

Digitalmultimeter Agilent 34410A und 34411A

Die neuen Industriestandards für anspruchsvolle Labor- und Systemanwendungen

Produktübersicht

Agilent 34410A 6½-stelliges Hochleistungs-DMM

- 10.000 Messungen pro Sekunde bei 5½ Stellen (kontinuierliche Übertragung zum PC)
- 1.000 Messungen pro Sekunde bei 6½ Stellen (kontinuierliche Übertragung zum PC)
- 30 ppm DC-Grundgenauigkeit (1 Jahr)
- LAN-, USB- und GPIB-Schnittstellen serienmäßig
- Messfunktionen: DCV, ACV, DCI, ACI, 2-Draht- und 4-Draht-Widerstand, Frequenz, Periode, Durchgangsprüfung und Diodentest
- · Kapazitäts- und Temperaturmessungen
- · Erweiterte Messbereiche
- Datenlogger mit nichtflüchtigem Speicher für 50.000 Messwerte

Agilent 34411A 6½-stelliges DMM mit erweiterter Leistung

Sämtliche Leistungsmerkmale des 34410A, plus:

- 50.000 Messungen pro Sekunde bei 4½ Stellen (kontinuierliche Übertragung zum PC)
- Nichtflüchtiger Speicher für 1 Million Messwerte
- · Analoge Pegeltriggerung
- · Programmierbare Pre/Post-Triggerung

"High-End" neu definiert

Die 61/2-stelligen Digitalmultimeter Agilent 34410A und 34411A repräsentieren die neueste Multimetergeneration von Agilent Technologies. Es handelt sich um Weiterentwicklungen des äußerst erfolgreichen, bisher als Industriestandard geltenden Agilent 34401A. Die Geräte bieten eine noch höhere Messgenauigkeit, erweiterte Messfunktionen, eine drastisch höhere Messgeschwindigkeit/Testdurchsatz sowie moderne Computerschnittstellen einschließlich LAN und USB. Das Dualdisplay ermöglicht die gleichzeitige Anzeige von zwei Messwerten und erleichtert die Einstellung des Multimeters. Die neuen Digitalmultimeter sind dem bisherigen Spitzenprodukt 34401A in jeder Hinsicht überlegen - sei es bei manuellen Labormessungen oder automatisierten Tests.

Dratische Messgeschwindigkeitsund Durchsatzsteigerung

Sowohl bei der Messgeschwindigkeit als auch beim Systemdurchsatz stellt das 34410A neue Rekorde auf. Dank einer neuen A/D-Wandler-Technologie erreicht das 34410A eine beeindruckende Messgeschwindigkeit von 10.000 Messungen pro Sekunde bei 5½-stelliger Auflösung – und mit der gleichen Geschwindigkeit werden die Messdaten auch zum Computer übertragen! Bemerkenswert ist auch die sehr schnelle und genaue Triggerung. Sowohl die Triggerlatenzzeit als auch der Trigger-Jitter liegen unter 1 µs, und auf

eine Busabfrage antwortet das Gerät innerhalb von weniger als 500 µs. Die Geschwindigkeitssteigerung bei ACV-Messungen ist einem neuartigen digitalen Messverfahren zu verdanken, das zudem die Genauigkeit bei hohen und niedrigen Frequenzen verbessert. Für Anwendungen, die noch höhere Messgeschwindigkeiten erfordern, empfehlen wir Ihnen das 34411A, das bei 4½-stelliger Auflösung 50.000 Messungen pro Sekunde schafft.

Höhere Messgenauigkeit und erweiterte Messfunktionen

Die Digitalmultimeter 34410A und 34411A bieten zusätzlich zu den üblichen DMM-Messfunktionen - DCV, ACV, DCI, ACI, 2-Draht- und 4-Draht-Widerstand, Frequenz, Periode, Durchgangsprüfung und Diodentest - auch noch Temperatur- und Kapazitätsmessfunktionen sowie eine "Offset Compensated Ohms"-Funktion für präzise Widerstandsmessungen in Anwesenheit von Spannungen. Auch die Messbereiche wurden erweitert; so gehen z. B. die Gleich- und Wechselstrombereiche nach unten bis auf 100 µA – das bedeutet eine Auflösung von 100 pA. Zudem bieten diese Multimeter Echtzeit-Mathematik- und Statistikfunktionen sowie einen Spitzenwertdetektor, der selbst extrem schmale Spitzen ab 20 µs zuverlässig erfasst.

Noch leistungsfähiger: das 34411A

Das 34411A bietet alle Funktionen des 34410A plus eine Reihe von Extras, die es noch leistungsfähiger machen. So z. B. eine Messgeschwindigkeit von bis zu 50.000 Messungen pro Sekunde (bei 4½-stelliger Auflösung), Analogpegel-Triggerung, programmierbare Pre- und Post-Trigger und - zusätzlich zum nichtflüchtigen Speicher für 50.000 Messwerte - einen flüchtigen Speicher für 1 Million Messwerte. Dadurch können Sie mit dem 34411A niederfrequente Signale erfassen. das Verhalten eines Messobiekts charakterisieren und die Ergebnisse zu Ihrem Computer übertragen, um sie dort zu analysieren.

Datenloggerfunktion

Sie haben die Möglichkeit, das Multimeter über die Frontplatte als Datenlogger zu konfigurieren, der unbeaufsichtigt Messungen über eine vorgegebene Zeitdauer (oder Anzahl von Ereignissen durchführt) und deren Ergebnisse intern abspeichert. Danach können Sie die erfassten Messdaten zu einem Computer übertragen und dort analysieren. Sie können beispielsweise das Multimeter so einstellen, dass es während Ihrer Mittagspause eine Stunde lang alle 10 Sekunden eine Messung durchführt, und sich anschließend die Ergebnisse anschauen. Dank der durchdachten Benutzerführung ist das Einstellen der Datenloggerfunktion und die Abfrage der Ergebnisse ein Kinderspiel.

Noch benutzerfreundlicher

Durch das zweite Display, das u. a. zum Konfigurieren der Messfunktionen dient, sind die neuen Digitalmultimeter wesentlich einfach zu bedienen. Einfaches bleibt einfach, komplexere Einstellungen gehen leichter als bisher. Für diese Multimeter haben wir sogar einen neuen Tastkopfsatz entwickelt, der das Kontaktieren von Fine-Pitch-Bauteilen vereinfacht. Zudem können Sie diese Geräte über Ihren Web-Browser interaktiv fernbedienen, ohne eine einzige Programmzeile schreiben zu müssen!

Anschlussfreudig dank zeitgemäßer I/O-Schnittstellen

Die Digitalmultimeter 34410A und 34411A sind serienmäßig mit LAN-, USB- und GPIB-Schnittstellen ausgestattet und

lassen sich dadurch problemlos an jeden Computer anschließen. Befürchten Sie, vorhandene Mess- und Testprogramme nicht mehr verwenden zu können? Diese Sorge ist unbegründet - die neuen Digitalmultimeter "verstehen" SCPI (Standard Commands for Programmable Instrumentation) und bieten sogar einen 34401A-Emulationsmodus. Das gewährleistet einen problemlosen Umstieg. Mithilfe der im Lieferumfang enthaltenen Agilent I/O Library Suite können Sie schnell eine fehlerfreie Verbindung zu Ihrem PC herstellen. Die Bibliothek bietet robuste Funktionen zur Messgerätesteuerung und ist mit der von Ihnen bevorzugten Software-Entwicklungsumgebung kompatibel.

LXI-Class-C-konform:

LXI (LAN Extensions for Instruments) ist das I/O-Konzept der nächsten Generation für Systemanwendungen, die maximale Durchsatzleistung erfordern. Mit Datenraten von über 250.000 Messwerten pro Sekunde bietet LXI ausreichende Geschwindigkeitsreserven selbst für die datenintensivsten Messungen – ohne dass, wie bei einem modularen System, zusätzliche Kosten für ein Grundgerät anfallen. Beide Modelle sind LXI-Class-C-konform.

Zuverlässig und langlebig

Unsere neuen Digitalmultimeter genügen hohen Anforderungen an Robustheit und Zuverlässigkeit. Viele Faktoren tragen zur Langlebigkeit dieser Geräte bei – von umlaufenden Stoßleisten über sorgfältige Bauteilauswahl bis zum konservativen Schaltungsdesign. Die berechnete MTBF (Mean Time Between Failure) beträgt über 100.000 Stunden. Agilent gibt auf diese Produkte ein Jahr Garantie und unterhält Service-Zentren in aller Welt – das bedeutet, dass Sie mit Ihrem Kauf kein Risiko eingehen.

Besuchen Sie uns im Internet

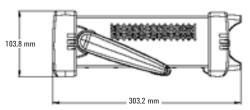
Die aktuellsten Informationen über diese und andere Digitalmultimeter von Agilent finden Sie unter

www.agilent.com/find/dmm

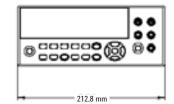
Mitgeliefertes Zubehör:

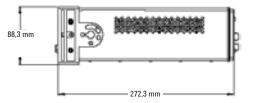
- Messleitungssatz mit Prüfspitzen und SMD-Halterungen
- · Testprotokoll, Netzkabel und USB-Kabel

CD-ROM mit Produktdokumentation und Software


- · Programmer's Reference Help
- · Quick Start Tutorial
- · User's Guide
- · Service Guide
- · Programmbeispiele
- · IntuiLink for Multimeters
- · LabVIEW- und IVI-COM-Treiber

Optionale gedruckte Dokumentation:


- · Quick Start Tutorial
- · User's Guide
- · Service Guide


Abmessung als Tischgerät:

Abmessungen für Rackmontage:

Genauigkeitsspezifikationen ± (% des Messwerts + % des Bereichs)¹

Funktion	Bereich ³	Frequenz bzw. Messstrom bzw. Spannungsabfall	24 Stunden Tcal ±1°C	90 Tage Tcal ±5°C	1 Jahr Tcal ±5°C	Temperaturkoeffizient (/°C) 0°C bis (Tcal –5°C) (Tcal +5°C) bis +55°C
01-1-1-1-1-1	100 0000\/	Spannungsabian	0.0020 - 0.0020	0.0040 + 0.0025	0.0050 . 0.0005	
Gleichspannung	100,0000 mV		0,0030 + 0,0030	0,0040 + 0,0035	0,0050 + 0,0035	0,0005 + 0,0005
	1,000000 V		0,0020 + 0,0006	0,0030 + 0,0007	0,0035 + 0,0007	0,0005 + 0,0001
	10,00000 V		0,0015 + 0,0004	0,0020 + 0,0005	0,0030 + 0,0005	0,0005 + 0,0001
	100,0000 V		0,0020 + 0,0006	0,0035 + 0,0006	0,0040 + 0,0006	0,0005 + 0,0001
	1000,000 V ⁴	0.11 5.11	0,0020 + 0,0006	0,0035 + 0,0006	0,0040 + 0,0006	0,0005 + 0,0001
Wechsel-	100,0000 mV	3 Hz – 5 Hz	0,50 + 0,02	0,50 + 0,03	0,50 + 0,03	0,010 + 0,003
spannung ⁵	bis 750,000 V	5 Hz – 10 Hz	0,10 + 0,02	0,10 + 0,03	0,10 + 0,03	0,008 + 0,003
Effektivwert		10 Hz – 20 kHz	0,02 + 0,02	0,05 + 0,03	0,06 + 0,03	0,005 + 0,003
		20 kHz – 50 kHz	0,05 + 0,04	0.09 + 0.05	0,10 + 0,05	0,010 + 0,005
		50 kHz – 100 kHz	0,20 + 0,08	0.30 + 0.08	0,40 + 0,08	0,020 + 0,008
		100 kHz – 300 kHz	1,00 + 0,50	1,20 + 0,50	1,20 + 0,50	0,120 + 0,020
Widerstand ⁶	100,0000 Ω	1 mA	0,0030 + 0,0030	0,008 + 0,004	0,010 + 0,004	0,0006 + 0,0005
	1,000000 kΩ	1 mA	0,0020 + 0,0005	0,007 + 0,001	0,010 + 0,001	0,0006 + 0,0001
	10,00000 k Ω	100 μΑ	0,0020 + 0,0005	0,007 + 0,001	0,010 + 0,001	0,0006 + 0,0001
	100,0000 kΩ	10 μΑ	0,0020 + 0,0005	0,007 + 0,001	0,010 + 0,001	0,0006 + 0,0001
	1,000000 MΩ	5 μΑ	0,0020 + 0,0010	0,010 + 0,001	0.012 + 0.001	0,0010 + 0,0002
	10,00000 MΩ	500 nA 10 MΩ	0,0100 + 0,0010	0.030 + 0.001	0.040 + 0.001	0,0030 + 0,0004
	100,0000 MΩ	500 nA 10 MΩ	0,200 + 0,001	0,600 + 0,001	0,800 + 0,001	0,1000 + 0,0001
Gleichstrom	100,0000 μΑ	<0,03 V	0,010 + 0,020	0,040 + 0,025	0,050 + 0,025	0,0020 + 0,0030
	1,000000 mA	<0,3 V	0,007 + 0,006	0,030 + 0,006	0,050 + 0,006	0,0020 + 0,0005
	10,00000 mA	<0,03 V	0,007 + 0,020	0.030 + 0.020	0,050 + 0,020	0,0020 + 0,0020
	100,0000 mA	<0,3 V	0,010 + 0,004	0.030 + 0.005	0,050 + 0,005	0,0020 + 0,0005
	1,000000 A	<0,8 V	0,050 + 0,006	0.080 + 0.010	0,100 + 0,010	0,0050 + 0,0010
	3,000000 A	<2,0 V	0,100 + 0,020	0,120 + 0,020	0,150 + 0,020	0,0050 + 0,0020
Wechselstrom ⁷	100,0000 μA bis	3 Hz – 5 kHz	0,10 + 0,04	0,10 + 0,04	0,10 + 0,04	0,015 + 0,006
Effektivwert	3,00000 A	5 kHz – 10 kHz	0,20 + 0,04	0.20 + 0.04	0.20 + 0.04	0.030 + 0.006
Frequenz	100 mV bis	3 Hz – 5 Hz	0,070 + 0,000	0,070 + 0,000	0,070 + 0,000	0,005 + 0,000
oder Periode	750 V	5 Hz – 10 Hz	0.040 + 0.000	0.040 + 0.000	0.040 + 0.000	0,005 + 0,000
		10 Hz – 40 Hz	0.020 + 0.000	0.020 + 0.000	0.020 + 0.000	0,001 + 0,000
		40 Hz – 300 kHz	0,005 + 0,000	0,006 + 0,000	0,007 + 0,000	0,001 + 0,000
Kapazität ⁸	1,0000 nF	500 nA	0,50 + 0,50	0,50 + 0,50	0,50 + 0,50	0,05 + 0,05
	10,000 nF	1 μΑ	0,40 + 0,10	0,40 + 0,10	0,40 + 0,10	0.05 + 0.01
	100,00 nF	10 μΑ	0,40 + 0,10	0,40 + 0,10	0,40 + 0,10	0.01 + 0.01
	1,0000 µF	10 μΑ	0,40 + 0,10	0,40 + 0,10	0,40 + 0,10	0,01 + 0,01
	10,000 μF	100 μΑ	0,40 + 0,10	0,40 + 0,10	0,40 + 0,10	0,01 + 0,01
Temperatur ⁹						
RTD	-200°C bis +600°C		0,06°C	0,06°C	0,06°C	0,003°C
Thermistor	-80°C bis +150°C		0,08°C	0,08°C	0,08°C	0,002°C
Durchgangsprüfg	. 1000,0 Ω	1 mA	0,002 + 0,010	0,008 + 0,020	0,010 + 0,020	0,0010 + 0,0020
Diodentest ¹⁰	1,0000 V	1 mA	0,002 + 0,010	0,008 + 0,020	0,010 + 0,020	0,0010 + 0,0020

¹ Die Spezifikationen gelten nach 90-minütigem Warmlauf und für Messungen über 100 PLC (Power Line Cycles, Netzspannungsperioden).

² Bezogen auf Kalibriernormale.

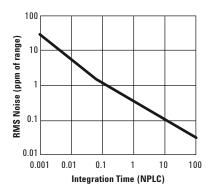
^{3 20%} Überbereich in allen Bereichen außer DCV 1000 V, ACV 750 V, DCI und ACI 3 A.

⁴ Außerhalb des Bereichs ±500 V ist eine zusätzliche Unsicherheit von 0,02 mV pro Volt zu addieren.

⁵ Die Spezifikationen gelten für sinusförmige Eingangssignale >0,3% des Bereichs und >1 mV_{eff}. Für Frequenzen unterhalb 1 kHz ist eine zusätzliche Unsicherheit von 30 μV zu addieren. Maximal zulässiges Spannung-Frequenz-Produkt im Bereich 750 VAC: 8·10⁷ Volt·Hz. Oberhalb von 300 V_{eff} ist eine zusätzliche Unsicherheit von 0,7 mV_{eff} pro Volt zu addieren.

⁶ Die Spezifikationen gelten für 4-Draht-Widerstandsmessungen oder 2-Draht-Widerstandsmessungen bei aktiver Math-Null-Funktion. Ohne Math Null erhöht sich die Messunsicherheit bei 2-Draht-Widerstandsmessungen um 0,2 Ω.

⁷ Die Spezifikationen gelten für sinusförmige Eingangssignale >1% des Bereichs und >10 μA_{eff}. Bei den Angaben für Frequenzen >5 kHz und die Bereiche 1 A und 3 A handelt es sich um typische Werte.


⁸ Die Spezifikationen gelten nach einstündigem Warmlauf bei aktiver Math-Null-Funktion. Die Messunsicherheit für Nicht-Film-Kondensatoren kann größer sein.

⁹ Zur Berechnung der Gesamtmessgenauigkeit ist die Temperatursensor-Unsicherheit zu addieren.

¹⁰ Die Genauigkeitsspezifikationen gelten nur für die an den Eingangsanschlüssen gemessene Spannung. Bei dem angegebenen Messstrom von 1 mA handelt es sich um einen typischen Wert. Infolge von Schwankungen des Messstroms kann auch der Spannungsabfall über der getesteten Diode schwanken.

Rauschcharakteristiken des A/D-Wandlers

Integrationszeit (NPLC)	Auflösung (ppm des Bereichs) ¹	Gegentakt- unterdrückung (dB) ²	Messungen/s ⁴
0,001⁵	30	0	50.000
0,002⁵	15	0	25.000
0,006	6	0	10.000
0,02	3	0	3.000
0,06	1,5	0	1.000
0,2	0,7	0	300
1	0,3	55	60 (50)
2	0,2	110³	30 (25)
10	0,1	110³	6 (5)
100	0,03	110³	0,6 (0,5)

Mess- und Durchsatzraten im Systembetrieb

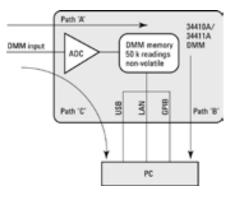
DMM-Speicher zum PC (maximale Messwertspeicher-Ausleserate)¹

Skizze - Pfad B

Messdaten- format	GPIB Messungen/s	USB 2.0 Messungen/s	LAN (VXI-11) Messungen/s	LAN (Sockets) Messungen/s
ASCII	4.000	8.500	7.000	8.500
32 bit binär	89.000	265.000	110.000	270.000
64 bit binär	47.000	154.000	60.000	160.000

Messungen mit direkter Messwertausgabe (Zeitbedarf für eine Einzelmessung und Ein-/Ausgabe)¹ Skizza - Pfad C May Rate für int

Funktion	Auflösung (NPLC)	GPIB ms	USB 2.0 ms	LAN (VXI-11) ms	LAN (Sockets) ms	Speicherung bzw. direkte Ausgabe (Messungen/s) Skizze – Pfad A oder C
DCV/2-Draht- Widerstand	0,006 (0,001)	2,6	2,9	4,6	3,2	10.000 (50,000)
ACV/ Frequenz	Fast Filter 1 ms Torzeit	10,0	10,0	10,0	10,0	500


Eingangssignalamplitude = 0,5·Bereichsendwert, sofortige Triggerung, Triggerverzögerung 0, Auto-Zero off, Auto-Range off, Math off, Null off, 60 Hz Netzfrequenz. Die Spezifikationen gelten für das 34410A bzw. (34411A). Spezifikationen für sonstige Funktionen siehe Handbuch.

Systemleistung

	Funktions- umschaltung (ms) ¹	Bereichs- umschaltung (ms) ² LAN/GPIB	Autorange (ms) ³	Maximale Extern- Triggerrate	Maximale Intern- Triggerrate ⁴
DCV/2-Draht- Widerstand	- 22	3,9/2,6	7,5	5.000/s	10.000/s (50,000/s)
ACV/ Frequenz	37	6,5/6,4	19	500/s	500/s

¹ Zeitbedarf für die Umschaltung von 2-Draht-Widerstandsmessung auf die angegebene Messfunktion oder für die Umschaltung von DCV auf 2-Draht-Widerstandsmessung, ausgelöst durch den SCPI-Befehl "FUNC".

Blockschaltbild der Messschaltung

Die Auflösung ist definiert als das typische Rauschen (Effektivwert) im Bereich DCV 10 V, Auto-zero On, NPLC \geq 1. Weitere Rauschcharakteristiken siehe Handbuch. Gegentaktunterdrückung für f = Netzfrequenz \pm 0,1%.

Für f = Netzfrequenz ±1% beträgt der Wert 75 dB, für ±3% beträgt er 55 dB.

Maximale Messrate bei abgeschalteter Auto-Zero-Funktion für 60 Hz bzw. (50 Hz) Netzfrequenz.

⁵ Nur beim 34411A verfügbar.

 $^{^2}$ Zeitbedarf für die Umschaltung von einem Bereich auf den nächsthöheren Bereich, $\leq \! 10$ V, $\leq \! 10$ M\Omega.

 $^{^3}$ Zeitbedarf für die automatische Bereichsumschaltung um eine Stufe, $\leq \! 10$ V, $\leq \! 10$ M Ω .

⁴ Die Spezifikation gelten für das 34410A bzw. (34411A).

Spezifikationen

Gleichspannung

Messverfahren:

Kontinuierlich integrierender Multi-Slope-IV-A/D-Wandler

Linearität: 0,0002% des Messwerts (10-V-Bereich) + 0,0001% des Bereichs

Eingangswiderstand:

Eingangsbiasstrom: <50 pA bei +25°C

Eingangsüber-

spannungsschutz: 1000 V DC CMRR: 140 dB^1

Wechselspannung, Effektivwert

Messverfahren:

Echte Effektivwertmessung, AC-gekoppelt. Digitale Abtastung mit Anti-Alias-Filter.

Scheitelfaktor:

Keine zusätzliche Messunsicherheit für Scheitelfaktoren <10. Begrenzt durch die maximal zulässige Eingangsspannung und 300 kHz Bandbreite.

Maximal zulässige Eingangsspannung: 300% des Bereichs oder 1100 V

Bereichsumschaltung bei Überlastung:

Wenn während des Auto-Range-Betriebs eine Überlastung auftritt, schaltet das Gerät in einen höheren Bereich um. Bei manueller Bereichswahl wird eine Überlastung angezeigt.

AC CMR: 70 dB^2

Maximal zulässige Eingangsspannung: 400 Vdc, 1100 $V_{\rm S}$

Eingangsimpedanz:

1 MΩ ±2% parallel zu <150 pF Eingangsüberspannungsschutz: 750 V_{eff} in allen Bereichen

Widerstand

Messverfahren:

2-Draht oder 4-Draht (wählbar). Die Messstromquelle ist auf den LO-Eingang bezogen.

Offsetkompensation:

Wählbar in den Bereichen 100 Ω , 1 k Ω , 10 k Ω

Maximal zulässiger Messleitungswiderstand (4-Draht):

Bereiche 100 Ω , 1 k Ω : pro Messleitung 10% des Bereichs. Alle anderen Bereiche: 1 k Ω pro Messleitung.

Eingangsüberspannungsschutz: 1000 V in allen Bereichen

Gleichstrom

Strommesswiderstand:

Bereiche 100 $\mu\text{A},$ 100 mA: 200 Ω Bereiche 10 mA, 100 mA: 2 Ω

Bereiche 1 A, 3 A: 0,1 Ω

Überstromschutz 3 A / 250 V-Sicherung

Wechselstrom, Effektivwert

Messverfahren:

Echte Effektivwertmessung, AC-gekoppelt. Direkte Kopplung an Sicherung und Shunt-Widerstand. Digitale Abtastung mit Anti-Alias-Filter.

Strommesswiderstand:

Bereiche 100 μ A, 100 mA: 200 Ω Bereiche 10 mA, 100 mA: 2 Ω Bereiche 1 A, 3 A: 0,1 Ω

Maximal zulässiger Eingangsstrom:

Der Spitzenwert des DC+AC-Stroms muss <300% des Bereichs sein. Der Effektivwert (einschließlich DC-Anteil) muss <3 A sein. Überstromschutz: 3 A / 250 V-Sicherung

Frequenz und Periode

Messverfahren:

Reziprokzähler. AC-gekoppelter Eingang, die Messung erfolgt unter Verwendung der ACV-Funktion.

Eingangsimpedanz:

1 M Ω ±2% parallel zu <150 pF Eingangsüberspannungsschutz: 750 V $_{eff}$ in allen Bereichen

Kapazität

Messverfahren:

Das Messobjekt wird mit einem konstanten Strom beaufschlagt, und es wird die Anstiegszeit der Spannung über dem Messobjekt gemessen.

Anschlussart: 2-Draht

Temperatur

Thermistor:

2,2 k Ω , 5 k Ω und 10 k Ω RTD: a = 0,00385 R $_0$ von 49 Ω bis 2,1 k Ω

Durchgangsprüfung/Diodentest

Ansprechzeit:

300 Messungen/s, akustisches Signal Schwellenwert für Durchgangsprüfung: 10 Ω (fest)

Betriebscharakteristiken Max. Messrate (/s)

	Stellen				
Funktion ³	4,5	5,5	6,5		
DCV	50 k⁴	10 k	1 k		
2-Draht-					
Widerstand	50 k⁴	10 k	1 k		
DCI	50 k⁴	10 k	1 k		
Frequenz	500	90	10		
Periode	500	90	10		
Filter	schnell	mittel	langsam		
ACV	500	150	50		
ACI	500	150	50		

1 Bei 1 k Ω Unsymmetrie in der LO-Leitung, max. ± 500 VS

Zusätzliche Spezifikationen für das Modell 34411A

Auflösung: Siehe Tabelle auf Seite 4 Gesamtbandbreite, DCV & DCI: 15 kHz (typ.) bei 20 µs Messzeit (–3 dB) Triggerung: Pre/Post, Int/Ext, Pos/Neg Zeitbasisauflösung: 19,9524 µs,

0,01% Unsicherheit Trigger-Jitter:

2 μs_{SS}, 20 μs_{SS} bei Pre-Triggerung

SDFR (verzerrungsfreier Dynamikbereich) und SNDR (Signal to Noise Distortion Ratio)

Funktion DCV	Bereich	SDFR	SNDR
	1 V	–75 dB	60 dB
	10 V ¹	-70 dB	60 dB
	100 V	–75 dB	60 dB

¹10 V-Bereich: 2 V_{SS} <Signal <16 V_{SS}

Triggerung und Speicher

Messwert-"Hold"-Empfindlichkeit:

1% des Messwerts

Samples pro Trigger:

1 bis 50.000 (34410A) 1 bis 1.000.000 (34411A)

Triggerverzögerung:

0 bis 3600 s in 20-µs-Schritten

Extern-Trigger:

Programmierbare Flanke, kompatibel mit Low-Power-TTL

Verzögerung: <1 µs Max. Rate: 5.000/s Jitter: <1 µs Min. Pulsbreite: 1 µs "Voltmeter Complete"-Signal: 3-V-Logik-Ausgang, 2-µs-Puls mit programmierbarer

Flanke

Nichtflüchtiger Speicher: 50.000 Messwerte Flüchtiger Speicher:

50.000 Messwerte (34410A) 1.000.000 Messwerte (34411A)

Sample-Timer:

Bereich: 0 bis 3600 s in 20-µs-Schritten

Jitter: <100 ns

Allgemeine Spezifikationen

Betriebsspannung:

100 V/120 V/220 V/240 V ±10%

Netzfrequenz:

45 Hz bis 66 Hz oder 360 Hz bis 440 Hz, wird beim Einschalten automatisch ermittelt

Leistungsaufnahme: max. 25 VA_S (16 W im Mittel)

Betriebsumgebung: Volle Genauigkeit im Temperaturbereich von 0°C bis +55°C, 80% rel. Feuchte bei +40°C, nicht kondensierend Lagerungstemperaturbereich: -40°C bis +70°C

Gewicht: 3,72 kg
Sicherheitsstandards: IEC 61010-1, EN 61010-1,
III 61010-1 CAN/CSA-C22 2 No. 61010-1

UL 61010-1, CAN/CSA-C22.2 No. 61010-1, aktuelle Revisionen siehe Konformitätserklärung. Messkategorien CAT II 300 V, CAT I 1000 V. Verschmutzungsgrad 2

EMC: IEC 61326, EN 61326, CISPR 11, ICES-001,

AS/NZS 2064.1, aktuelle Revisionen siehe Konformitätserklärung.

Vibrations- und Stoßfestigkeit: MIL-T-28800E, Type III, Class 5 (nur Sinus) LXI-Konformität: LXI Class C. ver. 1.0

Garantie: 1 Jahr

 $^{^2}$ Bei 1 k Ω Unsymmetrie in der LO-Leitung und <60 Hz, max. ±500 VS

Maximale Rate für die Messfunktionen DCV, DCI und Widerstand (Settling Delay = 0, Autozero off, manuelle Bereichswahl)

⁴ Nur 34411A

Agilent Email Updates

www.agilent.com/find/emailupdates Lassen Sie sich per eMail aktuelle Informationen über die Produkte und Anwendungen zusenden, die für Sie interessant sind.

www.axiestandard.org

AdvancedTCA® Extensions for Instrumentation and Test (AXIe) ist ein offener Standard, der AdvancedTCA® für allgemeine Messtechnikanwendungen und den Halbleitertest erweitert. Agilent zählt zu den Gründungsmitgliedern des AXIe Consortium.

www.lxistandard.org

LAN eXtensions for Instruments erweitert Ihre Testsysteme um Ethernet- und Web-Funktionalität. Agilent zählt zu den Gründungsmitgliedern des LXI Consortium.

http://www.pxisa.org

PCI eXtensions for Instrumentation (PXI) ist ein Standard für modulare Hochleistungsmess- und Automatisierungssysteme auf PC-Basis.

Autorisierte Agilent Distributoren www.agilent.com/find/channelpartners

Das Beste aus beiden Welten: Agilents Messtechnik-Erfahrung und Produktvielfalt, kombiniert mit bequemer Bestellung und schneller Lieferung durch Distributoren.

Agilent Advantage Services ist Ihrem Erfolg verpflichtet – während der gesamten Lebensdauer Ihres Messgeräts. Um zu Ihrer Wettbewerbsfähigkeit beizutragen, investieren wir ständig in Tools und Prozesse, die die Kalibrierung und Reparatur beschleunigen und Ihre Gesamtkosten verringern. Unsere Infoline Web Services helfen Ihnen, Ihren Messgerätepark zu verwalten und unsere Services effizienter zu nutzen. Wir stellen Ihnen unser Messtechnikund Service-Know-How zur Verfügung, um Ihnen zu helfen, die Produkte zu schaffen, die unsere Welt verändern.

www.agilent.com/find/advantageservices

www.agilent.com/quality

www.agilent.com

www.agilent.com/find/XXX

Für weitere Informationen über unsere Produkte und Dienstleistungen wenden Sie sich bitte an die nächstgelegene Agilent Niederlassung. Die vollständige Liste finden Sie unter:

www.agilent.com/find/contactus

Nord- und Südamerika

Canada	(877) 894 4414
Brasilien	(11) 4197 3500
Mexico	01800 5064 800
USA	(800) 829 4444

Asien/Pazifik

Australien	1 800 629 485
China	800 810 0189
Hong Kong	800 938 693
Indien	1 800 112 929
Japan	0120 (421) 345
Korea	080 769 0800
Malaysia	1 800 888 848
Singapur	1 800 375 8100
Taiwan	0800 047 866
Sonstige AP-Länder	(65) 375 8100

Europa und Mittlerer Osten

Belgien	32 (0) 2 404 93 40
Dänemark	45 70 13 15 15
Finnland	358 (0) 10 855 2100
Frankreich	0825 010 700*
	*0.125 € / Minute
Deutschland	49 (0) 7031 464 6333
Irland	1890 924 204
Israel	972-3-9288-504/544
Italien	39 02 92 60 8484
Niederlande	31 (0) 20 547 2111
Spanien	34 (91) 631 3300
Schweden	0200-88 22 55
Großbritannien	44 (0) 118 9276201

Nicht aufgelistete Länder.

www.agilent.com/find/contactus

Stand: 8. Juni 2011

Änderungen vorbehalten.

© Agilent Technologies GmbH 2007, 2011

Gedruckt in den Niederlanden, 30. Oktober 2011

5989-3738DEE

