera Transceiver PHY IP Core User Guide*.

Transceiver Reconfiguration Controller

This IP is necessary to control PMA settings and modify other transceiver settings in Stratix V devices. It must be connected to all PHY IP (custom or low_latency) to be controlled by the Transceiver Toolkit. The reconfig_from_xcvr and reconfig_to_xcvr ports should be connected together.
For further information, refer to the *Altera Transceiver PHY IP Core User Guide*.

These settings must be turned on:
- Enable Analog controls
- Enable EyeQ block
- Enable AEQ block

Low Latency PHY IP Core

Use Low Latency PHY IP Core as follows:
- To get more than 8.5 gbps in GT devices.
- To use PMA direct mode, such as when using six channels in one quad.

To meet your project requirements, use the same set of parameters that you would use with the Custom PHY IP core.

The phase compensation FIFO mode must be set to embedded above certain data rates. The Transceiver Toolkit provides a warning when you exceed the data rate. To be in PMA direct mode, you must set the phase compensation FIFO mode to none, which supports a smaller range of data rates.

The Low Latency PHY must have the loopback setting set to serial loopback mode. Otherwise, the serial loopback controls within the tool do not function.

For more information about the protocol settings used in the Low Latency PHY IP core, refer to the “Low Latency PHY IP User Core” section of the *Altera Transceiver PHY IP Core User Guide*.

Avalon-ST Data Pattern Generator

The generator produces standard data patterns that you can use for testing. The patterns supported include prbs7, prbs15, prbs23, prbs31, high frequency, and low frequency.

This component produces data patterns in the test flow. You can use a variety of popular patterns to test transceiver signal integrity (SI). The data pattern generator component is provided as an Altera IP core component. You can use any pattern, but you must have a checker to verify that you receive that pattern properly.

When you use the Avalon®-ST Data Pattern Generator, the width may be different than the width the Custom PHY IP core or Low Latency PHY IP core is configured with, so you may need to use a data format adaptor. The Avalon-ST Data Pattern Generator component is available in the Qsys component library tree. The Avalon-ST Data Pattern Checker is available under **Debug and Performance** in the Qsys component library tree. The adaptor can be automatically inserted and properly configured by Qsys with the **Insert Avalon-ST Adapters** command.

The Avalon-ST Data Pattern Generator generates industry-standard data patterns. Data patterns are generated on a 32-bit or 40-bit wide Avalon streaming source port.

For more information about both SOPC Builder and Qsys interconnect fabric, refer to the **System Interconnect Fabric for Streaming Interfaces** chapter in the *SOPC Builder User Guide*.
Figure 11–3 shows the wizard page that you use to set parameters for the Avalon-ST Data Format Adapter.

Figure 11–3. Avalon-ST Data Format Adapter

Data Checker

The Avalon-ST Data Pattern Checker is provided as a Qsys component. It checks the incoming data stream against standard test patterns, which include PRBS7, PRBS15, PRBS23, PRBS31, High Frequency, and Low Frequency. It is used in conjunction with the Avalon-ST Data Pattern Generator to test transceiver links.

The Avalon-ST Data Pattern Checker is available under **Debug and Performance** in the Qsys component library tree. The checker is the core logic for data pattern checking. Data patterns are accepted on 32-bit or 40-bit wide Avalon streaming sink ports.

For more information, refer to *Avalon Streaming Data Pattern Generator and Checker Cores* chapter in the *Embedded Peripherals User Guide*.

Use the design examples as a starting point to work with a particular signal integrity development board. You can also modify and customize the design examples to match your intended transceiver design. When you use the Transceiver Toolkit, you can check your transceiver link signal integrity without the completed final design.
Use the design examples to quickly test the functionality of the receiver and transmitter channels in your design without creating any custom designs with data generators and checkers. You can quickly change the transceiver settings in the design examples to see how they affect transceiver link performance. You can also use the Transceiver Toolkit to isolate and verify the transceiver links without having to debug other logic in your design.

Compiling Design Examples

Once you have downloaded the design examples, open the Quartus II software version 10.0 or later and unarchive the project in the example. If you have access to the same development board with the same device as mentioned in the `readme.txt` file of the example, you can directly program your device with the provided programming file in that example. If you want to recompile the design, you must make your modifications to the configuration in Qsys, re-generate in Qsys, and recompile the design in the Quartus II software to get a new programming file.

If you have the same board as mentioned in `readme.txt` file, but a different device on your board, you must choose the appropriate device and recompile the design. For example, some early development boards are shipped with engineering sample devices.

If you have a different board, you must edit the necessary pin assignments and recompile the design examples.

Changing Pin Assignments

You can edit pin assignments for various development kits. The following paragraphs are examples of pin assignments for Stratix IV GX development kits.

For further information about other development kits, read the `readme.txt` file which comes with the design examples. For more information on the pinouts refer to their respective user guide found on the All Development Kits page of the Altera website.

Table 11–1 shows the pin-assignment edits for the Stratix IV Transceiver Signal Integrity Development Kit (DK-SI-4SGX230N). You must make these assignments before you recompile your design.

<table>
<thead>
<tr>
<th>Top-Level Signal Name</th>
<th>I/O Standard</th>
<th>Pin Number on DK-SI-4SGX230N Board</th>
</tr>
</thead>
<tbody>
<tr>
<td>REFCLK_GXB2_156M25 (input)</td>
<td>2.5 V LVTTL/LVC MOS</td>
<td>PIN_G38</td>
</tr>
<tr>
<td>S4GX_50M_CLK4P (input)</td>
<td>2.5 V LVTTL/LVC MOS</td>
<td>PIN_AR22</td>
</tr>
<tr>
<td>GXB1_RX1 (input)</td>
<td>1.4-V PCML</td>
<td>PIN_R38</td>
</tr>
<tr>
<td>GXB1_TX1 (output)</td>
<td>1.4-V PCML</td>
<td>PIN_P36</td>
</tr>
</tbody>
</table>
Table 11–2 shows the pin-assignment edits for the Stratix IV GX development kit (DK-DEV-4SGX230N). You must make these assignments before you recompile your design.

<table>
<thead>
<tr>
<th>Top-Level Signal Name</th>
<th>I/O Standard</th>
<th>Pin Number on DK-DEV-4SGX230N Board</th>
</tr>
</thead>
<tbody>
<tr>
<td>REFCLK_GXB2_156M25 (input)</td>
<td>LVDS</td>
<td>PIN_AA2</td>
</tr>
<tr>
<td>S4GX_50M_CLK4P (input)</td>
<td>2.5 V LVTT/LVCMOS</td>
<td>PIN_AC34</td>
</tr>
<tr>
<td>GXB1_RX1 (input)</td>
<td>1.4-V PCML</td>
<td>PIN_AU2</td>
</tr>
<tr>
<td>GXB1_TX1 (output)</td>
<td>1.4-V PCML</td>
<td>PIN_AT4</td>
</tr>
</tbody>
</table>

Similarly, you can change the pin assignment for your own board and recompile the design examples.

Transceiver Toolkit Link Test Setup

To set up testing with the Transceiver Toolkit, perform the following steps:

1. Ensure the device board is turned on and is available before you start the System Console or the Transceiver Toolkit. The connections are detected at startup of the tool.

2. Program the device either with the programming file provided with the .zip file or with the new programming file after you recompile your project.

3. Open the Transceiver Toolkit from the Tools menu in the Quartus II software.

4. Make sure the device is correctly programmed with the programming file in step 1 and that board settings, such as the jumper settings, are correct.

Loading the Project in System Console

From the Transceiver Toolkit, load the Quartus project file (*.qpf) by going to the File menu and selecting Load Project. Whether you have recompiled the design or not, the unzipped contents of the examples contain this file. After the project is loaded, you can review the design information under System Explorer in the System Console.

Linking the Hardware Resource

Expand the devices tree in the System Explorer pane and find the device you are using. Right click on a design and choose a device to link to. This is only necessary if you do not use the usercode for automatic linking. If you are using more than one Altera board, you can set up a test with multiple devices linked to the same design. This is useful when you want to perform a link test between a transmitter and receiver on two separate devices.
For Transceiver Toolkit version 11.1 and later, to automatically instantiate and link designs after they have been loaded into the System Console, click Assignments on the main menu of the Quartus II software, click Device on the Device and Pin Options dialog box, and then turn on Auto usercode. When the project is loaded any devices programmed with this project will automatically be linked. Prior to Transceiver Toolkit version 11.1, you must manually load your design as described in the previous paragraphs.

To set up the transmitter channels, receiver channels, and transceiver links, go to the Tools menu and select Transceiver Toolkit, or from the Welcome to the Transceiver Toolkit tab, click on the Transceiver Toolkit to open the main Transceiver Toolkit window. You can then create the channels, as described in the following section.

Creating the Channels

After you open the Transceiver Toolkit, there are three tabs in the System Console, including Transmitter Channels, Receiver Channels, and Transceiver Links tabs.

The Transmitter Channel and Receiver Channel tabs are automatically populated with the existing transmitter and receiver channels in the design, respectively. However, you can create your own additional transmitter and receiver channels in a situation where the expected configuration was not automatically populated. The situation may occur if in the Link Channel tab you create a link between a transmitter and receiver channel. Links define connectivity between a particular transmitter channel and a receiver. The link forms the main logical unit that you test with the Transceiver Toolkit.

Links are automatically created when a receiver channel and transmitter channel share a transceiver channel. However, if you are not actually looping data back, but using it to transmit or receive to another transceiver channel, you must define and create a new link. For example, in Figure 11–4, a link is created in the Link Channel tab between a transmitter and receiver channels of the same device.

Figure 11–4. Creating a Link Channel in Transceiver Toolkit
Chapter 11: Transceiver Link Debugging Using the System Console

Transceiver Toolkit Link Test Setup

You can also perform a physical link test without loopback by connecting one device transmitter channel to another device receiver channel. In this channel you would define that connection into a link, and tests would run off that link. For example, as shown in Figure 11–2, use the transmitter and receiver channels of the same device and loop them back on the far side of the board trace to check the signal integrity of your high-speed interface on the board trace. You can select the link that you created in the Transceiver Toolkit and use the different buttons to start and control link tests.

You can also communicate with other devices that have the capability to generate and verify test patterns that Altera supports.

Running the Link Tests

Use the Link Channel tab options to control how you want to test the link. For example, use the Auto Sweep feature to sweep various transceiver settings parameters through a range of values to find the results that give the best BER value. You can also open Transmitter, Receiver and Link Control panels to manually control the PMA settings and run individual tests. You can change the various controls in the panels to suit your requirements.

To perform an auto sweep link test, perform the following steps:

1. Select the link to test and click Auto Sweep to open the auto sweep panel for the selected link.
2. Set the test pattern to test.
3. Select either Smart Auto Sweep or Full Auto Sweep. Full Auto Sweep runs a test of every combination of settings that falls within the bounds that you set.

Smart Auto Sweep minimizes the number of tests run to reach a good setting, which saves you time. Smart Auto Sweep does not test every possible setting, so may not achieve the very best setting possible; however, it can quickly find an acceptable setting.

4. Set up run lengths for each test iteration. The run length limits you set are ignored when you run a smart sweep.
5. Set up the PMA sweep limits within the range you want to test.
6. Press Start and let the sweep run until complete.

After an Auto Sweep test has finished at least one iteration, you can create a report by clicking Create Reports, which opens the Reports tab. The report shows data from all tests that you have completed. You can sort by columns and filter data by regular expression in the Reports tab. You can also export the reports to a .csv file by right clicking on a report.

If you found a setting with the Smart Sweep mode, use the reported best case PMA settings, and apply a +/- 1 setting to them, returning the test to Full Auto Sweep mode. This helps you determine if the settings you chose are the best.

You can then choose your own runtime conditions, reset the Auto Sweep feature by pressing Reset, and re-running the tests to generate BER data based on your own run length conditions. This procedure allows you to obtain a good setting for PMA faster. Review the BER column at the end of the full sweep to determine the best case.
When setting smart sweep ranges, try to include the 0 setting as often as possible, as that setting often provides the best results.

Viewing Results in the EyeQ Feature

Advanced FPGA devices such as Stratix IV have built-in EyeQ circuitry, which is used with the EyeQ feature in Transceiver Toolkit. The EyeQ feature allows you to estimate the horizontal eye opening at the receiver of the transceiver. With this feature, you can tune the PMA settings of your transceiver, which results in the best eye and BER at high data rates.

Stratix V EyeQ circuitry adds the ability to see the vertical eye opening in addition to the horizontal eye opening at the receiver of the transceiver. With this view of the eye, you have a better idea of what is going on as you tune the PMA settings.

For more information about the EyeQ feature, refer to AN 605: Using the On-Chip Signal Quality Monitoring Circuitry (EyeQ) Feature in Stratix IV Transceivers.

To use the EyeQ feature in the Transceiver Toolkit to view the results of the link tests, perform the following steps:

1. Select a Transceiver Link or Receiver Channel in the main Transceiver Toolkit panel that you want to run EyeQ against.

2. Click Control Link or Control Channel to open control panels. Use these control panels to set the PMA settings and test pattern that you want the EyeQ feature to run against. You can check the report panel or Best Case column from an Auto Sweep run for the settings with the best BER value and enter those PMA values through the Transmitter and Receiver control panels.

3. Click EyeQ to open the EyeQ feature.

4. Review the test stop conditions and set them to your preference.

5. Choose a mode to run EyeQ.
 - **Eye Contour**—shows a BER contour graph of the eye. You can select a specific target bit error rate that the Transceiver Toolkit uses as a means to try to find the boundary. You can also select All, which allows the range of BER targets to be simultaneously found and shown.
 - **Bathtub**—only finds the horizontal width of the eye. You can choose options for a particular vertical step to sweep. You can also set the Transceiver Toolkit to sweep all vertical steps and get an overlay of multiple slices through the eye.

When at least one run has completed, you can click Create Report to view details of completed iterations of the sweep in a report panel.

6. Choose a horizontal and vertical interval, which allows you to skip steps to get a faster though rougher view of the eye. If time is critical this can help speed up the eye generation process, but results in less resolution as to the actual point of BER crossover.
7. Click **Run**. The EyeQ Feature gathers the current settings of the channel and uses those settings to start a sweep to create the eye. As the run is active you can view the status through the progress bar. Depending on the mode you chose, you will see a bathtub curve or eye contour. The width and height (if applicable) of the eye is displayed once the run is completed. If the eye is un-centered or falls off the edge and wraps around the other side, click **Center Eye** to center the data for easier viewing.

8. You can change run options such as BER target, vertical phase step, or intervals, and run again to collect more data. Switching between these options can show previously run data so you can easily compare. If you click **Create Report**, all data collected so far is shown in table format. If you change PMA settings, you must click **Reset** to clear all data and take in the new PMA settings to be used for testing. You can also click **Reset** to clear the data and collect a new set of data due to changing conditions or circumstances.

If you want to change PMA settings and re-run the EyeQ feature, make sure you first stop and reset the EyeQ feature. If you do not reset, the EyeQ feature continues testing based on the original PMA settings of the current test and overwrites any setting you may have changed through the control panel.

After you stop and reset the EyeQ feature, change settings in the link or receiver channel control panel. Then click **Start** on the EyeQ feature to start a new set of tests.

When you can see that you are running good PMA settings, the bathtub curve is wide, with sharp slopes near the edges. The curve may be up to 30 units wide. If the bathtub is narrow, maybe as small as two units wide, then the signal quality may be poor. The wider the bathtub curve, the wider the eye you have. Conversely, the smaller the bathtub curve, the smaller the eye.

For more information about how to use the EyeQ feature, including the differences between Stratix IV and Stratix V devices, refer to *Working with the Transceiver Toolkit* in Quartus II Help.

Using Tcl in System Console

System Console is the framework in the Quartus II software that supports the Transceiver Toolkit. System Console provides a number of Tcl commands that you can use to build a custom test routine script to test the transceiver link using the data generator and checker. System Console allows you to tune PMA parameter, such as those for changing DC gain. To get help on the Tcl commands available, type `help` in the Tcl console in System Console. To run a transceiver link test flow, perform the following. You can perform all the tasks with Tcl commands in System Console.

1. Load the Quartus II project.
2. Find and link the design and service path.
3. Find and open links to transmitter channels and receiver channels.
4. Set up PRBS patterns to run on the link.
5. Set up PMA settings on transmitter and receiver channels.
6. Use PIO logic to generate a rising edge to enable the word aligner.
7. Start the link test.
8. Poll the receiver for BER data.
9. When the test is finished, stop the link test.
10. Close the link.

For more information about Tcl commands, refer to the *Analyzing and Debugging Designs with the System Console* chapter in volume 3 of the *Quartus II Handbook*.

When you read the Tcl scripts provided with the design examples, they help you understand how the Tcl commands are used.

Running Tcl Scripts

The tasks that you perform with the Transceiver Toolkit GUI for setting up your test environment you can also save as Tcl scripts. For example, you can save the steps you perform for loading your project in the Transceiver Toolkit by clicking **Create Tcl setup script** on the File menu.

You can save your steps at various stages, such as when you add projects, create design instances, link designs to devices, and create transceiver links. You can run these scripts to reach the initial setup you created to get your specific configuration ready for debugging. All the saved scripts are shown under the **Scripts** in the **System Explorer**. You can execute a script by right-clicking on **Scripts** under the **System Explorer** in the Transceiver Toolkit, and then clicking **Run**, or you can double-click on the script. You can also execute scripts from the **System Console command line**.

Usage Scenarios

You can use the Transceiver Toolkit if you are debugging one device on one board or more than one device on a single or multiple boards. Usually for a device you have a single Quartus II design or project, but you can have one design targeted for two or more similar devices on the same or different boards.

Possible scenarios for how you can use the Transceiver Toolkit in those situations follow. The scenarios assume that you have programmed the device you are testing with the relevant **.sof**.

- “Linking One Design to One Device Connected By One USB Blaster Cable” on page 11–15
- “Linking Two Designs to Two Separate Devices on Same Board (JTAG Chained), Connected By One USB Blaster Cable” on page 11–15
- “Linking Two Designs to Two Separate Devices on Separate Boards, Connected to Separate USB Blaster Cables” on page 11–15
- “Linking Same Design on Two Separate Devices” on page 11–15
- “Linking Unrelated Designs” on page 11–16
- “Saving Your Setup As a Tcl Script” on page 11–16
- “Verifying Channels Are Correct When Creating Link” on page 11–16
- “Using the Recommended DFE Flow” on page 11–17
Usage Scenarios

- “Running Simultaneous Tests” on page 11–17
- “Enabling Internal Serial Loopback” on page 11–18

For further information on how to use the Transceiver Toolkit GUI to perform the following scenarios, refer to Working with the Transceiver Toolkit in Quartus II Help.

Linking One Design to One Device Connected By One USB Blaster Cable

The following describes how to link one design to one device by one USB Blaster cable.

1. Load the design for all the Quartus II project files you might need.
2. Link each device to an appropriate design (Quartus II project) if it has not auto-linked.
3. Create the link between channels on the device to test.

Linking Two Designs to Two Separate Devices on Same Board (JTAG Chained), Connected By One USB Blaster Cable

The following describes how to link two designs to two separate devices on the same board, connected by one USB Blaster cable.

1. Load the design for all the Quartus II project files you might need.
2. Link each device to an appropriate design (Quartus II project) if it has not auto-linked.
3. Open the project for the second device.
4. Link the second device on the JTAG chain to the second design (unless it auto-links).
5. Create a link between the channels on the devices you want to test.

Linking Two Designs to Two Separate Devices on Separate Boards, Connected to Separate USB Blaster Cables

The following describes how to link two designs to two separate devices on separate boards, connected to separate USB Blaster cables.

1. Load the design for all the Quartus II project files you might need.
2. Link each device to an appropriate design (Quartus II project) if it has not auto-linked.
3. Create the link between channels on the device to test.
4. Link the device you connected to the second USB Blaster cable to the second design.
5. Create a link between the channels on the devices you want to test.

Linking Same Design on Two Separate Devices

The following describes how to link the same design on two separate devices.
1. In the Transceiver Toolkit, open the Quartus II project file (.qpf) you are using on both devices.

2. Link the first device to this design instance. Follow the same linking method that you used on previous steps.

3. Link the second device to the design. Follow the same linking method that you used on previous steps.

4. Create a link between the channels on the devices you want to test.

Linking Unrelated Designs

Use a combination of the above steps to load multiple Quartus II projects and make links between different systems. You can perform tests on completely separate systems that are not related to one another. All tests run through the same tool instance.

Do not attempt to start multiple instances of the Transceiver Toolkit. You can only control multiple devices and run multiple tests simultaneously through the same instance of the Transceiver Toolkit.

Saving Your Setup As a Tcl Script

After you open projects and define links for the system so that the entire physical system is correctly described, use the command **Save Tcl Script** to create a setup script.

Close and reopen the Transceiver Toolkit.

Open the scripts folder in **System Explorer** and double-click the script to reload the system. You can also right-click and choose **Run Script**, or use the menu command **Load Script** to run the appropriate script.

Verifying Channels Are Correct When Creating Link

After you load your design and link your hardware, you should verify that the channels you have created are correct and looped back properly on the hardware. You should be able to send the data patterns and receive them correctly.

Perform the following steps before you perform Auto Sweep or EyeQ tests to verify your link and correct channel, which may save time in the work flow.

1. Assuming that you have completed the system setup, choose the transmitter channel, and click **Control Transmitter Channel**.

2. Set the test pattern to **prbs 7**.

3. Start the pattern generator, press **Start**.

4. Navigate to the control panel, choose the receiver channel, and click **Control Receiver Channel**.

5. Set the test pattern to **prbs 7**.

6. Press **Start**.
7. Verify channels that the channels are correct, based on the following conditions:

 a. If the Run status is good (green), the receiver is receiving data. To verify that the data is coming from the expected transmitter, you can navigate to the transmitter and do either of the following:

 ■ Click **Stop** on the transmitter and see if **Data Locked** on the receiver turns off.
 ■ If the receiver shows 0 error bits, click **Inject Error** on the transmitter and see if that error shows up on the receiver.

 b. If the Run status is bad (yellow with flashing exclamation point), do either of the following:

 ■ The data quality is too poor to lock. You can manually adjust the PMA settings to see if you can get a lock. If not, use the Auto Sweep tool if you are certain the channel is correct.
 ■ The receiver and transmitter are not connected together. You either picked the wrong pair, or you have not made the physical connection between the pair.

After you have verified that the transmitter and receiver are talking to each other, create a link in the link tab with these two transceivers so that you can perform Auto Sweep and EyeQ tests with this pair.

Using the Recommended DFE Flow

To use the DFE flow recommended by Altera, perform the following steps:

1. Use the Auto Sweep flow to find optimal PMA settings while leaving the DFE setting **OFF**.
2. Take the best PMA setting achieved, if BER = 0. Then you do not have to do anything if you use this setting.
3. If BER > 0, then use this PMA setting and set minimum and maximum values in the Auto Sweep tool to match this setting. Set the **DFE MAX** range to limits for each of the three DFE settings.
4. Run the Auto Sweep tool to determine which DFE setting results in the best BER. Use these settings in conjunction with the PMA settings for the best results.

Running Simultaneous Tests

To run link tests simultaneously in one instance of the Transceiver Toolkit, perform the following steps:

1. Set up your system correctly with one of the previous set-up scenarios.
2. In the control panel for the link you work on, run either the Auto Sweep or EyeQ tool.
3. After you start the test, return to the Transceiver Toolkit control panel.
4. Select the control panel tab.
5. Open the Tools menu and click **Transceiver Toolkit**, which returns you to the control panel.
6. Repeat step 2 until all tests are run.

7. The control panel shows which links and channel resources are in use to help identify which channels already have tests started and their current run status.

Enabling Internal Serial Loopback

You can use the Transceiver Toolkit GUI control for serial loopback. In the Transceiver Toolkit version 11.1 and later to enable the serial loopback, check the box **Serial Loopback**. To enable the serial loopback in Tcl, use the System Console commands.

For more information, refer to *Working with the Transceiver Toolkit* in Quartus II Help.

Quick Guide to Using the Transceiver Toolkit in the Quartus II Software

This section provides a quick guide for using the Transceiver Toolkit, and includes the following:

- “Preparing to Use the Transceiver Toolkit” on page 11–18
- “Working with Design Examples” on page 11–19
- “Modifying Design Examples” on page 11–20
- “Setting a Link in the Transceiver Toolkit for High-Speed Link Tests” on page 11–21
- “Running Auto Sweep Tests” on page 11–22
- “Running EyeQ Tests” on page 11–22
- “Running Manual Tests” on page 11–23
- “Using a Typical Flow” on page 11–23
- “Following the Online Demonstration” on page 11–24

For more information about how to use the Transceiver Toolkit, refer to the *Altera Training* page of the Altera website.

Preparing to Use the Transceiver Toolkit

Following is a list of recommended prerequisites to get you prepared for using the Transceiver Toolkit:

- You should know how to use the Quartus II software.

 For further information on how to use the Quartus software, refer to the *Introduction to Quartus II Software*.

- Become familiar with an overview description of the Transceiver Toolkit as described in “Transceiver Toolkit Overview” on page 11–1.

- Design examples you may download from the Altera website were created using Qsys software, such that you should have knowledge of Qsys. Prior to Qsys, design examples were created with SOPC Builder. Knowledge of SOPC Builder will help with your understanding of Qsys.
You need some experience working with Altera high-speed transceiver devices, especially Stratix IV GX and Stratix V devices.

Working with the Transceiver Toolkit GUI is described in further detail in the Quartus II Help.

For more information, refer to Working with the Transceiver Toolkit in Quartus II Help.

You can find further reference materials, including Quartus II design examples, on the Altera website.

Working with Design Examples

You can download design examples from the Altera website, as described in “Transceiver Link Debugging Design Examples” on page 11–3. These design examples help you get started quickly using the Transceiver Toolkit without having to make your own designs to perform high-speed link tests.

The design example is a Qsys designed system using various components. The components include JTAG to Avalon Master Bridge, Custom PHY IP core, Low Latency PHY IP core, and data generator and checkers with their own data format and adapters. These components can be found in a Qsys library.

The Qsys system is wrapped in a top-level HDL file in Verilog.

The online design examples are targeted for device-specific signal integrity boards. You can use these design examples with other boards by changing assignments.

The first design example is a one-channel design with an 8-bit interface and a Custom PHY IP core data rate of 1.25 mbps. This example contains one JTAG to Avalon Master Bridge, one Custom PHY IP core, one data generator, one data checker, and timing and data format adapters for each checker and generator.

The second design example is a four-channel bonded design with a 10-bit interface and a Custom PHY IP core data rate of 2.5 gbps.

Some device families have a different set of examples than this four-channel bonded design.

The design contains one JTAG to Avalon master, one Custom PHY IP core, four data generators and data checkers, and timing and data format adapters for each checker and generator.

To use these examples, perform the following:

1. Download the examples from the Altera website.

 Download the Transceiver Toolkit design examples from the On-Chip Debugging Design Examples page of the Altera website.

2. Unzip the examples files.

3. You can directly program the device with the design provided, or you can modify the design.
4. If you modify the design you must then recompile the program to get a new programming file. Use the new programming file to program your device.

5. Open the Transceiver Toolkit from the Tools menu of the Quartus II software. You do not need to create links because a default set is automatically created for you.

 For more information, refer to Transceiver Toolkit Window in Quartus II Help.

6. You can change settings for the links manually or you can use the Transceiver Auto Sweep panel.

7. Run the Auto Sweep and EyeQ tests from the Transceiver Toolkit window to find the optimal settings.

 For more information about running Auto Sweep and EyeQ tests and the difference between Stratix IV GX and Stratix V testing, refer to Working with the Transceiver Toolkit in Quartus II Help.

Modifying Design Examples

You may want to modify the design examples to change the data rate of the Custom PHY IP core, add more channels to the Custom PHY IP core, or change the device. Online training on the Altera website provides further detailed descriptions of how to modify the design examples.

 For more information about the online training, refer to “Following the Online Demonstration” on page 11–24.

To modify the design examples that you download from the Altera website, open the existing project in the Qsys tools in the Quartus II software. Qsys has a graphical interface that is shown in the online training, so that following the instructions is straightforward.

You can make changes to the design examples so that you can use a different development board or different device. You make pin assignment changes and then recompile the design, as shown in the online training.

You either create a new programming file with the Programmer in the Quartus II software, or use the existing programming file that comes with the zipped design examples. The Programmer must complete its programming function 100% with no errors.

 When you recompile the design a new programming file is created. If you do not change the design you can use the included programming file.

 For more information about programming a device, refer to Programming Devices in Quartus II Help.
Setting a Link in the Transceiver Toolkit for High-Speed Link Tests

1. Make sure your development board is properly configured.
 a. You must make the proper connections for the links you want to test.
 b. Your board must be up and running, and programmed with the correct programming file.
 c. Set-up examples are shown in the online training.

 Refer to the Transceiver Toolkit Online Demo on the Altera website.

2. Open the Transceiver Toolkit from the Tools menu in the Quartus II software, if the panel is not already showing on the screen.

3. The System Explorer panel on the left side of the System Console shows design connections, loaded designs, and design instances. Ensure that your hardware is shown in the System Explorer.

4. Load your design project, which is a .qpf file, into the System Console with the Load Design command.

5. Open the Transceiver Toolkit from the Tools menu in the System Console. You can now view all the design information.

6. Link the hardware you want to test to the Quartus II project. Right-click on a device and select Link device to. Then select the Quartus II project name from the list.

 In most cases links are automatically loaded, so you may not need to link hardware as described in step 6 if you are working with design examples.

 To automatically instantiate and link designs after they have been loaded into the System Console, click Assignments on the main menu of the Quartus II software, click Device on the Device and Pin Options dialog box, and then turn on Auto usercode.

7. You can save all actions you perform into a Tcl script. On the File menu of the System Console, click Create Tcl setup script. This action creates a Tcl script of your current setup, including receivers, transmitters, and links you created. The next time you start the Transceiver Toolkit, you can double-click the script to open the setup you saved.

8. All the scripts are listed under Scripts in the System Explorer pane. You can add any Tcl script when you place the script into your Scripts folder. You can then right-click the Scripts folder to open the folder and add or modify files.

9. On the Transceiver Toolkit main window, the Transceiver Links tab is automatically populated with the channel information in your design.

10. By default links are created between the transceiver and receiver of the same channel and are shown in the Transceiver Links tab.

11. You can also create an additional link between a different transceiver and receiver channel.
12. On the Transceiver Links tab, you click Control Link, Auto Sweep, or EyeQ to run tests.

13. On the Receiver Channels tab, you click Control Channel, Auto Sweep, or EyeQ to control and run tests.

Running Auto Sweep Tests

To use Auto Sweep in the Transceiver Toolkit to perform high-speed link tests perform the following:

1. On the Transceiver Links tab, click **Auto Sweep** to open the Auto Sweep panel. You use this panel to perform Auto Sweep Bit Error Rate (BER) testing.

2. Previous transceiver settings are shown in the Auto Sweep tab. You can select different combinations of settings here before starting a test. Different settings change the case count.

3. When you start the Auto Sweep test the **Current** column displays the current test results. The **Best** column displays the best results so far obtained during the test.

4. You create reports by clicking **Create Report** once Auto Sweep is completed or while the testing is in process. You can export all settings and results to reports in a .csv format. Columns in the reports show various transceiver settings and you can sort the columns, which simplifies finding the best test cases. For example, when you sort on the BER column, it gives you the settings that produce the lowest BER.

For more information about running Auto Sweep tests and the difference between Stratix IV GX and Stratix V testing, refer to *Working with the Transceiver Toolkit* in Quartus II Help.

Running EyeQ Tests

To use the EyeQ feature in the Transceiver Toolkit, perform the following:

1. On the Transceiver Links tab, click **EyeQ** to open the EyeQ panel. This panel shows the transceiver settings. To change settings you open either the Transceiver Links or Receiver Links control panels, make setting changes, and run the EyeQ test again. These panels open when you click either **Control Links** or **Control Channel** on the Transceiver Links tab or the Transceiver Channels tab.

2. Use EyeQ to verify receiver settings. EyeQ can see how receiver settings affect eye width.

3. Click Reset when you change settings and want to run the EyeQ test again.

4. When the EyeQ test begins and the first sweep is completed, the bathtub curve is generated and displays. If you do not see a bathtub curve at the end of the test run, but see a hill instead, click **Center Eye** to position the bathtub curve in the middle of the pane.

5. Click **Create Report** to generate EyeQ reports. If you sort the report by BER column, the number of rows that have a BER value of 0 are considered the unit of width of the eye from the specified PMA settings.
Running Manual Tests

Besides performing Auto Sweep and EyeQ tests with the Transceiver Toolkit, you can also perform manual tests and change PMA settings while testing is in progress as follows:

1. Ensure that Auto Sweep tools have finished, and both Auto Sweep and EyeQ windows are closed.
2. Click Control Link on the Transceiver Links tab. The Receiver, Transmitter, and Link Control panels open.
3. Select a test pattern and begin testing.
4. While the test is running you can change the PMA settings on the Transmitter or Receiver Control panels.
5. Press Inject Error on the Transmitter Control panel and view results on the Receiver Control panel. You can only use Inject Error to verify that have connected the proper transmitter to your receiver.
6. Click Reset on the Receiver Control panel after changing the PMA settings so that the BER counter starts from the beginning.

Using a Typical Flow

You can use the tools in the Transceiver Toolkit however you choose. Following is a typical flow:

1. Perform an Auto Sweep test to get the best BER with various combinations of PMA settings. You can also check the Best Case column in an Auto Sweep BER report for the settings with the best BER value. You then enter those PMA values in the Transmitter Channel and Receiver Channel control tabs.
2. Use the control panels to set the PMA settings and test pattern that you want to run the EyeQ test against. Select a Transceiver Link or Receiver Channel in the Transceiver Toolkit tab that you want to run the EyeQ test against. Click Control Link or Control Channel to open the control panels.
3. Re-run EyeQ sweeps with different settings to see if the eye width changes. When you see that you are running good PMA settings, the bathtub curve is wide and has sharp slopes near the edges. The curve may be up to 30 units wide. If the bathtub curve is narrow, say two units wide for example, then the signal quality may be poor. The wider the bathtub curve, the wider the eye you have.

Do not change any control panel settings while you are actively using Auto Sweep tools. If you do manually use the control panel, make sure all receivers and transmitters are stopped before attempting to use an Auto Sweep tool.
Following the Online Demonstration

For an online demonstration of how to use the Transceiver Toolkit to run a high-speed link test with one of the design examples, refer to the Transceiver Toolkit Online Demo on the Altera website.

The demonstration shows how to perform link testing with one device. The Transceiver Toolkit is scalable for other purposes, such as performing board-to-board testing, testing device-to-device on the same development board, and testing internal loopbacking of the same channel with no external loopbacking required.

Conclusion

You gain productivity when optimizing high-speed transceiver links in your board designs with the Transceiver Toolkit and design examples provided from Altera. You can easily set up automatic testing of your transceiver channels so that you can monitor, debug, and optimize transceiver link channels in your board design. You then know the optimal PMA settings to use for each channel in your final FPGA design. You can download standard design examples from Altera’s website, and then customize the examples to use in your own design.

Document Revision History

Table 11–3 lists the revision history for this handbook chapter.

<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>November, 2011</td>
<td>11.1.0</td>
<td>Maintenance release. This chapter adds new Transceiver Toolkit features.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minor editorial updates.</td>
</tr>
<tr>
<td>May, 2011</td>
<td>11.0.0</td>
<td>Added new Tcl scenario.</td>
</tr>
<tr>
<td>December 2010</td>
<td>10.1.0</td>
<td>Changed to new document template. Added new 10.1 release features.</td>
</tr>
<tr>
<td>August 2010</td>
<td>10.0.1</td>
<td>Corrected links</td>
</tr>
<tr>
<td>July 2010</td>
<td>10.0.0</td>
<td>Initial release</td>
</tr>
</tbody>
</table>

For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook Archive.

Take an online survey to provide feedback about this handbook chapter.