
TMS320C6000 Instruction Set Simulator

Technical Reference Manual

Literature Number: SPRU600I

April 2007

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/846662/TMDSCCS2000-1.html

2 SPRU600I–April 2007
Submit Documentation Feedback

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/846662/TMDSCCS2000-1.html

Contents

Preface ... 7

1 Introduction to the TMS320C6000 Simulator .. 9
1.1 Features .. 10

1.2 Supported Processors and Simulator Configurations .. 10

1.3 Considerations for Choosing a Simulator .. 11

1.4 Supported Hardware Resources .. 11

1.4.1 CPU .. 12

1.4.2 Memory .. 12

1.4.3 Peripherals .. 12

2 Supported Simulation Features .. 15
2.1 External Event and Data Simulation .. 16

2.1.1 Pin Connect .. 16

2.1.2 Port Connect .. 20

2.2 Reserved Memory Access Detection ... 22

2.2.1 Supported Configurations ... 22

2.2.2 Configuration Options.. 22

2.2.3 Error Reporting Format .. 22

2.2.4 Limitations ... 23

2.3 CPU Resource Conflict Detection... 23

2.3.1 Supported Configurations ... 23

2.3.2 Types of Conflict Detected .. 24

2.3.3 Types of Conflict Not Detected ... 24

2.3.4 Configuration Options.. 24

2.3.5 Error Reporting Format .. 24

2.4 Simulator Analysis... 25

2.5 RTDX ... 25

2.6 DSP/BIOS .. 25

2.7 Bootload .. 25

2.8 Application Memory Usage Detection .. 25

2.9 EMIF Clock Configuration .. 25

2.10 Rewind.. 26

2.11 Watchpoint ... 26

2.12 Compiled Simulation .. 26

2.13 Interrupt Latency Detection .. 27

3 Detailed Capabilities of Individual Configurations .. 29
3.1 C62x/C64x/C67x/C672x/C64x+ CPU Cycle Accurate Simulators .. 30

3.2 C6416/C6713/C6412/DM642 Device Functional Simulators .. 30

3.2.1 Supported Features .. 30

3.2.2 Known Limitations .. 31

3.3 C6201/C6202/C6203/C6204/C6205/C6701 Device Simulators... 32

3.3.1 Supported Features .. 32

3.3.2 Known Limitations .. 32

3.4 C6211/C6711/C6712/C6713 Device Cycle Accurate Simulators ... 32

SPRU600I–April 2007 Contents 3
Submit Documentation Feedback

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/846662/TMDSCCS2000-1.html

3.4.1 Supported Features .. 33

3.4.2 Known Limitations .. 33

3.5 C6411/C6412/C6414/C6415/C6416/DM642 Device Cycle Accurate Simulators 33

3.5.1 Supported Features .. 33

3.5.2 Known Limitations .. 33

3.6 DM6443/DM6446/C6455/TCI6482 Device Cycle Accurate Simulators 34

3.6.1 Supported Features .. 34

3.6.2 Known Limitations .. 34

4 Configuring the Simulator ... 35
4.1 Setting the Resource Conflict Detection Mode .. 36

4.2 Setting the Reserved Memory Access Detection Mode.. 36

4.3 Setting the Bootload .. 37

4.3.1 Bootload in C6x0x Device Simulators ... 37

4.3.2 Bootload in C64x Device Cycle Accurate/Device Functional Simulators 37

4.3.3 Bootload in C64x+ Device Cycle Accurate Simulators .. 37

4.4 Setting the EMIF and CPU Clocks .. 38

4.5 Enabling the Rewind Feature.. 38

4.6 Setting Up the McBSP XBAR.. 38

4.6.1 How to Write an XBAR File ... 39

4.6.2 Format of the Configuration File to be Picked Up.. 40

4.7 Setting Up the McASP XBAR.. 40

4.7.1 Format of the Configuration File to be Picked Up.. 41

4.8 Setting the Maximum Memory Usage Limit.. 41

4.9 File Format for Pin Connect.. 41

4.9.1 Setting Up the Input File... 41

4.9.2 Absolute Clock Cycle .. 42

4.9.3 Relative Clock Cycle ... 42

4.9.4 Repetition of Patterns for a Specified Number of Times .. 42

4.9.5 Repetition to the End of Simulation (EOS).. 42

4.10 File Format for Port Connect... 43

4.11 Base Configuration File... 43

5 Performance Numbers .. 45

6 Cycle Accuracy .. 47
6.1 C6000 Simulators Benchmarking ... 48

6.2 Notes on Cycle Accuracy .. 49

4 Contents SPRU600I–April 2007
Submit Documentation Feedback

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/846662/TMDSCCS2000-1.html

List of Tables

1-1 Processors Supported by the C6000 Simulator .. 10
1-2 TMS320C6000 CPU Cycle Accurate Simulator Configurations.. 12
1-3 TMS320C6201, C6202, C6203, C6204, C6205, and C6701 Simulators ... 12
1-4 TMS320C6411, C6412, C6414, C6415, C6416, and DM642 Device Cycle Accurate; C6412, C6416 and

DM642 Functional Simulators .. 12
1-5 TMS320C6211, C6711, C6712, and C6713 Device Cycle Accurate, and C6713 Device Functional

Simulators ... 13
2-1 Available Memory Ranges for Port Connect for TMS320C6000 Devices .. 16
2-2 Available Pins for Configuration of the TMS320C6713 Device .. 17
2-3 Available Pins for Configuration of TMS320C6202, C6203, C6412, C6414, C6415, C6416 and DM642

Devices .. 18
2-4 Available Pins for Configuration of TMS320C64x, C62x, C67x, and C672x CPU Cycle Accurate Simulators 18
2-5 Available Pins for Configuration of TMS320C6412, C6416, C6713, and DM642 Device Functional

Simulators ... 19
2-6 Available Pins for Configuration of DM4663, DM6446, TCI6482, and TMX320C6455 Device Simulators..... 19
2-7 Available Memory Ranges for Port Connect for TMS320C6000 Devices .. 20
2-8 Resources That Can Appear in the Resource Conflict Error Message ... 24
2-9 Compiled Simulator Configuration ... 26
3-1 Timer Memory Map Details in CPU/MegaModule Simulators .. 30
4-1 XBAR File Pin Names ... 39
5-1 Performance Numbers of the C6000 Simulator .. 45
6-1 Benchmarking Data for C6000 Simulators.. 48

SPRU600I–April 2007 List of Tables 5
Submit Documentation Feedback

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/846662/TMDSCCS2000-1.html

List of Tables6 SPRU600I–April 2007
Submit Documentation Feedback

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/846662/TMDSCCS2000-1.html

Preface
SPRU600I–April 2007

Read This First

About This Manual

This manual provides the following information:

• Names the TMS320C6000™ (C6000™) digital signal processors (DSPs) that are supported by
configurations of the TMS320C6000 Instruction Set Simulator

• Lists which modules and pins of each device are modeled
• Describes capabilities and limitations of the simulator
• Explains how to configure the simulator
• Provides some bench marking data on cycle accuracy

Notational Conventions

This document uses the following conventions:

• Program examples are shown in a special typeface.
• In syntax descriptions, key words or symbols are shown in bold and variables are shown in italics.

Portions of a syntax that are in bold should be entered as shown; portions of a syntax that are in italics
describe the type of information that should be entered.

• Square brackets ([and]) identify an optional parameter. If you use an optional parameter, you specify
the information within the brackets. Unless the square brackets are in a bold typeface, do not enter the
brackets themselves.

• Braces ({ and }) indicate that you must choose one of the parameters within the braces; you do not
enter the braces themselves.

• The pipe symbol (|) represents a logical OR.

Related Documentation From Texas Instruments

TMS320C62x DSP CPU and Instruction Set Reference Guide (SPRU731) describes the architecture,
pipeline, instruction set, and interrupts for the TMS320C62x DSPs.

TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (SPRU732) describes the
architecture, pipeline, instruction set, and interrupts for the TMS320C64x/64x+ DSPs.

TMS320C67x/C67x+ DSP CPU and Instruction Set Reference Guide (SPRU733) describes the
architecture, pipeline, instruction set, and interrupts for the TMS320C67x/67x+ DSPs.

TMS320C6000 Peripherals Reference Guide (SPRU190) describes common peripherals available on
the TMS320C6000 DSPs. This book includes information on the internal data and program memories, the
external memory interface (EMIF), the host port, serial ports, direct memory access (DMA), enhanced
direct memory access (EDMA), expansion bus (XBUS), clocking and phase-locked loop (PLL), and the
power-down modes.

TMS320C6000 Code Composer Studio Online Help is accessible through the Code Composer Studio™
Integrated Development Environment (IDE).

Trademarks

TMS320C6000, C6000, Code Composer Studio, TMS320C62x, TMS320C64x, TMS320C672x,
TMS320C67x, C62x, C64x, C672x, C67x, RTDX, DSP/BIOS are trademarks of Texas Instruments.

Intel, Pentium are registered trademarks of Intel Corporation or its subsidiaries in the United States and
other countries.

SPRU600I–April 2007 Read This First 7
Submit Documentation Feedback

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/846662/TMDSCCS2000-1.html

www.ti.com

Read This First8 SPRU600I–April 2007
Submit Documentation Feedback

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/846662/TMDSCCS2000-1.html

Chapter 1
SPRU600I–April 2007

Introduction to the TMS320C6000 Simulator

The TMS320C6000™ Instruction Set Simulator, available within the Code Composer
Studio™ Integrated Development Environment (IDE) for TMS320C6000, simulates the
TMS320C62x™, TMS320C64x™, TMS320C64x+™, TMS320C672x™, and
TMS320C67x™ generations of devices. This chapter lists the TMS320C6000 devices
supported by the simulator and provides information to help in the selection of the best
simulator configuration.

Topic .. Page

1.1 Features... 10
1.2 Supported Processors and Simulator Configurations.................... 10
1.3 Considerations for Choosing a Simulator 11
1.4 Supported Hardware Resources ... 11

SPRU600I–April 2007 Introduction to the TMS320C6000 Simulator 9
Submit Documentation Feedback

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/846662/TMDSCCS2000-1.html

www.ti.com

1.1 Features

1.2 Supported Processors and Simulator Configurations

Features

The C6000™ simulators support the following features:

• TMS320C6000 CPU full instruction set architecture execution
• Support for C62x™, C64x™, C64x+™, C672x™, and C67x™. Support for all devices is based on

these cores.
• Port Connect, which also supports external peripheral simulation
• Pin Connect, which also supports external interrupt simulation
• Analysis events support for debug and analysis
• RTDX™ support
• DSP/BIOS™ real-time analysis support
• CPU resource conflict detection
• Rewind support
• Watchpoint support
• Interrupt latency detection
• Compiled simulation

Table 1-1 lists the devices supported by the C6000 Instruction Set Simulator with the corresponding
configuration to be selected under the Factory Board menu of Code Composer Studio Setup.

Table 1-1. Processors Supported by the C6000 Simulator

Processor Code Composer Studio IDE Import Configuration (1) CPU Modeled

TMS320C62x C62xx CPU Cycle Accurate Simulator TMS320C62x

TMS320C64x C64xx CPU Cycle Accurate Simulator TMS320C64x

TMS320C67x C67xx CPU Cycle Accurate Simulator TMS320C67x

TMS320C6211 C6211 Device Cycle Accurate Simulator TMS320C62x

TMS320C6411 C6411 Device Cycle Accurate Simulator TMS320C64x

TMS320C6412 (2) C6412 Device Cycle Accurate Simulator TMS320C64x

TMS320C6414 C6414 Device Cycle Accurate Simulator TMS320C64x

TMS320C6415 C6415 Device Cycle Accurate Simulator TMS320C64x

TMS320C6416 (2) C6416 Device Cycle Accurate Simulator TMS320C64x

TMS320C6711 C6711 Device Cycle Accurate Simulator TMS320C67x

TMS320C6712 C6712 Device Cycle Accurate Simulator TMS320C67x

TMS320C6713 (2) C6713 Device Cycle Accurate Simulator TMS320C67x

TMS320DM642 (2) DM642 Device Cycle Accurate Simulator TMS320C64x

TMS320C6201 C6201 Device Simulator (3) TMS320C62x

TMS320C6202 C6202 Device Simulator (3) TMS320C62x

TMS320C6203 C6203 Device Simulator (3) TMS320C62x
(1) Big Endian and Little Endian (default) configurations are available in the product.
(2) Device Functional Simulators are also available for these Device Cycle Accurate Simulators and can be used by changing the

Simulator Type entry in the Code Composer Studio Setup processor properties window from Cycle Accurate to Functional.
(3) Map 0 and Map 1 (default) configurations are available.

10 Introduction to the TMS320C6000 Simulator SPRU600I–April 2007
Submit Documentation Feedback

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/846662/TMDSCCS2000-1.html

www.ti.com

1.3 Considerations for Choosing a Simulator

1.4 Supported Hardware Resources

Considerations for Choosing a Simulator

Table 1-1. Processors Supported by the C6000 Simulator (continued)

Processor Code Composer Studio IDE Import Configuration (1) CPU Modeled

TMS320C6204 C6204 Device Simulator (3) TMS320C62x

TMS320C6205 C6205 Device Simulator (3) TMS320C62x

TMS320C6701 C6701 Device Simulator (3) TMS320C67x

C6455 C6455 Device Cycle Accurate Simulator TMS230C64x+

TCI6482 TCI6482 Device Cycle Accurate Simulator TMS230C64x+

DM6446 DM6446 Device Cycle Accurate Simulator (4) TMS230C64x+

DM6443 DM6443 Device Cycle Accurate Simulator (4) TMS230C64x+

TMS230C64x+ TMS230C64x+ Cycle Accurate Simulator TMS230C64x+

TMS230C64x+ C64x+ CPU Cycle Accurate Simulator TMS230C64x+

TMS320C672x C672x CPU Cycle Accurate Simulator TMS230C672x

Note: Multiple C6000 simulator configurations cannot be imported in Code Composer
Studio Setup.

(4) Only Little Endian configurations are available in the product for this device. Models the DSP subsystems, EDMA v3, and DDR2
EMIF only. Does not model the ARM subsystem.

The different simulators provide a tradeoff between the functionality modeled, cycle accuracy of the
simulation, and simulation performance. Different configurations can be selected based on the needs of
the application, in terms of the target functionality needed and the levels of cycle accuracy required. You
can choose CPU Cycle Accurate Simulators or Device Cycle Accurate Simulators from the Factory Boards
menu in Code Composer Studio Setup. For C6x1x simulators, you can create simulator configurations for
Device Functional Simulators by changing the Simulator Type entry in the Code Composer Studio Setup
processor properties window from Cycle Accurate to Functional.

The CPU cycle-accurate simulator configurations can be selected if your primary interest is in optimizing
core algorithms. Here, you are concerned with the accuracy of the core and do not need full device
simulation. Any accesses outside the core will be handled by a flat memory; the cycles measured will not
account for any memory access latencies.

The device functional simulator configurations model the functionality of some of the key peripherals, with
minimal impact on simulator performance. The peripherals in these simulators are modeled functionally to
support the programmer view; they are not cycle-accurate. These configurations can be used when you
are interested in the features of the device that are supported in the functional simulator but not present in
the core simulator, and when cycle accuracy is not important.

For example, the C6713 Device Functional Simulator can be used for application development where
cycle accuracy is not needed. The C6713 Device Functional Simulator runs faster than the C6713 Device
Cycle Accurate Simulator.

The device cycle-accurate simulator configurations model most of the peripherals of the devices. The
peripherals are cycle accurate, as in the silicon. These simulators can be used to get an indication of the
cycle behavior of an application. For more details on the accuracy of a specific simulator configuration,
see Chapter 3.

The following sections provide a concise overview of the supported hardware resources for each of the
simulator configurations. For more detailed information on simulator configurations, see Chapter 3.

SPRU600I–April 2007 Introduction to the TMS320C6000 Simulator 11
Submit Documentation Feedback

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/846662/TMDSCCS2000-1.html

www.ti.com

1.4.1 CPU

1.4.2 Memory

1.4.3 Peripherals

Supported Hardware Resources

The CPU model is cycle accurate. Cycle effects are modeled.

For each of the device simulators and device cycle-accurate simulators, the cache and internal memory
models match the cache and memory architecture specifications described in the TMS320C6000
Peripherals Reference Guide (SPRU190). They support standard cache behavior such as: LRU line
replacement, direct mapping, set associativity, cache protocols for hit/miss service, snoops, and victims.
The allocation policies (allocate on read miss, write-back on write miss, etc.) are also modeled to match
the device specifications. A flat memory model is hooked up to the EMIF in order to allow for external
memory accesses.

For the CPU cycle-accurate simulators and device functional simulators, the whole memory range is
modeled as a flat memory.

Note: Setting up memory maps using either the GUI or GEL scripts is not supported.

The following tables show the peripherals supported under each simulator configuration. For more
information on these peripherals, see the TMS320C6000 Peripherals Reference Guide (SPRU190).

Table 1-2. TMS320C6000 CPU Cycle Accurate Simulator Configurations

C62x C64x C64x+ C672x C67x

CPU Yes Yes Yes Yes Yes

Flat Memory Yes Yes Yes Yes Yes

Timer Yes Yes Yes Yes Yes

Table 1-3. TMS320C6201, C6202, C6203, C6204, C6205, and C6701 Simulators

C6201 C6202 C6203 C6204 C6205 C6701

CPU Yes Yes Yes Yes Yes Yes

Internal Memory/Cache Yes Yes Yes Yes Yes Yes
Model

DMA Yes Yes Yes (1) Yes (1) Yes (1) Yes

EMIF Yes Yes Yes Yes Yes Yes

Interrupt Selector Yes Yes Yes Yes Yes Yes

McBSP Yes Yes Yes Yes Yes Yes

Timer Yes Yes Yes Yes Yes Yes

GPIO No No No No No No

HPI/XBUS/PCI No No No No No No

(1) The DMA functionality modeled on this device is the same as that of the C6202 simulator. The enhancements have not been
modeled.

Table 1-4. TMS320C6411, C6412, C6414, C6415, C6416, and DM642 Device Cycle Accurate; C6412,
C6416 and DM642 Functional Simulators

C6411 C6412 C6414 C6415 C6416 DM642 C6412 C6416 DM642
FUNC FUNC FUNC

CPU Yes Yes Yes Yes Yes Yes Yes Yes Yes

Internal Memory/ Yes Yes Yes Yes Yes Yes Yes Yes Yes
Cache Model

12 Introduction to the TMS320C6000 Simulator SPRU600I–April 2007
Submit Documentation Feedback

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/846662/TMDSCCS2000-1.html

www.ti.com

Supported Hardware Resources

Table 1-4. TMS320C6411, C6412, C6414, C6415, C6416, and DM642 Device Cycle Accurate; C6412,
C6416 and DM642 Functional Simulators (continued)

C6411 C6412 C6414 C6415 C6416 DM642 C6412 C6416 DM642
FUNC FUNC FUNC

QDMA Yes Yes Yes Yes Yes Yes Yes Yes Yes

EDMA Yes Yes Yes Yes Yes Yes Yes Yes Yes

EMIF Yes Yes Yes Yes Yes Yes Yes Yes Yes

Interrupt Selector Yes Yes Yes Yes Yes Yes Yes Yes Yes

McBSP Yes Yes Yes Yes Yes Yes Yes Yes Yes

Timer Yes Yes Yes Yes Yes Yes Yes Yes Yes

GPIO No No No No No No No No No

HPI No No No No No No No No No

TCP/VCP N/A (1) N/A (1) N/A (1) N/A (1) Yes N/A (1) N/A (1) No N/A (1)

Utopia N/A (1) N/A (1) N/A (1) No No N/A (1) N/A (1) No N/A (1)

PCI No No No No No No No No No

McASP N/A (1) N/A (1) N/A (1) N/A (1) N/A (1) Yes N/A (1) N/A (1) No

Videoport N/A (1) N/A (1) N/A (1) N/A (1) N/A (1) No N/A (1) N/A (1) No
(1) N/A - Does not exist in the hardware.

Table 1-5. TMS320C6211, C6711, C6712, and C6713 Device Cycle Accurate,
and C6713 Device Functional Simulators

C6211 C6711 C6712 C6713 C6713 FUNC

CPU Yes Yes Yes Yes Yes

Internal Memory/Cache Yes Yes Yes Yes Yes
Model

QDMA Yes Yes Yes Yes Yes

EDMA Yes Yes Yes Yes Yes

EMIF Yes Yes Yes Yes Yes

Interrupt Selector Yes Yes Yes Yes Yes

McBSP Yes Yes Yes Yes Yes

McASP No No No Yes No

Timer Yes Yes Yes Yes Yes

GPIO No No No No No

HPI No No No No No

SPRU600I–April 2007 Introduction to the TMS320C6000 Simulator 13
Submit Documentation Feedback

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/846662/TMDSCCS2000-1.html

www.ti.com

Introduction to the TMS320C6000 Simulator14 SPRU600I–April 2007
Submit Documentation Feedback

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/846662/TMDSCCS2000-1.html

Chapter 2
SPRU600I–April 2007

Supported Simulation Features

This chapter provides a concise overview of the supported simulation features for each
of the simulator configurations. For more detailed information on each configuration,
see Chapter 3.

Topic .. Page

2.1 External Event and Data Simulation .. 16
2.2 Reserved Memory Access Detection ... 22
2.3 CPU Resource Conflict Detection.. 23
2.4 Simulator Analysis .. 25
2.5 RTDX ... 25
2.6 DSP/BIOS... 25
2.7 Bootload .. 25
2.8 Application Memory Usage Detection .. 25
2.9 EMIF Clock Configuration .. 25
2.10 Rewind .. 26
2.11 Watchpoint... 26
2.12 Compiled Simulation ... 26
2.13 Interrupt Latency Detection .. 27

SPRU600I–April 2007 Supported Simulation Features 15
Submit Documentation Feedback

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/846662/TMDSCCS2000-1.html

www.ti.com

2.1 External Event and Data Simulation

2.1.1 Pin Connect

External Event and Data Simulation

In real hardware, the DSP interacts with many external entities. The simulator provides features to
simulate these interactions. The interactions between the simulator and these external entities fall into the
following two categories:

• Control Signals trigger activities to the simulator (such as interrupts, serial port clocks, and serial port
synchronization events).

• Data Values are part of an interaction between the simulator and an external entity (such as read and
write to peripheral registers as a part of I/O memory, and serial port data).

For example, the serial port of the DSP in an audio device is connected to A/D and D/A converters or to a
codec. The interaction between the DSP and the audio device happens through transfer of a
synchronization signal to start a sample, as well as the sample data itself. Here, the synchronization signal
falls into the Control Signals category and the sample data falls into the Data Values category.

The simulator provides the Pin Connect and Port Connect features for the simulation of these two types of
interactions, respectively.

The Pin Connect tool allows you to simulate and monitor signals from external interrupts. For taking in
external interrupts/triggers, some pins are simulated in the TMS320C6000 devices. Any file with the
specified format can be connected to those pins.

The pins being simulated are of two types: pulse and waveform. Pulse pins are sensitive to rising edges
and Waveform pins are sensitive to both rising and falling edges. For example, CPU interrupt pins are
sensitive to rising edges, while the clock input pins of the serial port (CLKX, CLKR) of the TMS320C6000
devices are sensitive to rising and falling edges. See the following tables for details on the various pins
supported for the different simulator configurations.

Table 2-1. Available Memory Ranges for Port Connect for TMS320C6000
Devices

Pin Description Type

NMI Non-maskable interrupt Pulse

INT4 General purpose external interrupt pin Pulse

INT5 General purpose external interrupt pin Pulse

INT6 General purpose external interrupt pin Pulse

INT7 General purpose external interrupt pin Pulse

TINP0 Timer0 input pin Waveform

TINP1 Timer1 input pin Waveform

FSX0 Transmit frame synchronization pin for McBSP0 Waveform

FSR0 Receive frame synchronization pin for McBSP0 Waveform

CLKX0 Transmit clock pin for McBSP0 Waveform

CLKR0 Receive clock pin for McBSP0 Waveform

CLKS0 External clock input for McBSP0 Waveform

FSX1 Transmit frame synchronization pin for McBSP1 Waveform

FSR1 Receive frame synchronization pin for McBSP1 Waveform

CLKX1 Transmit clock pin for McBSP1 Waveform

CLKR1 Receive clock pin for McBSP1 Waveform

CLKS1 External clock input for McBSP1 Waveform

Supported Simulation Features16 SPRU600I–April 2007
Submit Documentation Feedback

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/846662/TMDSCCS2000-1.html

www.ti.com

External Event and Data Simulation

Table 2-2. Available Pins for Configuration of the TMS320C6713 Device

Pin Description Type

NMI Non-maskable interrupt Pulse

INT4 General purpose external interrupt pin Pulse

INT5 General purpose external interrupt pin Pulse

INT6 General purpose external interrupt pin Pulse

INT7 General purpose external interrupt pin Pulse

TINP0 Timer0 input pin Waveform

TINP1 Timer1 input pin Waveform

FSX0 Transmit frame synchronization pin for McBSP0 Waveform

FSR0 Receive frame synchronization pin for McBSP0 Waveform

CLKX0 Transmit clock pin for McBSP0 Waveform

CLKR0 Receive clock pin for McBSP0 Waveform

CLKS0 External clock input for McBSP0 Waveform

FSX1 Transmit frame synchronization pin for McBSP1 Waveform

FSR1 Receive frame synchronization pin for McBSP1 Waveform

CLKX1 Transmit clock pin for McBSP1 Waveform

CLKR1 Receive clock pin for McBSP1 Waveform

CLKS1 External clock input for McBSP1 Waveform

ACLKX0 Clock pin for transmit section of McASP0 Pulse

ACLKR0 Clock pin for receive section of McASP0 Pulse

AHCLKX0 Clock pin at higher frequencies for transmit section of Pulse
McASP0

AHCLKR0 Clock pin at higher frequencies for receive section of Pulse
McASP0

AFSX0 Frame sync pin for transmit section of McASP0 Pulse

AFSR0 Frame sync pin for receive section of McASP0 Pulse

ACLKX1 Clock pin for transmit section of McASP1 Pulse

ACLKR1 Clock pin for receive section of McASP1 Pulse

AHCLKX1 Clock pin at higher frequencies for transmit section of Pulse
McASP1

AHCLKR1 Clock pin at higher frequencies for receive section of Pulse
McASP1

AFSX1 Frame sync pin for transmit section of McASP1 Pulse

AFSR1 Frame sync pin for receive section of McASP1 Pulse

SPRU600I–April 2007 Supported Simulation Features 17
Submit Documentation Feedback

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/846662/TMDSCCS2000-1.html

www.ti.com

External Event and Data Simulation

Table 2-3. Available Pins for Configuration of TMS320C6202, C6203, C6412,
C6414, C6415, C6416 and DM642 Devices

Pin Description Type

NMI Non-maskable interrupt Pulse

INT4 General purpose external interrupt pin Pulse

INT5 General purpose external interrupt pin Pulse

INT6 General purpose external interrupt pin Pulse

INT7 General purpose external interrupt pin Pulse

TINP0 (1) Timer0 input pin Waveform

TINP1 (1) Timer1 input pin Waveform

FSX0 Transmit frame synchronization pin for McBSP0 Waveform

FSR0 Receive frame synchronization pin for McBSP0 Waveform

CLKX0 Transmit clock pin for McBSP0 Waveform

CLKR0 Receive clock pin for McBSP0 Waveform

CLKS0 External clock input for McBSP0 Waveform

FSX1 Transmit frame synchronization pin for McBSP1 Waveform

FSR1 Receive frame synchronization pin for McBSP1 Waveform

CLKX1 Transmit clock pin for McBSP1 Waveform

CLKR1 Receive clock pin for McBSP1 Waveform

CLKS1 External clock input for McBSP1 Waveform

FSX2 (2) Transmit frame synchronization pin for McBSP2 Waveform

FSR2 (2) Receive frame synchronization pin for McBSP2 Waveform

CLKX2 (2) Transmit clock pin for McBSP2 Waveform

CLKR2 (2) Receive clock pin for McBSP2 Waveform

CLKS2 (2) External clock input for McBSP2 Waveform

ACLKR0 (3) Clock pin for receive section of McASP0 Pulse

ACLKX0 (3) Clock pin for transmit section of McASP0 Pulse

AHCLKR0 (3) Clock pin at higher frequencies for receive section of Pulse
McASP0

AHCLKX0 (3) Clock pin at higher frequencies for transmit section of Pulse
McASP0

AFSR0 (3) Frame sync pin for receive section of McASP0 Pulse

AFSX0 (3) Frame sync pin for transmit section of McASP0 Pulse
(1) This pin is applicable only to the C6202 and C6203 Device Simulators.
(2) This pin is not applicable to the DM642 Device Cycle Accurate Simulator, as it has only two

McBSPs.
(3) This pin is applicable only to the DM642 Device Cycle Accurate Simulator.

Table 2-4. Available Pins for Configuration of TMS320C64x, C62x, C67x, and
C672x

CPU Cycle Accurate Simulators

Pin Description Type

NMI Non-maskable interrupt Pulse

INT4 General purpose external interrupt pin Pulse

INT5 General purpose external interrupt pin Pulse

INT6 General purpose external interrupt pin Pulse

INT7 General purpose external interrupt pin Pulse

INT8 (1) General purpose external interrupt pin Pulse

INT9 (1) General purpose external interrupt pin Pulse

INT10 (1) General purpose external interrupt pin Pulse

(1) This pin is applicable only to the C64x+ CPU simulator.

18 Supported Simulation Features SPRU600I–April 2007
Submit Documentation Feedback

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/846662/TMDSCCS2000-1.html

www.ti.com

External Event and Data Simulation

Table 2-4. Available Pins for Configuration of TMS320C64x, C62x, C67x, and
C672x

CPU Cycle Accurate Simulators (continued)

Pin Description Type

INT11 (1) General purpose external interrupt pin Pulse

INT12 (1) General purpose external interrupt pin Pulse

INT13 (1) General purpose external interrupt pin Pulse

INT14 (1) General purpose external interrupt pin Pulse

INT15 (1) General purpose external interrupt pin Pulse

Table 2-5. Available Pins for Configuration of TMS320C6412, C6416, C6713,
and DM642 Device Functional Simulators

Pin Description Type

NMI Non-maskable interrupt Pulse

FSX0 Transmit frame synchronization pin for McBSP0 Pulse

FSR0 Receive frame synchronization pin for McBSP0 Pulse

CLKX0 Transmit clock pin for McBSP0 Pulse

CLKR0 Receive clock pin for McBSP0 Pulse

CLKS0 External clock input for McBSP0 Pulse

FSX1 Transmit frame synchronization pin for McBSP1 Pulse

FSR1 Receive frame synchronization pin for McBSP1 Pulse

CLKX1 Transmit clock pin for McBSP1 Pulse

CLKR1 Receive clock pin for McBSP1 Pulse

CLKS1 External clock input for McBSP1 Pulse

FSX2 (1) Transmit frame synchronization pin for McBSP2 Pulse

FSR2 (1) Receive frame synchronization pin for McBSP2 Pulse

CLKX2 (1) Transmit clock pin for McBSP2 Pulse

CLKR2 (1) Receive clock pin for McBSP2 Pulse

CLKS2 (1) External clock input for McBSP2 Pulse
(1) This pin is available only on the C6416 Device Functional Simulator.

Table 2-6. Available Pins for Configuration of DM4663, DM6446, TCI6482, and TMX320C6455 Device
Simulators

Pin Description Type

NMI Non-maskable interrupt Pulse

INT4 General purpose external interrupt pin Pulse

INT5 General purpose external interrupt pin Pulse

INT6 General purpose external interrupt pin Pulse

INT7 General purpose external interrupt pin Pulse

FSX0 Transmit frame synchronization pin for McBSP0 Pulse

FSR0 Receive frame synchronization pin for McBSP0 Pulse

CLKX0 Transmit clock pin for McBSP0 Pulse

CLKR0 Receive clock pin for McBSP0 Pulse

CLKS0 External clock pin for McBSP0 Pulse

FSX1 (1) Transmit frame synchronization pin for McBSP1 Pulse

FSR1 (1) Receive frame synchronization pin for McBSP1 Pulse

CLKX1 (1) Transmit clock pin for McBSP1 Pulse

CLKR1 (1) Receive clock pin for McBSP1 Pulse

(1) This pin is applicable only to the TCI6482 and C6455 simulators.

SPRU600I–April 2007 Supported Simulation Features 19
Submit Documentation Feedback

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/846662/TMDSCCS2000-1.html

www.ti.com

2.1.2 Port Connect

External Event and Data Simulation

Table 2-6. Available Pins for Configuration of DM4663, DM6446, TCI6482, and TMX320C6455 Device
Simulators (continued)

Pin Description Type

CLKS1 (1) External clock pin for McBSP1 Pulse

The Pin Connect feature can be enabled through the Code Composer Studio command window, GEL
commands, or through the Pin Connect plug-in. See Section 4.9 for more information on the Pin Connect
file format. See Code Composer Studio online help for more information on how to connect and
disconnect a specific pin.

The Port Connect feature allows you to feed in external data to the simulator and send simulator data out
to an external entity. External data is fed into and out of the simulator (memory or serial port) through Port
Connect files (the file format is discussed in Section 4.10). This feature can be used to setup an input or
output data stream to the simulator at the supported address. Whenever a file is connected to a memory
(port) address for reads, data from the file is accessed whenever there is a read to the memory in the
device. Similarly, whenever a file is connected to a memory (port) address for writes, all data writes to that
address will be written to the file. The simulator provides Port Connect for all processor configurations.

In the case of serial ports, data can be transmitted by connecting some files at the memory-mapped
locations for the serial port transmit register in write mode. Similarly, data can be received by connecting
some files at the memory-mapped locations for the serial port receive register in read mode. Available
memory ranges on the TMS320C6000 devices, to which a file can be connected for reading/writing, are
given in Table 2-7.

Table 2-7. Available Memory Ranges for Port Connect for TMS320C6000 Devices

Configuration File (1) Available Memory Range

C6201 Device Simulator, Map 1 0x0040 0000 - 0x017F FFFF
DXR0, DRR0, DXR1, DRR1 (2)

C6201 Device Simulator, Map 0 0x0000 0000 - 0x013F FFFF
DXR0, DRR0, DXR1, DRR1 (2)

C6202 Device Simulator, Map 1 0x0040 0000 - 0x017F FFFF
DXR0, DRR0, DXR1, DRR1, DXR2, DRR2 (2)

C6202 Device Simulator, Map 0 0x0000 0000 - 0x013F FFFF
DXR0, DRR0, DXR1, DRR1, DXR2, DRR2 (2)

C6203 Device Simulator, Map 1 0x0040 0000 - 0x017F FFFF
DXR0, DRR0, DXR1, DRR1, DXR2, DRR2 (2)

C6203 Device Simulator, Map 0 0x0000 0000 - 0x013F FFFF
DXR0, DRR0, DXR1, DRR1, DXR2, DRR2 (2)

C6204 Device Simulator, Map 1 0x0040 0000 - 0x017F FFFF
DXR0, DRR0, DXR1, DRR1 (2)

C6204 Device Simulator, Map 0 0x0000 0000 - 0x013F FFFF
DXR0, DRR0, DXR1, DRR1 (2)

C6205 Device Simulator, Map 1 0x0040 0000 - 0x017F FFFF
DXR0, DRR0, DXR1, DRR1 (2)

C6205 Device Simulator, Map 0 0x0000 0000 - 0x013F FFFF
DXR0, DRR0, DXR1, DRR1 (2)

C6411 Device Cycle Accurate Simulator 0x8000 0000 - 0xBFFF FFFF
DXR0, DRR0, DXR1, DRR1 (2)

C6412 Device Cycle Accurate Simulator 0x0800 0000 - 0xBFFF FFFF
DXR0, DRR0, DXR1, DRR1 (2)

C6412 Device Functional Simulator 0x8000 0000 - 0xBFFF FFFF

(1) For each configuration listed, Little Endian (default) and Big Endian versions are provided with the same available memory
range for the serial port connection.

(2) To connect to these peripheral registers, use the memory-mapped addresses. Port connects to the McBSP can be done only to
the following locations: 0x3000 0000 for DX0 and DR0, 0x3400 0000 for DX1 and DR1, and 0x3800 0000 for DX2 and DR2.

20 Supported Simulation Features SPRU600I–April 2007
Submit Documentation Feedback

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/846662/TMDSCCS2000-1.html

www.ti.com

2.1.2.1 Read Modes

External Event and Data Simulation

Table 2-7. Available Memory Ranges for Port Connect for TMS320C6000 Devices (continued)

Configuration File (1) Available Memory Range

C6414 Device Cycle Accurate Simulator 0x6000 0000 - 0x6FFF FFFF
0x8000 0000 - 0xBFFF FFFF
DXR0, DRR0, DXR1, DRR1, DXR2, DRR2 (2)

C6415 Device Cycle Accurate Simulator 0x6000 0000 - 0x6FFF FFFF
0x8000 0000 - 0xBFFF FFFF
DXR0, DRR0, DXR1, DRR1, DXR2, DRR2 (2)

C6416 Device Cycle Accurate Simulator 0x6000 0000 - 0x6FFF FFFF
0x8000 0000 - 0xBFFF FFFF
DXR0, DRR0, DXR1, DRR1, DXR2, DRR2 (2)

C6416 Device Functional Simulator 0x6000 0000 - 0x6FFF FFFF
0x8000 0000 - 0xBFFF FFFF
DXR0, DRR0, DXR1, DRR1, DXR2, DRR2 (2)

C6701 Device Simulator, Map 1 0x0040 0000 - 0x017F FFFF
DXR0, DRR0, DXR1, DRR1 (2)

C6701 Device Simulator, Map 0 0x0000 0000 - 0x013F FFFF
DXR0, DRR0, DXR1, DRR1 (2)

C6211 Device Cycle Accurate Simulator 0x8000 0000 - 0xBFFF FFFF
DXR0, DRR0, DXR1, DRR1 (2)

C6711 Device Cycle Accurate Simulator 0x8000 0000 - 0xBFFF FFFF
DXR0, DRR0, DXR1, DRR1 (2)

C6713 Device Cycle Accurate Simulator 0x8000 0000 - 0xBFFF FFFF
DXR0, DRR0, DXR1, DRR1, McASP0 TXBUF0-15, McASP0
RXBUF0-15, McASP1 TXBUF0-15, McASP1 RXBUF0-15 (2)

C6713 Device Functional Simulator 0x8000 0000 - 0xBFFF FFFF
DXR0, DRR0, DXR1, DRR1 (2)

DM642 Device Cycle Accurate Simulator 0x8000 0000 - 0xBFFF FFFF
DXR0, DRR0, DXR1, DRR1, McASP0 TXBUF0-15, McASP0
RXBUF0-15 (2)

DM642 Device Functional Simulator 0x8000 0000 - 0xBFFF FFFF
DXR0, DRR0, DXR1, DRR1 (2)

C62xx CPU Cycle Accurate Simulator 0x0000 0000 - 0xFFFF FFFF

C64xx CPU Cycle Accurate Simulator 0x0000 0000 - 0xFFFF FFFF

C67xx CPU Cycle Accurate Simulator 0x0000 0000 - 0xFFFF FFFF

C6455 Device Cycle Accurate Simulator DXR0, DRR0, DXR1, DRR1

TIC6482 Device Cycle Accurate Simulator DXR0, DRR0, DXR1, DRR1

DM6446 Device Cycle Accurate Simulator DXR0, DRR0

DM6443 Device Cycle Accurate Simulator DXR0, DRR0

TMS320C64x+ Cycle Accurate Simulator None

C64x+ CPU Cycle Accurate Simulator None

C672x CPU Cycle Accurate Simulator None

These two modes are used to connect a Port Connect file:

• Rewind mode is the default connection mode. In this mode, after completely consuming the read file
contents, the simulator rewinds the file and starts reading from the beginning of the file for further read
accesses. For example, if the sample file below is used for address 0x2000 in read mode, at the time
of the sixth read access to that address, 0x12346666 is read.

• In No-Rewind mode read accesses made after end-of-file do not result in file reads. The data read is
whatever is present in the memory. For example, if the sample file below is used for address 0x2000 in
read mode, at the time of the sixth read access to that address, the value read would be that in the
memory, which is 0x89897f7f (from the fifth access).

A sample file for a C6000 target (word length, 4 bytes):

SPRU600I–April 2007 Supported Simulation Features 21
Submit Documentation Feedback

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/846662/TMDSCCS2000-1.html

www.ti.com

2.1.2.2 Reset

2.2 Reserved Memory Access Detection

2.2.1 Supported Configurations

2.2.2 Configuration Options

2.2.3 Error Reporting Format

Reserved Memory Access Detection

12346666
33449999
cb56aaaa
5656cccc
89897f7f

On reset, all of the Read file pointers are rewound, and Write files are closed and reopened in write mode.

Port Connect can occur through the Code Composer Studio command window, GEL commands, or
through the Port Connect plug-in. Please see the Code Composer Studio online help for more information
on how to connect and disconnect a specified port.

Accesses by DSP applications to reserved memory locations of the device can result in undefined
program behavior. The simulators can help detect such violations by flagging an error message whenever
the application accesses reserved memory address for that device.

If a peripheral is modeled in the simulator, any access to this peripheral is also treated as a reserved
memory access. Any write access by the simulator to such locations have no effect and reads return zero;
for instance, TCP/VCP memory map addresses on a C6146 device functional simulator.

This feature is available on all C6x1x simulators.

It is not supported on any of the C6x0x simulators.

CPU simulators do not have any reserved memory modeled.

The simulators can be configured for reserved memory access detection from Code Composer Studio
Setup in the following modes:

• YES. All reserved memory accesses are detected and flagged as errors, along with the address of
access. Simulation is halted.

• NO. No reserved memory access detection is used. Writes to the reserved memories have no effect,
while reads return 0.

• Create Log. All reserved memory accesses are detected and logged in a text file, along with the
address of the access. Simulation is not halted.

See Section 4.2 for more information.

If reserved memory access detection is turned on, the errors are reported/logged in the following formats:

Access to Reserve Memory Ranges:

Memory Map Error: {READ | WRITE} access to address AAAAAAAA, which is RESERVED in Hardware.

For example:
Memory Map Error: WRITE access to address 0xc7fffc, which is RESERVED in Hardware.

Access to Unsupported Memory Ranges:

Memory Map Error: {READ | WRITE} access to address AAAAAAAA, which is NOT SUPPORTED by the
simulator.

For example:
Memory Map Error: READ access to address 0x1880000, which is NOT SUPPORTED in Simulator.

Supported Simulation Features22 SPRU600I–April 2007
Submit Documentation Feedback

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/846662/TMDSCCS2000-1.html

www.ti.com

2.2.4 Limitations

2.3 CPU Resource Conflict Detection

2.3.1 Supported Configurations

CPU Resource Conflict Detection

This feature does not support the addition of any new reserved area ranges (through the Code Composer
Studio Memory Map feature) in addition to the ones as that are reserved in the hardware. Neither does it
allow for selective removal of any such reserved memory regions.

The C6000 CPUs have four functional units on each of the two sides, A and B. These units offer
enhanced parallelism and allow for execution of up to eight parallel instructions. These units, along with
the Data Access Paths and the CPU registers, primarily constitute the resources of a C6000 CPU.

These resources have various constraints on their simultaneous use by different instructions. If these
constraints are violated by the executing code, the application behavior is not guaranteed.

Resource conflict detection in the simulators is crucial because many of these violations manifest only at
run time, making it impossible to detect them at compile time.

All C6000 simulators, except C64x+ and C672x, support resource conflict detection.

SPRU600I–April 2007 Supported Simulation Features 23
Submit Documentation Feedback

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/846662/TMDSCCS2000-1.html

www.ti.com

2.3.2 Types of Conflict Detected

2.3.3 Types of Conflict Not Detected

2.3.4 Configuration Options

2.3.5 Error Reporting Format

CPU Resource Conflict Detection

Simulators detect the following types of conflict:

• Unit over usage (S, M, L, and D units)
• XPath and T unit over usage
• C67x multi-cycle unit usage constraints
• Multiple register writes
• Multiple multi-cycle NOPs in the same cycle
• Multiple branches in the same cycle

Multiple (more than four) simultaneous reads to one register.

The simulators can be configured for resource conflict detection from Code Composer Studio Setup in the
following three modes:

• YES. All conflicts are detected and flagged as errors. Simulation is halted.
• NO. No resource conflict detection is used.
• Create Log. All conflicts are detected and error messages redirected to a file. Simulation is not halted.

See Section 4.1 for more information.

On detection of resource conflicts, the simulator generates an error string which is either displayed in the
error window or logged onto a file, depending on the configured mode. The error strings are reported in
the following general format:

error type *** error message at PC = XXXXXXXX
Resources YYY, YYY and YYYinTypeOfConflict inZZZZphase.
Ref literature number Sec ABC

For example:
Error Running Target CPU ***Runtime error at PC = 00000030
Register(s) B7 in Multiple Write Conflict in E1 phase.
Ref SPRU189 Sec 3.7, Sec 5.6

• The phase indicated, ZZZZ, is with respect to the instruction at the PC =XXXXXXXX.
• The section information displayed gives only a broad reference and depends on the device type.

Table 2-8 lists the valid Resource Names.

Table 2-8. Resources That Can Appear in the Resource Conflict Error Message

L Unit/Read Port T Access Path 32 MSBPATH Load Path Multi-cycle Nop

M Unit/Read Port 32 LSBPATH Store Path L Unit Long Write Port Control Register File

D Unit/Read Port 32 MSBPATH Store Path M Unit Long Write Port Shared 32 LSB Store Path/L/S
Unit Long Write Port

S Unit/Read Port L Unit Write Port S Unit Long Write Port Shared 32 LSB Store Path/L/S
Unit Long Write Port

L Unit Long Read Port M Unit Write Port Internal M Unit Resource V Shared L/S Unit Long Write
Port Registers A# and B#

M Unit Long Read Port S Unit Write Port Internal M Unit Resource U Invalid Resource

S Unit Long Read Port 32 LSBPATH Load Path XPath

Supported Simulation Features24 SPRU600I–April 2007
Submit Documentation Feedback

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/846662/TMDSCCS2000-1.html

www.ti.com

2.4 Simulator Analysis

2.5 RTDX

2.6 DSP/BIOS

2.7 Bootload

2.8 Application Memory Usage Detection

2.9 EMIF Clock Configuration

Simulator Analysis

The TMS320C6000 Simulator Analysis allows you to set up and monitor the occurrence of specific events.
Some of the simulated events are program cache miss, program cache hit, program fetch, program
access block 0, and program access block 1. The Simulator Analysis plug-in reports the occurrence of
particular system events so that you can accurately monitor and measure the performance of the program.
The events can be set up either to increment a counter or to halt the execution when they occur.

The capability to halt execution on an event can be used to debug the execution of the application. For
example, by setting up a C6211 target to halt when a Timer0 sync event to EDMA is triggered, you can
debug if the sync event is happening correctly or not.

The ability to count events over a period of execution will give you an overview of program behavior during
the execution period. For example, counting the number of cache misses will help identify the hot spots for
memory layout optimization. See the Code Composer Studio IDE online help for a list of analysis events
available for each of the configurations and how to enable them through the Simulator Analysis plug-in.

Real-Time Data Exchange (RTDX) is supported when running on the simulator. To run an RTDX
application that uses the simulator, you must link applications with the RTDX Simulator Target library. It is
easy to switch applications from running on the simulator to running on real hardware. For more
information on RTDX, see the Code Composer Studio IDE online help.

All applications using DSP/BIOS can be run on all the C6000 simulators. In order to enable real-time
analysis for these applications, one needs to ensure that the RTDX Mode in the configuration is set to
simulator. See the Code Composer Studio IDE online help topics on DSP/BIOS for more information.

The Bootload is a process that copies a finite number of words (the exact number differs for C620x/C670x
and C621x/C64x devices) from an address specified by the bootmode to address 0x0. Bootload happens
in the simulator only if it is enabled by specifying a valid Bootmode through a simulator base configuration
file. See Section 4.3 for more information.

This feature enables the detection of large memory usage by applications. The simulator reports an error if
the application memory usage goes beyond a specified limit, the default value being 64 MB. You can
override this default limit through a base configuration file-based option. See Chapter 4 for more
information.

Note: Application memory usage detection is not available on C6x0x simulators.

The following simulators support the programmability of the EMIF and CPU clock speeds through Code
Composer Studio Setup:

• C6211 Device Cycle Accurate Simulator
• C6711/C6712/C6713 Device Cycle Accurate Simulators
• C6411/C6412/C6414/C6415/C6416/DM642 Device Cycle Accurate Simulators

For more details, see Section 4.4.

SPRU600I–April 2007 Supported Simulation Features 25
Submit Documentation Feedback

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/846662/TMDSCCS2000-1.html

www.ti.com

2.10 Rewind

2.11 Watchpoint

2.12 Compiled Simulation

Rewind

The following simulators under the Code Composer Studio environment support a feature called Rewind.
Using Rewind, the past history of an application being executed can be viewed. This reduces the time
required to debug an application. See the Rewind User’s Guide (SPRU713) for more details.
• C62xx CPU Cycle Accurate Simulator
• C64xx CPU Cycle Accurate Simulator
• C67xx CPU Cycle Accurate Simulator
• C6412 Device Functional Simulator
• C6416 Device Functional Simulator
• DM642 Device Functional Simulator
• C6713 Device Functional Simulator

Note: Device Functional Simulators can be used by changing the Simulator Type entry in the
Code Composer Studio Setup processor properties window from Cycle Accurate to
Functional.

See Section 4.5 for details on enabling this feature on simulators.

Watchpoint is a simulation debug feature supported by Code Composer Studio that halts simulation when
an access is made to a targeted memory location. The access could be from the CPU or from the DMA (if
supported by the particular device configuration). Debug reads and writes to memory locations do not
cause watchpoints to trigger. See the Watchpoints topic in the online help for more information.

Supported configurations:
• C64xx CPU Cycle Accurate Simulator
• C6416 Device Functional Simulator

Compiled simulation technology compiles frequently used blocks of application code on the host (PC) and
runs simulations on them. It does not interpret and execute every instruction. This technology uses the
typical DSP application scenario where the majority of the code is running in loops, and it compiles them
onto a host (PC) executable that runs faster than interpretive simulators. Compiled simulators are used
and seen in the same way as interpretive simulators.

The following table lists compiled simulator configurations and equivalent interpretive simulator
configuration where applicable.

Table 2-9. Compiled Simulator Configuration

Interpretive Simulator Configuration Compiled Simulator Configuration

C64xx CPU Cycle Accurate Simulator, Little Endian C64xx[Compiled] CPU Cycle Accurate Simulator, Little Endian

C64xx CPU Cycle Accurate Simulator, Big Endian C64xx[Compiled] CPU Cycle Accurate Simulator, Big Endian

Not available in standard configuration list C6416[Compiled] Device Functional Simulator, Little Endian

Not available in standard configuration list C6416[Compiled] Device Functional Simulator, Big Endian

Note that only function profiling and loop profiling are available with compiled simulators. Function and
loop profiling are accurate, except for minor differences in cycles compared to interpretive simulators.
Other features may not provide accurate data compared to standard interpretive simulator configurations.
Some features, such as analysis events, are enabled only in interpretive mode, and the data will not be
collected when running in compiled mode. Thus, the data displayed in simulator analysis plugins is not
accurate when running in compiled mode.

Also note that loop code will run at interpretive speed if breakpoints are applied anywhere within the code.

Supported Simulation Features26 SPRU600I–April 2007
Submit Documentation Feedback

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/846662/TMDSCCS2000-1.html

www.ti.com

2.13 Interrupt Latency Detection

Interrupt Latency Detection

This tool allows you to measure the worst-case interrupt latency of the code, including programming
interrupt constraints such as disabling GIE/NMIE, and architectural behavior such as non-serviceability of
interrupts in branch delay slots. While programming, you may find that the algorithm has a larger interrupt
latency than quoted. If so, you may not discover it until late in the development lifecycle, and it may
require a delay to correct. Characterization of the interrupt latency of the code is needed so that you can
determine the real time latencies in the application. The application consists of multiple components that
cannot be individually designed.

The Interrupt Latency Detection feature on the C6000 simulator provides you with a deterministic measure
of the worst-case interrupt latency of the code. As a result, you can quote the interrupt latency of the code
for a given set of test vectors. See the Interrupt Latency Detection (ILD) Feature topics in the online help
for more information on this feature.

Supported configurations:
• C64xx CPU Cycle Accurate Simulator
• C6411 Device Cycle Accurate Simulator
• C6412 Device Cycle Accurate Simulator
• C6414 Device Cycle Accurate Simulator
• C6416 Device Cycle Accurate Simulator
• DM642 Device Cycle Accurate Simulator
• C6412 Device Functional Simulator
• C6416 Device Functional Simulator
• DM642 Device Functional Simulator
• C64x+ CPU Cycle Accurate Simulator
• TMS320C64x+ Cycle Accurate Simulator
• TCI6482 Device Cycle Accurate Simulator
• C6455 Device Cycle Accurate Simulator
• DM6443 Device Cycle Accurate Simulator
• DM6446 Device Cycle Accurate Simulator

SPRU600I–April 2007 Supported Simulation Features 27
Submit Documentation Feedback

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/846662/TMDSCCS2000-1.html

www.ti.com

Supported Simulation Features28 SPRU600I–April 2007
Submit Documentation Feedback

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/846662/TMDSCCS2000-1.html

Chapter 3
SPRU600I–April 2007

Detailed Capabilities of Individual Configurations

This chapter describes the capabilities and known limitations of each simulator
configuration.

Topic .. Page

3.1 C62x/C64x/C67x/C672x/C64x+ CPU Cycle Accurate Simulators 30
3.2 C6416/C6713/C6412/DM642 Device Functional Simulators 30
3.3 C6201/C6202/C6203/C6204/C6205/C6701 Device Simulators 32
3.4 C6211/C6711/C6712/C6713 Device Cycle Accurate Simulators........ 32
3.5 C6411/C6412/C6414/C6415/C6416/DM642 Device Cycle Accurate

Simulators.. 33
3.6 DM6443/DM6446/C6455/TCI6482 Device Cycle Accurate Simulators 34

SPRU600I–April 2007 Detailed Capabilities of Individual Configurations 29
Submit Documentation Feedback

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/846662/TMDSCCS2000-1.html

www.ti.com

3.1 C62x/C64x/C67x/C672x/C64x+ CPU Cycle Accurate Simulators

3.2 C6416/C6713/C6412/DM642 Device Functional Simulators

3.2.1 Supported Features

C62x/C64x/C67x/C672x/C64x+ CPU Cycle Accurate Simulators

In the CPU cycle-accurate simulator configurations, only the CPU core is modeled, along with device timer
support and a flat memory model for the full addressable space. These simulators can be used for
algorithmic verification if the functionality of the device peripherals is not needed. These configurations are
also faster than the other simulator configurations available. These simulators also support Rewind (see
Section 4.5), which is helpful for quicker debugging of applications.

All the instructions described in the TMS320C62x DSP CPU and Instruction Set Reference Guide
(SPRU731), TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (SPRU732) , and
TMS320C67x/C67x+ DSP CPU and Instruction Set Reference Guide (SPRU733) are supported. This
includes support for all registers, addressing modes, branch conditions, parallel instructions, and floating
point instructions. The CPU core model is cycle accurate and complete pipeline effects are modeled. Each
simulator configuration supports all the user-visible registers (the data register sets A and B, and all the
control registers). All of the interrupts are supported.

The CPU cycle accurate simulators have a cycle-accurate Timer model, as specified in Table 3-1. They
also support simulating applications that use RTDX. It is possible to run DSP/BIOS-based applications on
these simulators and use the real-time analysis capabilities for debug and analysis of the application.
Additionally, the Pin Connect and the Port Connect features are available to set up external stimuli
required by the application for simulation.

The list of pins supported and the ranges of memory that can be connected to a file for these
configurations are specified in Chapter 2. Using the Simulator Analysis plug-in, these simulator
configurations can track many of the target events and allow you to count or break on these events. See
the Code Composer Studio IDE online documentation for more details on the list of events and how to use
them.

Table 3-1. Timer Memory Map Details in CPU/MegaModule Simulators

Timer Memory Map
Simulator Configuration Reference (Device Memory Ranges

Name)

C62x 67xx Timer 0 - 0x01940000 to 0x0194000b
C67x Timer 1 - 0x01980000 to 0x0198000b
C672x

C64x 64xx Timer 0 - 0x01940000 to 0x0194000b
Timer 1 - 0x01980000 to 0x0198000b
Timer 2 - 0x01ac0000 to 0x01ac000b

C64x+ CPU Cycle Accurate Simulator DM6443 Timer 0 - 0x01C21400 to 0x01C21800b
Timer 1 - 0x01C21800 to 0x01C21C00b
Timer 3 - 0x01C21C00 to 0x01C22000b

TMS320C64x+ Cycle Accurate Simulator C6455 Timer 0 - 0x02940000 to 0x02940040b
Timer 1 – 0x02980000 to 0x02980040b

The device functional simulators model the functionality of the peripherals without modeling their full cycle
behavior. This allows these simulators to be faster than their corresponding cycle-accurate models, while
functionally still allowing you to run applications that make use of these peripherals. These simulators can
be used for verifying the application functionally and for measuring the clock cycles that the application
would require.

The DM642, C6416, and C6713 Device Functional Simulators have the cycle-accurate CPU;
cycle-accurate Timer module; functional models of the L1P, L1D, and L2 caches; a functional model of the
Interrupt Selector; functional model of the McBSP; functional model of the EMIF; and a functional model of
the EDMA. All memory beyond cache is modeled as flat memory.

30 Detailed Capabilities of Individual Configurations SPRU600I–April 2007
Submit Documentation Feedback

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/846662/TMDSCCS2000-1.html

www.ti.com

3.2.2 Known Limitations

C6416/C6713/C6412/DM642 Device Functional Simulators

The C6416 Device Functional Simulator can be used to simulate C6414/15 devices functionally. The
C6713 Device Functional Simulator can be used to simulate the C6711, C6712, and C6211 configurations
functionally. The C6412 Device Functional Simulator can be used to simulate the C6411 configuration
functionally.

Applications that use RTDX and DSP/BIOS real-time analysis can be run on these simulators.
Additionally, the Pin Connect and the Port Connect features are available to set up external stimuli
required by the application for simulation.

The list of pins supported and the ranges of memory that can be connected to a file for these
configurations are specified in Chapter 2. These simulator configurations can track many of the target
events and allow you to count or break on these events. See the Code Composer Studio IDE online
documentation for more details on the list of events and how to use them.

The simulators model only the Timer, L1 and L2 Caches, Interrupt Selector, EMIF, McBSP, and EDMA
peripherals.

• McBSP Limitations

– Functionality related to the FREE & SOFT field in the SPCR registers is not supported, since these
are emulation features.

– The enabling of the extra delay for the DX turn-on time is not available. The TRISTATE indication
feature is not available in the Functional Device Simulator. Therefore, the functionality of the
DXENA register field in the SPCR register is not supported.

– The notion of rising/falling edge triggered activities is not available in the functional device
simulator. Only the pulse type of input is supported; therefore, the functionality of the following
register fields is not supported: FSXP, FSRP, CLKXP, CLKRP (all in the PCR register), and CLKSP
(in the SRGR register).

– The General Purpose I/O mode is not supported. Therefore, the functionality of the following
register fields is not supported: XIOEN, RIOEN, CLKS_STAT, DX_STAT, and DR_STAT (all in the
PCR register).

– The concept of Data Delay is not supported. Therefore, the functionality of the RDATDLY in the
RCR register and XDATDLY in the XCR register is not available. Data transmission/reception will
begin immediately following the arrival of FSX/FSR, respectively.

• EMIF Limitations

– All the data transfer operations in the DSP are modeled as one-time transfers in the device
functional simulator, that is, all data transfers are treated as though they are happening with ZERO
cycle read latency. Therefore, the functionality of all register fields in the SDEXT register is not
available.

– The use of the COUNTER field in the SDTIM register as a general-purpose timer is not supported.
– The refreshing of the SDRAM is not supported in the device functional simulator. Therefore, the

functionality of all register fields pertaining to SDRAM refresh operation is not available.
• Cache Limitations

– The cache in the device functional simulator is modeled as a dataless cache; that is, the L1P, L1D,
and L2 caches do not store data, but only tag information. Any modifications to L1D and L2 will be
directly reflected in actual memory. Therefore, results of cache operations such as cache clean and
cache invalidate can be different. It is always recommended to use the reset-reload sequence
followed by the restart command to see the correct behavior.

• Handling of Reserved Spaces

– In the device functional simulator, whenever you write to a reserved location it will be treated as
writing of 0x0000 0000 to the location. Similarly, whenever you read the data value from a reserved
location, only 0x0000 0000 will be read.

• ROM Access Behavior

– The 6713 Device Functional Simulator does not generate an error message when you write to the
area designated as ROM (0x0186 0000 - 0x0187 FFF0).

SPRU600I–April 2007 Detailed Capabilities of Individual Configurations 31
Submit Documentation Feedback

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/846662/TMDSCCS2000-1.html

www.ti.com

3.3 C6201/C6202/C6203/C6204/C6205/C6701 Device Simulators

3.3.1 Supported Features

3.3.2 Known Limitations

3.4 C6211/C6711/C6712/C6713 Device Cycle Accurate Simulators

C6201/C6202/C6203/C6204/C6205/C6701 Device Simulators

• Rewind Limitations

– Only CPU simulators and Device Functional Simulators support this feature.
– Boot loading: If you try to back-step through the code which is copied during boot-loading, the

disassembly window shows only NOPs.

As mentioned previously, simulations on these configurations are not expected to be cycle accurate.

These simulators model the CPU core, the Internal Program (alternate Cache) and Data memory
controllers, DMA, EMIF, Interrupt Selector, McBSPs, and Timer. Arbitration between the CPU and the
DMA for internal program memory (alternate cache) and internal data memory accesses, is modeled. The
DMA supports all features as present in the device, such as four channels, resource arbitration and priority
configuration, split channel operation, and DMA access to peripheral configuration range. The external
stimuli of the McBSP can be set up using either the Pin Connect feature or the McBSP XBAR. For more
information, see Section 4.9 and Section 4.6, respectively.

The C6x0x Device Simulators have the cycle-accurate CPU and the cycle-accurate Timer modules. The
L1P, internal program and data memories, and EMIF subsystem are also modeled accurately. The DMA
subsystem is accurate for the C6201 Device Simulator. Pin Connect, Port Connect, and Analysis event
features are supported.

The list of pins supported and the ranges of memory that can be connected to a file for these
configurations are specified in Section 2.1. Using the Simulator Analysis plugin, these simulator
configurations can track many of the target events and allow you to count or break on these events. See
the Code Composer Studio IDE online documentation for more details on the list of events and how to use
them.

• General

– The HPI is not modeled.
– XBUS is not modeled.
– GPIO is not modeled.

• DMA

– The auxiliary channel (channel 5), meant to service HPI requests, is not supported.
– In C6203, C6204, and C6205, the DMA FIFO to hold data coming from a high-performance source

(e.g., internal memory) is shared among all four channels (instead of dedicated for each channel).
– The synchronization events, DSPINT and SDRAM_INT, are not supported.
– The synchronization events are captured only if they are enabled.

• EMIF

– The SDRAM interrupt is not modeled for these configurations.
• Cycle Accuracy

– Total cycles are not guaranteed to be accurate.

These simulators model the CPU core, L1P and L1D Caches, L2 Cache/SRAM memory, EDMA, EMIF,
Interrupt selector, McBSPs, and Timer. The C6713 simulator additionally models the McASP modules.
The memory external to the EMIF has been modeled to mimic the expected memory behavior based on
the EMIF settings for the corresponding CE space. The C6713 simulator also models, in addition to the
above, S2, the ROM, and ROM patching.

32 Detailed Capabilities of Individual Configurations SPRU600I–April 2007
Submit Documentation Feedback

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/846662/TMDSCCS2000-1.html

www.ti.com

3.4.1 Supported Features

3.4.2 Known Limitations

3.5 C6411/C6412/C6414/C6415/C6416/DM642 Device Cycle Accurate Simulators

3.5.1 Supported Features

3.5.2 Known Limitations

C6411/C6412/C6414/C6415/C6416/DM642 Device Cycle Accurate Simulators

The bootload feature is supported by the simulator.

The C6x1x Device Cycle Accurate Simulators have the cycle-accurate CPU and the cycle-accurate Timer
module. The L1 and L2 are also modeled accurately. The EDMA subsystem and the EMIFs, although not
accurate, will take cycles proportional to what will be taken on design, depending on transfer types,
memory parameters, etc.

Applications that use RTDX and DSP/BIOS real-time analysis can be run on these simulators.
Additionally, the Pin Connect and the Port Connect features are available to set up external stimuli
required by the application for simulation.

The list of pins supported and the ranges of memory that can be connected to a file for these
configurations are specified in Section 2.1. These simulator configurations can track man y of the target
events and allow you to count or break on these events. See the Code Composer Studio IDE online
documentation for more details on the list of events and how to use them.

• General

– The HPI is not modeled.
– GPIO is not modeled.

• DMA

– The synchronization events, DSPINT and SDRAM_INT, are not supported.
• EMIF

– There is no support for the SDRAM interrupt.
• Cache

– The functionality of the L2CLEAN register is not supported.

These simulators model the CPU core, L1P and L1D Caches, L2 Cache/SRAM, EDMA, EMIFA, EMIFB,
Interrupt selector, McBSPs and Timer. The memory external to the EMIF has been modeled to mimic the
expected memory behavior based on the EMIF settings for the corresponding CE space. EMIFB and
TCP/VCP support is not available for C6411/DM642 Device Cycle Accurate Simulators.

The C641x Device Cycle Accurate Simulators have the cycle-accurate CPU module, cycle-accurate Timer
module. The L1 and L2 Cache models are modeled accurately. The EDMA subsystem and the EMIF will
consume cycles proportional to what they consume on design for different parameters.

Applications that use RTDX and DSP/BIOS real-time analysis can be run on these simulators.
Additionally, the Pin Connect and the Port Connect features are available to setup up external stimuli
required by the application for simulation.

The list of pins supported and the ranges of memory that can be connected to a file for these
configurations are specified in Section 2.1. These simulator configurations can track many of the target
events and allow you to count or break on these events. See the Code Composer Studio IDE online
documentation for more details on the list of events and how to use them.

• General

– The HPI/PCI is not modeled.
– Utopia is not modeled.
– GPIO is not supported.

SPRU600I–April 2007 Detailed Capabilities of Individual Configurations 33
Submit Documentation Feedback

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/846662/TMDSCCS2000-1.html

www.ti.com

3.6 DM6443/DM6446/C6455/TCI6482 Device Cycle Accurate Simulators

3.6.1 Supported Features

3.6.2 Known Limitations

DM6443/DM6446/C6455/TCI6482 Device Cycle Accurate Simulators

• EDMA

– Event polarity in XDMA is not supported. Therefore, events are taken only in active high state.
– Push Data Transfer feature is not supported.
– The synchronization events DSPINT, GPIOINT, SD_INTA, SD_INTB, PCI, UREVT, and UXEVT are

not modeled.
• Cache

– L2 does not submit Transfer Requests (TR) on all priorities, only on priority 0.
– The cycle effects of L1P pipelined misses to L2SRAM are not accurate.

• TCP/VCP Coprocessors

– No support for Pause/UnPause conditions.

These simulators model the CPU core, L1P and L1D Caches/SRAM, L2 Cache/SRAM, EDMA,
DDR/SDRAM EMIF, Interrupt selector, McBSP, and Timer. The memory external to the EMIF has been
modeled to mimic the expected memory behavior based on the EMIF settings for the corresponding CE
space. The TCI6482 device simulator supports TCP/VCP/RSA co-processors.

The C64x+ Device Cycle Accurate Simulators have the cycle-accurate CPU module, cycle-accurate Timer
module. The L1 and L2 Cache models are modeled accurately. The EDMA subsystem and the EMIF will
consume cycles proportional to what they consume on design for different parameters.

Applications that use RTDX and DSP/BIOS real-time analysis can be run on these simulators.
Additionally, the Pin Connect and the Port Connect features are available to set up external stimuli
required by the application for simulation.

The list of pins supported and the ranges of memory that can be connected to a file for these
configurations are specified in Section 2.1. These simulator configurations can track many of the target
events and allow you to count or break on these events. See the Code Composer Studio IDE online
documentation for more details on the list of events and how to use them.

The C64x+ device simulator supports the Cache Tag RAM Viewer and Enhanced Memory Viewer in order
to solve cache coherency problems.

• General

– The following peripherals are not modeled

• HPI/PCI
• Utopia
• GPIO
• PLL controller
• I2C
• EMAC
• RapidIO
• VLYNQ

– The DM6443/DM6446 simulator models the DSP subsystem, EDMAv3, and DDR2 EMIF only. Does
not model the ARM subsystem.

• Features not supported

– Rewind
– Watchpoint
– Resource Conflict Detection
– Reserved Memory Access Detection
– Intuitive Simulation Setup

34 Detailed Capabilities of Individual Configurations SPRU600I–April 2007
Submit Documentation Feedback

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/846662/TMDSCCS2000-1.html

Chapter 4
SPRU600I–April 2007

Configuring the Simulator

Simulators can be configured for different features though the Code Composer Studio
Setup program. However, to modify the advanced options, you need to modify the base
configuration file (see Section 4.11.)

Topic .. Page

4.1 Setting the Resource Conflict Detection Mode.............................. 36
4.2 Setting the Reserved Memory Access Detection Mode 36
4.3 Setting the Bootload.. 37
4.4 Setting the EMIF and CPU Clocks ... 38
4.5 Enabling the Rewind Feature.. 38
4.6 Setting Up the McBSP XBAR .. 38
4.7 Setting Up the McASP XBAR .. 40
4.8 Setting the Maximum Memory Usage Limit 41
4.9 File Format for Pin Connect ... 41
4.10 File Format for Port Connect .. 43
4.11 Base Configuration File ... 43

SPRU600I–April 2007 Configuring the Simulator 35
Submit Documentation Feedback

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/846662/TMDSCCS2000-1.html

www.ti.com

4.1 Setting the Resource Conflict Detection Mode

4.2 Setting the Reserved Memory Access Detection Mode

Setting the Resource Conflict Detection Mode

CPU Resource Conflict Detection is a feature that allows you to find any resource problem with the use of
CPU registers and functional units. If you are confident that there is no resource conflict problem in the
code, this feature can be turned off to further enhance simulation speed.

This feature can be configured through Code Composer Studio Setup by setting one of the following
options from the Detect CPU Resource Conflicts entry in the processor properties window:

• Yes. The simulator detects all resource conflicts and flags them as errors to you. Whenever an error
occurs, the simulation is halted and control returns to you. You can then choose to correct the error,
reset the program and run again; or to proceed. If you proceed, a precautionary error message is
displayed, click on the Run option to resume simulation.

Note: YES is the default mode. If nothing is specified in the base configuration file (see
Section 4.11), simulators come up in this mode of execution.

• No. The simulator does not detect any resource conflicts.
• Create Log. The simulator detects all resource conflicts but does not flag them as errors to you.

Instead, they are written to a file. To specify the file location, use the Log File entry.
• Log File : Fully qualified filename. If no filename is specified, the errors generated in File mode are

logged in a file named resource_errors.log, located in the CCStudio\drivers directory.
Whenever the Code Composer Studio IDE is re-invoked, the error log file is overwritten. However, if
multiple errors occur during one or more runs in one invocation of CCStudio, all errors are written to
the file.

By default, the detection of reserved memory access is enabled on all simulators. This feature can be
configured through Code Composer Studio Setup by setting one of the following options from the Detect
Reserved Memory Access entry in the processor properties window:

• Yes. The simulator halts whenever the program accesses a reserved memory location. It displays an
error indicating the nature and address of the access. This is the default choice.

• No. The simulator does not report any reserved memory accesses. In this mode, writes to the reserved
memories have no effect, while reads return 0.

Note: Any debug accesses to reserved memory locations (through Memory Windows) will not
cause errors. Debug writes will have no effect and debug reads will always return 0.

• Create Log. The simulator routes all error messages to a file without halting simulation. To specify the
file to save the errors into, use the Log File entry.

• Log File: Fully qualified filename. If no filename is specified, the errors generated in File mode are
logged in a file named res_mem_access_errors.log, located in the CCStudio\drivers directory.
Whenever the Code Composer Studio IDE is re-invoked, the error log file is overwritten. However, if
multiple errors occur during one or more runs in one invocation of CCStudio, all errors are written to
the file.

Configuring the Simulator36 SPRU600I–April 2007
Submit Documentation Feedback

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/846662/TMDSCCS2000-1.html

www.ti.com

4.3 Setting the Bootload

4.3.1 Bootload in C6x0x Device Simulators

4.3.2 Bootload in C64x Device Cycle Accurate/Device Functional Simulators

4.3.3 Bootload in C64x+ Device Cycle Accurate Simulators

Setting the Bootload

The following are the Bootmodes supported in the C6x0x Device Simulators:

• ROM_8BIT
• ROM_16BIT
• ROM_32BIT

The Bootmode for C6x0x Device Simulators is not configurable via the Code Composer Studio Setup
interface. You must manually add a BOOTSRC entry in the desired simulator's base configuration file (see
Section 4.11) to use the Bootload feature.

For example, to choose ROM_8BIT Bootmode in the C6202 Device Simulator, the base configuration file
must include the following in order to enable the bootload:

MODULE C6202;
...

BOOTSRC ROM_8BIT;
END C6202;

If the BOOTSRC flag is absent or set to NONE, no bootload will happen. If Bootmode is set to any of the
three values listed above, DMA will copy 64K bytes from EMIF CE1 (which is address 0x01000000 in
MAP0 and is address 0x01400000 in MAP1) to address 0. Apart from Bootmode, the type of memory
sitting at address 0 can also be configured through the simulator base configuration file. To do so, the
base configuration file should have the MEM0 switch set to a valid memory type, chosen from the
following available values:

• ONCHIP
• SDRAM_8BIT
• SDRAM_16BIT
• SDRAM_32BIT
• SBSRAM_CLK2
• SBSRAM_CLK1

If not specified, the memory at address 0 is set to ONCHIP by default.

In C64x Device Simulators, the process of bootload (if enabled from Code Composer Studio Setup) copies
1K byte (256 words) into the memory at address 0 (i.e., internal memory in this case).

For enabling bootload on C6411/DM642/C6414/C6415/C6416, BOOT Mode in Code Composer Studio
Setup should be set to either of the following values:

• NONE
• EMIFB

If not specified, or set to NONE, or to any other invalid value through the base configuration file (see
Section 4.11), BOOTMODE is set to NONE by default. This means that no Bootload will happen.
Specifying EMIFB as the BOOTMODE causes the Bootload process to copy 256 words from the EMIFB
CE1 space (0x64000000) to internal memory address 0 through EDMA.

Bootmode QUICK does a simple memcopy (not through EDMA, like Bootmodes EMIFB) of 256 words
from EMIFA CE1 space (i.e., 0x90000000) to internal memory. QUICK Bootmode is therefore faster.

The Bootmode for C64x+ Device Simulators is not configurable via the Code Composer Studio Setup
interface. You must manually add the following entries in the desired simulator's configuration:
• Boot mode type (BOOTMODE QUICK/NONE)
• Boot source address (BOOT_SRC_ADDR)

SPRU600I–April 2007 Configuring the Simulator 37
Submit Documentation Feedback

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/846662/TMDSCCS2000-1.html

www.ti.com

4.4 Setting the EMIF and CPU Clocks

4.5 Enabling the Rewind Feature

4.6 Setting Up the McBSP XBAR

Setting the EMIF and CPU Clocks

• Boot destination address (BOOT_DST_ADDR)
• Boot size (in bytes) (BOOTSIZE)

For example, the following configuration file snippet does a simple memcopy of 256 bytes from
0x90000000 to 0x00000000....
MODULE C64Xplus;
...

BOOTMODE QUICK;
BOOT_SRC_ADDR 0x90000000;
BOOT_DST_ADDR 0x00000000;
BOOTSIZE 256;

...
END C64Xplus;

The EMIF to CPU clock ratio on C6000 simulators must be set up based on the respective DSP developer
board (DSK/TEB/EVM) characteristics. This is necessary to ensure that the cycles on the developer board
match those on the simulator.

You must specify correct EMIF and CPU clock speeds in Code Composer Studio Setup.

For instance, consider a C6416 DSK whose CPU clock frequency is 600 MHz and EMIF clock frequency
is 100 MHz. To match the characteristics of the C6416 Device Cycle Accurate Simulator with this DSK,
the EMIF Clock (MHz) and CPU Clock (MHz) should be set to 100 and 600, respectively, from Code
Composer Studio Setup.

Note: If this step is not done, cycles will differ considerably between the simulator and the
developer board for external memory accesses.

Using Rewind you can view the past history of an application being executed on the simulator. This
reduces the time required to debug an application. Presently, only simulators support this option. This
feature is disabled (OFF) by default, but it can be enabled (ON) from Code Composer Studio Setup for the
simulators.

This feature can be configured through Code Composer Studio Setup by setting the appropriate option for
the Rewind entry in the processor properties window.

Once Rewind is enabled, Code Composer Studio Setup will also let you select between two options for
where the Rewind trace will be located:
• In Memory (default)
• On Disk

See the Rewind User’s Guide (SPRU713), for more information on configuring the simulator for Rewind.

The simulator provides a mechanism by which you can interconnect two McBSPs to test and validate
code written for serial transfer. The XBAR (crossbar) serves as a test bench which can be programmed to
set up this desired connectivity.

Typically, you program one McBSP for transmission and another McBSP for reception. Thus, the DX and
DR pins of the corresponding McBSPs must be hooked up to one another. Similarly, clock and frame
synchronization signals have to be interconnected. The XBAR component in the simulator allows
specification and implementation of this connectivity.

38 Configuring the Simulator SPRU600I–April 2007
Submit Documentation Feedback

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/846662/TMDSCCS2000-1.html

www.ti.com

4.6.1 How to Write an XBAR File

Setting Up the McBSP XBAR

The XBAR connectivity is specified in a XBAR data file. Section 4.6.2 describes the file format in detail.
The path and file name of the XBAR data file must be included in a simulator base configuration file (see
Section 4.11), which is selected in Code Composer Studio Setup. Subsequently, when Code Composer
Studio IDE is invoked, the XBAR functionality will be effective.

The supported pin names for an XBAR file are listed in Table 4-1:

Table 4-1. XBAR File Pin Names

Pin Name Denoted Pins Register

MCBSP0:DX DX McBSP0

MCBSP1:DX DX McBSP1

MCBSP2:DX DX McBSP2

MCBSP0:DR DR McBSP0

MCBSP1:DR DR McBSP1

MCBSP2:DR DR McBSP2

MCBSP0:CLKX CLKX McBSP0

MCBSP1:CLKX CLKX McBSP1

MCBSP2:CLKX CLKX McBSP2

MCBSP0:CLKR CLKR McBSP0

MCBSP1:CLKR CLKR McBSP1

MCBSP2:CLKR CLKR McBSP2

MCBSP0:FSX FSX McBSP0

MCBSP1:FSX FSX McBSP1

MCBSP2:FSX FSX McBSP2

MCBSP0:FSR FSR McBSP0

MCBSP1:FSR FSR McBSP1

MCBSP2:FSR FSR McBSP2

1. Connectivity is specified by means of source pin-destination pin pair specifications. The driver-driven
entity relation is specified on the same line as follows:

• MCBSP0:FSX > MCBSP1:FSR
• MCBSP0:DX > MCBSP1: DR
• MCBSP0:CLKX > MCBSP1:CLKR

2. No comments are supported by the file syntax. No blank lines should be present between specification
lines.

3. The connectivity can be mentioned in any order, but make sure that each pair specifies a driver-driven
connection. For example, to mention MCBSP1:DX → MCBSP0:DR, MCBSP1:CLKX →
MCBSP0:CLKR, MCBSP1:FSX → MCBSP0:FSR connectivity, please follow the valid XBAR
connectivity:

Valid XBAR Connectivity Invalid XBAR Connectivity

MCBSP1:DX > MCBSP0:DR MCBSP1:DX > MCBSP1:CLKX

MCBSP1:CLKX > MCBSP0:CLKR MCBSP1:FSX > MCBSP0:DR

MCBSP1:FSX > MCBSP0:FSR MCBSP0:CLKR > MCBSP0:FSR

4. Ensure that there are no blank lines at the end of the file, as this might cause problems.

Note: The old McBSP XBAR file format is supported for backward compatibility, but users are
encouraged to use the new format.

SPRU600I–April 2007 Configuring the Simulator 39
Submit Documentation Feedback

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/846662/TMDSCCS2000-1.html

www.ti.com

4.6.2 Format of the Configuration File to be Picked Up

4.7 Setting Up the McASP XBAR

Setting Up the McASP XBAR

McBSP XBAR is not configurable via the Code Composer Studio Setup interface. You must manually add
a MCBSP_XBAR_FILE entry in the desired simulator's base configuration file (see Section 4.11.)

In the case of C6x0x devices, add the entry MCBSP_XBAR_FILE as follows (note that XBAR is not
supported on the C6205 simulator):

MODULE TB;
MCBSP_XBAR_FILE <path_of_xbar_file_name>;

END TB;

On the other hand, in case of C64x devices, add the entry MCBSP_XBAR_FILE as follows:
MODULE C64xx;
...

MCBSP_XBAR_FILE <path_of_xbar_file_name>; // path of xbar data file
END C64xx;

The value <path_of_xbar_file_name>.dat denotes the path and file name of the XBAR data file. For
example:

MCBSP_XBAR_FILE C:\ccstudio\drivers\mcbsp_xbar.dat;

The simulator provides a mechanism for connecting two McASPs, just as it does for connecting two
McBSPs. The format of the connections which make up the lines of the XBAR file is as follows:

SRC_DEV : SRC_PIN > DST_DEV : DST_PIN

Where

SRC_DEV is the device from which data goes out.

SRC_PIN is the pin that sends data.

DST_DEV is the device into which data is comes.

DST_PIN is the pin that receives data.

Here, the following limitations are to be noted:

• Peripheral supported: McASP0
• Pins supported: AXR0-AXR15, AFSR, AFSX
• Pins not supported: AMUTEIN, AMUTE, ACLKR, ACLKX, AHCLKR, AHCLKX

For example, the XBAR file could contain the following connections:
MCASP0:AXR8 > MCASP0:AXR0
MCASP0:AXR9 > MCASP0:AXR1
MCASP0:AXR10 > MCASP0:AXR2
MCASP0:AXR11 > MCASP0:AXR3
MCASP0:AXR12 > MCASP0:AXR4
MCASP0:AXR13 > MCASP0:AXR5
MCASP0:AXR14 > MCASP0:AXR6
MCASP0:AXR15 > MCASP0:AXR7
MCASP0:AFSX > MCASP0:AFSR

If no interconnections are desired, the file can be left blank.

40 Configuring the Simulator SPRU600I–April 2007
Submit Documentation Feedback

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/846662/TMDSCCS2000-1.html

www.ti.com

4.7.1 Format of the Configuration File to be Picked Up

4.8 Setting the Maximum Memory Usage Limit

4.9 File Format for Pin Connect

4.9.1 Setting Up the Input File

Setting the Maximum Memory Usage Limit

McASP XBAR is not configurable via the Code Composer Studio Setup interface. You must manually add
a MCASP_XBAR_FILE entry in the desired simulator's base configuration file (see Section 4.11.)

In the case of C6x0x devices, add the entry MCASP_XBAR_FILE as follows (note that XBAR is not
supported on the C6205 simulator):

MODULE TB;
MCASP_XBAR_FILE <path_of_xbar_file_name>;

END TB;

On the other hand, in the case of C64x devices, add the entry MCASP_XBAR_FILE as follows:
MODULE C64xx;
...

MCASP_XBAR_FILE <path_of_xbar_file_name>; // path of xbar data file
END C64xx;

The value <path_of_xbar_file_name> denotes the path and file name of the XBAR data file. For example:
MCASP_XBAR_FILE C:\ccstudio\drivers\mcasp_xbar.dat;

The default maximum memory usage limit of 64MB could be over-ridden by adding the following line in the
base configuration file (see Section 4.11):

MEM_USAGE_LIMIT <max_mem_usage_in_MB>;

For example, in order to run a test case that uses between 50 and 100 MB of device memory space, the
default limit of 64MB is not sufficient and needs to be over-ridden. For example, to set the maximum
memory limit to100 MB for a C6416 Device Cycle Accurate Simulator configuration, go to the section
MODULE C6416 in the base configuration file and add the entry MEM_USAGE_LIMIT 100 as shown
below.

MODULE C6416;
...

MEM_USAGE_LIMIT 100;
END C6416;

MEM_USAGE_LIMIT is not configurable via the Code Composer Studio Setup interface. You must
manually add a MEM_USAGE_LIMIT entry in the desired simulator's base configuration file.

The simulator allows you to simulate and monitor external interrupt signals.

The Pin Connect tool enables you to specify the interval at which selected external interrupts will occur.

To simulate external interrupts follow these steps:

1. Create a data file that specifies interrupt intervals.
2. Start the Pin Connect tool. From the Code Composer Studio Tools menu, choose Pin Connect.
3. Connect the data file to an external interrupt pin.
4. Load the program.
5. Run the program.

To simulate external interrupts, you must first create a data file that specifies interrupt intervals. Interrupt
intervals are expressed as a function of CPU clock cycles. Simulation begins at the first clock cycle. An
interrupt will occur at each specified clock cycle.

The data file must contain a CPU clock cycle parameter in the following format:

[clock_cycle, logic_value] [rpt {n|EOS}]

Where

SPRU600I–April 2007 Configuring the Simulator 41
Submit Documentation Feedback

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/846662/TMDSCCS2000-1.html

www.ti.com

4.9.2 Absolute Clock Cycle

4.9.3 Relative Clock Cycle

4.9.4 Repetition of Patterns for a Specified Number of Times

4.9.5 Repetition to the End of Simulation (EOS)

File Format for Pin Connect

clock_cycle The CPU clock-cycle parameter specifies the intervals at which interrupts will
occur. Clock cycles can be specified as absolute or relative.

logic_value The logic-value parameter is valid only for the pins of waveform-type (e.g., the
FSX0 pin in the C6201 simulator). This value (0 or 1) must be used to force the
pin value to low or high at the corresponding cycle. A logic value of 0 causes the
pin value to go low, and a logic value of 1 causes it to go high.
For example:
[12,1] [56,0] [78,1]

If connected to the FSX0 pin in C6201, this will cause the pin to go high at the
twelfth cycle, low at the 56th cycle, and then high at the 78th cycle.

rpt Repeat the same pattern a fixed number of times.

n A positive integer value specifying the number of times to repeat.

EOS Repeat the same pattern until the end of simulation.

To use an absolute clock cycle, the cycle value must represent the actual CPU clock cycle where an
interrupt should be simulated. For example,

12 34 56

Interrupts are simulated at the twelfth, 34th, and 56th CPU clock cycles. No operation is performed on the
clock cycle value; the interrupt occurs exactly as the clock cycle value is written.

You can also select a clock cycle that is relative to the time at which the last event occurred. A plus sign
(+) before a clock cycle adds that value to the total clock cycles proceeding it. For example,

12 +34 55

In this example, a total of three interrupts are simulated at the 12th, 46th (12 + 34), and 55th CPU clock
cycles. You can mix both relative and absolute values in the data file.

You can format the data file to repeat a particular pattern for a fixed number of times. For example:
5 (+10 +20) rpt 2

The values inside the parenthesis represent the portion that is repeated. Therefore, an interrupt is
simulated at the fifth CPU cycle, then the 15th (5+10), 35th (15+20), 45th (35+10), 65th (45+20) CPU
clock cycles.

To repeat the same pattern throughout the simulation, add the string EOS to the line. For example:
10 (+5 +20) rpt EOS

Interrupts are generated at the tenth CPU cycle, the 15th (10+5), the 35th (15+20), the 40th (35+5), the
60th (40+20), and so on, continuing in that pattern until the end of simulation.

Note: Comments are not supported in the pin connect file.

Configuring the Simulator42 SPRU600I–April 2007
Submit Documentation Feedback

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/846662/TMDSCCS2000-1.html

www.ti.com

4.10 File Format for Port Connect

4.11 Base Configuration File

File Format for Port Connect

The Port Connect file contains one or more lines. Each line contains less than 80 characters to represent
one data value. The data in the Port Connect file is interpreted as hex data and can be specified with a
preceding 0x or without.

12346666
33449999
; This is a commented line
5655cccc ; This is a commented sentence
89897f7f

Comments are allowed in the Port Connect read file. Comments should begin with a semi-colon (;), as
shown in the sample file.

There is a configuration file (.cfg) corresponding to each simulation driver present in the drivers sub-folder
in the Code Composer Studio installation directory. These files hold the default values for the features
supported by the corresponding simulation driver. These values should be changed only if you want to
change the default values of certain features that are not configurable from Code Composer Studio Setup,
such as advanced options for Rewind or settings for the Maximum Memory Usage Limit.

SPRU600I–April 2007 Configuring the Simulator 43
Submit Documentation Feedback

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/846662/TMDSCCS2000-1.html

www.ti.com

Configuring the Simulator44 SPRU600I–April 2007
Submit Documentation Feedback

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/846662/TMDSCCS2000-1.html

Chapter 5
SPRU600I–April 2007

Performance Numbers

Table 5-1 shows the performance numbers of the simulator for different device
configurations. These numbers were gathered on a PC with a 2.4-GHz Intel® Pentium®

4 processor and 512 MB of RAM.

Table 5-1. Performance Numbers of the C6000 Simulator

Speed With Resource Conflict
Speed Under Default Settings Detection Turned Off

Simulator Configuration Application KIPS (1) KCPS (1) KIPS (1) KCPS (1)

C62xx/C67xx CPU Cycle GSM Enhanced Full Rate 3800 - 5600 -
Accurate Simulators Vocoder (GSMEFR)

C64xx CPU Cycle GSMEFR 2700 - 3600 -
Accurate Simulator

C641x/DM642 Device GSMEFR 2700 - 2750 -
Functional Simulators

C6713 Device Functional GSMEFR 2600 - 3300 -
Simulator

C6x0x Device Simulators Reed-Solomon encoder 41 188 41 188
and decoder

C6211/C6713 Device GSMHR 74 644 74 644
Cycle Accurate Simulators GSMEFR 9 195 9 195

Performance Audio 100 294 102 311
Application - PA3

C641x/DM642 Device GSMHR 101 337 102 355
Cycle Accurate Simulators GSMEFR 807 2344 892 2354

Video & Imaging 885 223 984 248
Application - MPEG2

Decoder

Video & Imaging 776 261 851 279
Application - H.263

Decoder

DM6443/DM6446 Device Video Encode 176x144 367 195 367 195
Cycle Accurate Video Encode 720x480 446 148 446 148

Simulator (2)

H263 decoder 153 451 153 451

H264 encoder 354 167 354 167

WMV Decoder 336 172 336 172

(1) KIPS = Kilo Instructions Per Second, KCPS = Kilo Cycles Per Second
(2) Resource Conflict detection is not supported on this simulator.

Notes:
• Performance numbers are given for more than one application when there are

significant differences in performance data due to the nature of the application.
• For Device Cycle Accurate simulators, the CPU load significantly affects the cycles

per second data. A lower CPU load means that for the same number of instructions,
more cycles are spent in CPU stalls, thus increasing the cycles per second.

SPRU600I–April 2007 Performance Numbers 45
Submit Documentation Feedback

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/846662/TMDSCCS2000-1.html

www.ti.com

Performance Numbers46 SPRU600I–April 2007
Submit Documentation Feedback

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/846662/TMDSCCS2000-1.html

Chapter 6
SPRU600I–April 2007

Cycle Accuracy

This chapter describes how the TMS320C6000 simulators have been validated for
cycle accuracy using a benchmark suite of applications.

Topic .. Page

6.1 C6000 Simulators Benchmarking .. 48
6.2 Notes on Cycle Accuracy ... 49

SPRU600I–April 2007 Cycle Accuracy 47
Submit Documentation Feedback

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/846662/TMDSCCS2000-1.html

www.ti.com

6.1 C6000 Simulators Benchmarking

C6000 Simulators Benchmarking

The TMS320C6000 simulators have been validated for cycle accuracy using a benchmark suite of
applications. The measurements on Device Cycle Accurate Simulators have been carried out in the
following categories:

• CPU + L1Cache + SRAM
• CPU + L1Cache + L2Cache + EMIF
• CPU + L1Cache + L2Cache + EDMA + EMIF
• Full applications using all of the above models and peripherals

The details on the benchmarking data are provided in Table 6-1.

Table 6-1. Benchmarking Data for C6000 Simulators

Application/Kernel Used for Referenced Percent Variance
Benchmarking Hardware Simulator Configuration in Cycle Numbers

On-Chip Memory Accesses (CPU + L1Cache + SRAM)

Image Analysis - Histogram Computation C6416 DSK C6416 Device Cycle Accurate Simulator 1.35

Picture Filtering - 3x3 Correlation with C6416 DSK C6416 Device Cycle Accurate Simulator 0
Rounding

Image Analysis - Histogram Computation C6713 DSK C6713 Device Cycle Accurate Simulator 2.47

Picture Filtering - 3x3 Correlation with C6713 DSK C6713 Device Cycle Accurate Simulator -0.37
Rounding

Single Precision Fast Fourier Transform - C6713 DSK C6713 Device Cycle Accurate Simulator -1.64
SP_FFT

Single Precision Matrix Multiplication - C6713 DSK C6713 Device Cycle Accurate Simulator -0.79
SP_MATMUL

On-Chip and Off-Chip Memory Accesses (CPU + L1Cache + L2Cache + EMIF)

Image Analysis - Histogram Computation C6416 DSK C6416 Device Cycle Accurate Simulator 1.56

Picture Filtering - 3x3 Correlation with C6416 DSK C6416 Device Cycle Accurate Simulator -10.89
Rounding

Image Analysis - Histogram Computation C6713 DSK C6713 Device Cycle Accurate Simulator -8.83

Picture Filtering - 3x3 Correlation with C6713 DSK C6713 Device Cycle Accurate Simulator 12.66
Rounding

Single Precision FIR Filtering (general C6713 DSK C6713 Device Cycle Accurate Simulator 9.78
purpose) - SP_FIR_GEN(L2SRAM)

Single Precision FIR Filtering (general C6713 DSK C6713 Device Cycle Accurate Simulator -11.67
purpose) - SP_FIR_GEN(L2CACHE)

Single Precision Fast Fourier Transform - C6713 DSK C6713 Device Cycle Accurate Simulator -35.31
SP_FFT

Single Precision Matrix Multiplication - C6713 DSK C6713 Device Cycle Accurate Simulator -9.76
SP_MATMUL

Single Precision Weighted Vector Sum - C6713 DSK C6713 Device Cycle Accurate Simulator 11.29
SP_W_VEC(L2SRAM)

Single Precision Weighted Vector Sum - C6713 DSK C6713 Device Cycle Accurate Simulator -1.58
SP_W_VEC(L2CACHE)

48 Cycle Accuracy SPRU600I–April 2007
Submit Documentation Feedback

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/846662/TMDSCCS2000-1.html

www.ti.com

6.2 Notes on Cycle Accuracy

Notes on Cycle Accuracy

Table 6-1. Benchmarking Data for C6000 Simulators (continued)

Application/Kernel Used for Referenced Percent Variance
Benchmarking Hardware Simulator Configuration in Cycle Numbers

Memory Accesses using DMA (CPU + L1Cache + L2Cache + EDMA + EMIF)

Image Analysis - Histogram Computation C6416 DSK C6416 Device Cycle Accurate Simulator 1.80

Picture Filtering - 3x3 Correlation with C6416 DSK C6416 Device Cycle Accurate Simulator 9.49
Rounding

Image Analysis - Histogram Computation C6713 DSK C6713 Device Cycle Accurate Simulator 0.87

Picture Filtering - 3x3 Correlation with C6713 DSK C6713 Device Cycle Accurate Simulator -0.55
Rounding

Single Precision FIR Filtering (general C6713 DSK C6713 Device Cycle Accurate Simulator 9.67
purpose) - SP_FIR_GEN

Single Precision Fast Fourier Transform - C6713 DSK C6713 Device Cycle Accurate Simulator 25.22
SP_FFT

Single Precision Matrix Multiplication - C6713 DSK C6713 Device Cycle Accurate Simulator 9.58
SP_MATMUL

Single Precision Weighted Vector Sum - C6713 DSK C6713 Device Cycle Accurate Simulator 6.64
SP_W_VEC

Full Applications (CPU + L1Cache + L2Cache + EDMA + EMIF + Peripherals (McBSP, McASP))

Video & Imaging Application - MPEG2 C6416 DSK C6416 Device Cycle Accurate Simulator -0.12
Decoder

Video & Imaging Application - H.263 C6416 DSK C6416 Device Cycle Accurate Simulator 1.46
Decoder

Performance Audio Application - PA3 C6713 - PA3 C6713 Device Cycle Accurate Simulator -4.66
Reference Board

Speech Application - PCM Voice Channel Access C6416 Device Cycle Accurate Simulator 1.02
Communication

Processor
Evaluation Platform

(C6416 daughter
card)

GSM AMR C6455 DSK C6455 Cycle Accurate Device Simulator -0.68

GSM AMR TCI6482 DSK TCI6482 Cycle Accurate Device Simulator -0.68

When comparing cycles between a simulator and a developer board (DSK/EVM/TEB), ensure the
following:

1. The Device Cycle Accurate Simulator chosen is appropriate for the desired target. For example, select
the C6416 Device Cycle Accurate Simulator for a TMS320C6416 developer board. For more on the
different categories of simulators, see Choosing the Appropriate Simulator Configuration in Code
Composer Studio (SPRA864).

2. The ratio of the EMIF and CPU clocks on the simulator matches that on the respective developer
board. See Section 4.4 for information on configuring the simulator with the correct EMIF to CPU clock
ratio.

3. The EMIF settings of simulator match those of the developer board. Setting the EMIF registers with the
same value across the simulator and developer board, either in the emif_init gel file or in the program,
will ensure this.

4. Cycle differences can arise due to emulation breakpoint handling. To get more accurate numbers, use
timers instead of profiler.

SPRU600I–April 2007 Cycle Accuracy 49
Submit Documentation Feedback

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/846662/TMDSCCS2000-1.html

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s
standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily
performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should
provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask
work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services
are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under
the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an
unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service
voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business
practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would
reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement
specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications
of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related
requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any
applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its
representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is
solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in
connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products
are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any
non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Low Power www.ti.com/lpw Telephony www.ti.com/telephony
Wireless

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2007, Texas Instruments Incorporated

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/parts/846662/TMDSCCS2000-1.html

