FEATURES

Dual-channel, 1024-position resolution
$25 \mathrm{k} \Omega$ nominal resistance
Low temperature coefficient: $35 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Nonvolatile memory stores wiper settings
Permanent memory write protection
Wiper setting readback

Resistance tolerance stored in EEMEM

Predefined linear increment/decrement instructions
Predefined $\pm 6 \mathrm{~dB} /$ step log taper increment/decrement instructions
SPI-compatible serial interface
3 V to 5 V single supply or $\pm 2.5 \mathrm{~V}$ dual supply
26 bytes extra nonvolatile memory for user-defined information
100-year typical data retention, $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$
Power-on refreshed with EEMEM settings

Enhanced Features

Supports defense and aerospace applications (AQEC)
Temperature range: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Controlled manufacturing baseline
1 assembly/test site
1 fabrication site
Enhanced product change notification
Qualification data available on request

APPLICATIONS

DWDM laser diode driver, optical supervisory systems
Mechanical potentiometer replacement
Instrumentation: gain, offset adjustment
Programmable voltage-to-current conversion
Programmable filters, delays, time constants
Programmable power supply
Low resolution DAC replacement
Sensor calibration

GENERAL DESCRIPTION

The AD5235-EP is a dual-channel, nonvolatile memory, ${ }^{1}$ digitally controlled potentiometer ${ }^{2}$ with 1024 -step resolution. The device performs the same electronic adjustment function as a mechanical potentiometer with enhanced resolution, solid state reliability, and superior low temperature coefficient performance. The AD5235-EP's versatile programming via an SPI ${ }^{*}$-compatible serial interface allows 16 modes of operation and adjustment including scratchpad programming, memory storing and restoring, increment/decrement, $\pm 6 \mathrm{~dB} /$ step log taper adjustment, wiper setting readback, and extra EEMEM ${ }^{1}$ for user-defined information such as memory data for other components, look-up tables, or system identification information.

In scratchpad programming mode, a specific setting can be programmed directly to the RDAC^{2} register that sets the resistance between Terminal W and Terminal A, and Terminal W and Terminal B. This setting can be stored into the EEMEM and is restored automatically to the RDAC register during system power-on.
The EEMEM content can be restored dynamically or through external $\overline{\mathrm{PR}}$ strobing, and a $\overline{\mathrm{WP}}$ function protects EEMEM contents. To simplify the programming, the independent or simultaneous linear-step increment or decrement commands can be used to move the RDAC wiper up or down, one step at a time. For logarithmic $\pm 6 \mathrm{~dB}$ changes in the wiper setting, the left or right bit shift command can be used to double or halve the RDAC wiper setting.
The AD5235-EP patterned resistance tolerance is stored in the EEMEM. Therefore, in readback mode, the host processor can know the actual end-to-end resistance. The host can execute the appropriate resistance step through a software routine that simplifies open-loop applications as well as precision calibration and tolerance matching applications.
The AD5235-EP is available in a thin, 16-lead TSSOP package. The part is guaranteed to operate over the extended industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

Full details about this enhanced product, including theory of operation, register details, and applications information, are available in the AD5235 data sheet, which should be consulted in conjunction with this data sheet.

[^0]
AD5235-EP

TABLE OF CONTENTS

Features 1
Applications 1
General Description 1
Functional Block Diagram 1
Revision History 2
Specifications 3
Electrical Characteristics 3
Interface Timing and EEMEM Reliability Characteristics 5
Absolute Maximum Ratings 7
ESD Caution. 7
Pin Configuration and Function Descriptions. 8
Typical Performance Characteristics 9
Test Circuits 12
Outline Dimensions 13
Ordering Guide 13

REVISION HISTORY

7/10—Revision 0: Initial Version

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$ to 5.5 V , $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{SS}},-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{C}$, unless otherwise noted. The part can be operated at 2.7 V single supply, except from $0^{\circ} \mathrm{C}$ to $-40^{\circ} \mathrm{C}$, where a minimum of 3 V is needed.

Table 1.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameter \& Symbol \& Conditions \& Min \& Typ \({ }^{1}\) \& Max \& Unit \\
\hline \begin{tabular}{l}
DC CHARACTERISTICS—RHEOSTAT MODE \\
(All RDACs) \\
Resistor Differential Nonlinearity \({ }^{2}\) \\
Resistor Integral Nonlinearity \({ }^{2}\) \\
Nominal Resistor Tolerance Resistance Temperature Coefficient Wiper Resistance \\
Nominal Resistance Match
\end{tabular} \& \begin{tabular}{l}
R-DNL \\
R-INL \\
\(\Delta R_{A B} / R_{A B}\) \\
\(\left(\Delta \mathrm{R}_{A B} / \mathrm{R}_{A B}\right) / \Delta \mathrm{T} \times 10^{6}\) \\
Rw
\end{tabular} \& \begin{tabular}{l}
Rwb \\
Rwb \\
Code \(=\) full scale \\
\(\mathrm{I}_{\mathrm{w}}=1 \mathrm{~V} / \mathrm{Rw}_{\mathrm{w}}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}\), code \(=\) \\
half scale \\
\(\mathrm{I}_{\mathrm{W}}=1 \mathrm{~V} / \mathrm{R}_{\mathrm{wB}}, \mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}\), code \(=\) \\
half scale
\end{tabular} \& \[
\begin{aligned}
\& -2 \\
\& -4 \\
\& -30
\end{aligned}
\] \& \[
\begin{aligned}
\& 35 \\
\& 50 \\
\& 200 \\
\& \pm 0.1
\end{aligned}
\] \& \[
\begin{aligned}
\& +2 \\
\& +4 \\
\& +30 \\
\& 100
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { LSB } \\
\& \text { LSB } \\
\& \% \\
\& \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\
\& \Omega \\
\& \Omega \\
\& \%
\end{aligned}
\] \\
\hline \begin{tabular}{l}
DC CHARACTERISTICS—POTENTIOMETER DIVIDER MODE (All RDACs) \\
Resolution \\
Differential Nonlinearity \({ }^{3}\) \\
Integral Nonlinearity \({ }^{3}\) \\
Voltage Divider Temperature Coefficient \\
Full-Scale Error \\
Zero-Scale Error
\end{tabular} \& \begin{tabular}{l}
N \\
DNL \\
INL \\
\(\left(\Delta \mathrm{V}_{\mathrm{w}} / \mathrm{V}_{\mathrm{w}}\right) / \Delta \mathrm{T} \times 10^{6}\) \\
\(V_{\text {WFSE }}\) \\
V wzse
\end{tabular} \& \begin{tabular}{l}
Code \(=\) half scale \\
Code = full scale \\
Code \(=\) zero scale
\end{tabular} \& \[
\begin{aligned}
\& -2 \\
\& -4 \\
\& -9 \\
\& 0
\end{aligned}
\] \& 15 \& \[
\begin{aligned}
\& 10 \\
\& +2 \\
\& +4 \\
\& 0 \\
\& 5
\end{aligned}
\] \& \begin{tabular}{l}
Bits \\
LSB \\
LSB \\
ppm \(/{ }^{\circ} \mathrm{C}\) \\
LSB \\
LSB
\end{tabular} \\
\hline \begin{tabular}{l}
RESISTOR TERMINALS \\
Terminal Voltage Range \({ }^{4}\) \\
Capacitance Ax, Bx \({ }^{5}\) \\
Capacitance \(\mathrm{Wx}^{5}\) \\
Common-Mode Leakage Current \({ }^{5,6}\)
\end{tabular} \& \[
\begin{aligned}
\& \mathrm{V}_{A}, V_{B}, V_{W} \\
\& C_{A}, C_{B} \\
\& C_{W} \\
\& I_{c M}
\end{aligned}
\] \& \begin{tabular}{l}
\(\mathrm{f}=1 \mathrm{MHz}\), measured to GND, code \(=\) half-scale \\
\(\mathrm{f}=1 \mathrm{MHz}\), measured to GND, code \(=\) half-scale
\[
V_{w}=V_{D D} / 2
\]
\end{tabular} \& \(\mathrm{V}_{\text {ss }}\) \& \begin{tabular}{l}
11 \\
80 \\
0.01
\end{tabular} \& \(V_{D D}\)
\[
\pm 2
\] \& \begin{tabular}{l}
V \\
pF \\
pF \\
\(\mu \mathrm{A}\)
\end{tabular} \\
\hline \begin{tabular}{l}
DIGITAL INPUTS AND OUTPUTS \\
Input Logic High \\
Input Logic Low \\
Input Logic High \\
Input Logic Low \\
Input Logic High \\
Input Logic Low \\
Output Logic High (SDO, RDY) \\
Output Logic Low Input Current Input Capacitance \({ }^{5}\)
\end{tabular} \& \begin{tabular}{l}
\(\mathrm{V}_{\text {IH }}\) \\
\(\mathrm{V}_{\mathrm{IL}}\) \\
\(\mathrm{V}_{\mathrm{IH}}\) \\
\(\mathrm{V}_{\mathrm{IL}}\) \\
\(\mathrm{V}_{\mathrm{IH}}\) \\
VIL \\
\(V_{\text {он }}\) \\
Vol \\
ILL \\
CIL
\end{tabular} \& \begin{tabular}{l}
With respect to GND, \(\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}\) \\
With respect to GND, \(\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}\) \\
With respect to GND, \(\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}\) \\
With respect to GND, \(V_{D D}=3 \mathrm{~V}\) \\
With respect to \(G N D, V_{D D}=+2.5 \mathrm{~V}\), \\
\(\mathrm{V}_{\mathrm{sS}}=-2.5 \mathrm{~V}\) \\
With respect to \(G N D, V_{D D}=+2.5 \mathrm{~V}\), \\
\(\mathrm{V}_{\mathrm{SS}}=-2.5 \mathrm{~V}\) \\
RPulL-UP \(=2.2 \mathrm{k} \Omega\) to 5 V \\
lot \(=1.6 \mathrm{~mA}, \mathrm{~V}_{\text {Logic }}=5 \mathrm{~V}\) \\
\(\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}\) or \(\mathrm{V}_{\mathrm{DD}}\)
\end{tabular} \& 2.4
2.1
2.0

4.9 \& \& $$
\begin{aligned}
& 0.8 \\
& 0.6 \\
& 0.5 \\
& \\
& \\
& 0.4 \\
& \pm 2.25
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \mathrm{V} \\
& \mathrm{~V} \\
& \mu \mathrm{~A} \\
& \mathrm{pF}
\end{aligned}
$$
\]

\hline
\end{tabular}

AD5235-EP

Parameter	Symbol	Conditions	Min	Typ ${ }^{1}$	Max	Unit
POWER SUPPLIES						
Single-Supply Power Range	$V_{\text {DD }}$	$\mathrm{V}_{\mathrm{ss}}=0 \mathrm{~V}$	3.0		5.5	V
Dual-Supply Power Range	$\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\text {SS }}$		± 2.25		± 2.75	V
Positive Supply Current	IDD	$\mathrm{V}_{\mathrm{HH}}=\mathrm{V}_{\mathrm{DD}}$ or $\mathrm{V}_{\mathrm{IL}}=\mathrm{GND}$		3.5	8	$\mu \mathrm{A}$
Negative Supply Current	Iss	$\begin{aligned} & \mathrm{V}_{\mathrm{H}}=\mathrm{V}_{\mathrm{DD}} \text { or } \mathrm{V}_{\mathrm{IL}}=\mathrm{GND}, \mathrm{~V}_{\mathrm{DD}}=+2.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{SS}}=-2.5 \mathrm{~V} \end{aligned}$		3.5	7	$\mu \mathrm{A}$
EEMEM Store Mode Current	IDD (store)	$\begin{aligned} & \mathrm{V}_{\mathrm{H}}=\mathrm{V}_{\mathrm{DD}} \text { or } \mathrm{V}_{\mathrm{IL}}=\mathrm{GND}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{GND}, \\ & \mathrm{I}_{\mathrm{SS}} \approx 0 \end{aligned}$		35		mA
	Iss (store)	$V_{\text {DD }}=+2.5 \mathrm{~V}, \mathrm{~V}_{S S}=-2.5 \mathrm{~V}$		-35		mA
EEMEM Restore Mode Current ${ }^{7}$	IDD (restore)	$\begin{aligned} & \mathrm{V}_{\mathrm{H}}=\mathrm{V}_{\mathrm{DD}} \text { or } \mathrm{V}_{\mathrm{IL}}=\mathrm{GND}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{GND}, \\ & \mathrm{I}_{S S} \approx 0 \end{aligned}$	0.3	3	9	mA
	ISS (restore)	$\mathrm{V}_{\mathrm{DD}}=+2.5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-2.5 \mathrm{~V}$	-0.3	-3	-9	mA
Power Dissipation ${ }^{8}$	PDiss	$\mathrm{V}_{\text {IH }}=\mathrm{V}_{\text {DD }}$ or $\mathrm{V}_{\text {IL }}=\mathrm{GND}$		18	50	$\mu \mathrm{W}$
Power Supply Sensitivity ${ }^{5}$	Pss	$\Delta V_{D D}=5 \mathrm{~V} \pm 10 \%$		0.002	0.01	\%/\%
DYNAMIC CHARACTERISTICS5,9						
Bandwidth	BW	$-3 \mathrm{~dB}, \mathrm{~V}_{\mathrm{DD}} / \mathrm{V}_{S S}= \pm 2.5 \mathrm{~V}$		125		kHz
Total Harmonic Distortion	THD w	$\mathrm{V}_{\mathrm{A}}=1 \mathrm{Vrms}, \mathrm{V}_{\mathrm{B}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}$		0.05		
Vw Settling Time	$\mathrm{ts}^{\text {s}}$	$\begin{aligned} & V_{A}=V_{D D}, V_{B}=0 \mathrm{~V}, \\ & V_{W}=0.50 \% \text { error band, } \\ & \text { Code } 0 \times 000 \text { to Code } 0 \times 200 \end{aligned}$		4		$\mu \mathrm{s}$
Resistor Noise Density	en_wb	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		20		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
Crosstalk ($\mathrm{C}_{\text {w }} / \mathrm{C}_{\text {w }}$)	C_{T}	$\mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{B}}=0 \mathrm{~V}$, measured $\mathrm{V}_{\mathrm{W} 1}$ with $V_{\mathrm{w} 2}$ making full-scale change		90		$\mathrm{nV}-\mathrm{s}$
Analog Crosstalk	$\mathrm{C}_{\text {TA }}$	$\begin{aligned} & V_{\mathrm{DD}}=\mathrm{V}_{\mathrm{A} 1}=+2.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{B} 1}=-2.5 \mathrm{~V} \text {, measured } \\ & \mathrm{V}_{\mathrm{W} 1} \text { with } \mathrm{V}_{\mathrm{W} 2}=5 \mathrm{~V} \mathrm{~V}-\mathrm{p} @ \mathrm{f}=1 \mathrm{kHz}, \\ & \text { Code } 1=0 \times 200 \text {, Code } 2=0 \times 3 \mathrm{FF} \end{aligned}$		-81		dB

${ }^{1}$ Typicals represent average readings at $25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$.
${ }^{2}$ Resistor position nonlinearity error ($\mathrm{R}-\mathrm{INL}$) is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper positions. R-DNL measures the relative step change from ideal between successive tap positions. $\mathrm{I}_{\mathrm{w}} \sim 50 \mu \mathrm{~A}$ for $\mathrm{V}_{D D}=2.7 \mathrm{~V}$ and $\mathrm{I}_{\mathrm{w}} \sim 400 \mu \mathrm{~A}$ for $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ (see Figure 23).
${ }^{3}$ INL and DNL are measured at V_{w} with the RDAC configured as a potentiometer divider similar to a voltage output $D A C . V_{A}=V_{D D}$ and $V_{B}=V_{S S}$. DNL specification limits of ± 1 LSB maximum are guaranteed monotonic operating conditions (see Figure 24).
${ }^{4}$ Resistor Terminal A, Resistor Terminal B, and Resistor Terminal W have no limitations on polarity with respect to each other. Dual-supply operation enables groundreferenced bipolar signal adjustment.
${ }^{5}$ Guaranteed by design and not subject to production test.
${ }^{6}$ Common-mode leakage current is a measure of the dc leakage from any Terminal A, Terminal B, or Terminal W to a common-mode bias level of $\mathrm{V}_{\mathrm{DD}} / 2$.
${ }^{7}$ EEMEM restore mode current is not continuous. Current is consumed while EEMEM locations are read and transferred to the RDAC register (see Figure 20). To minimize power dissipation, a NOP, Instruction 0 (0×0) should be issued immediately after Instruction 1 (0×1).
${ }^{8} \mathrm{P}_{\text {DISS }}$ is calculated from ($\left.\mathrm{IDD} \times \mathrm{V}_{D D}\right)+\left(\mathrm{ISS} \times \mathrm{V}_{\text {SS }}\right)$.
${ }^{9}$ All dynamic characteristics use $\mathrm{V}_{D D}=+2.5 \mathrm{~V}$ and $\mathrm{V}_{S S}=-2.5 \mathrm{~V}$.

INTERFACE TIMING AND EEMEM RELIABILITY CHARACTERISTICS

Guaranteed by design and not subject to production test. See the Timing Diagrams section for the location of measured values. All input control voltages are specified with $t_{R}=t_{F}=2.5 \mathrm{~ns}(10 \%$ to 90% of 3 V$)$ and timed from a voltage level of 1.5 V . Switching characteristics are measured using both $V_{D D}=3 \mathrm{~V}$ and $V_{D D}=5 \mathrm{~V}$.

Table 2.

Parameter	Symbol	Conditions	Min	Typ ${ }^{1}$	Max	Unit
Clock Cycle Time (tcrc)	t_{1}		20			ns
$\overline{\text { CS Setup Time }}$	t_{2}		10			ns
CLK Shutdown Time to $\overline{C S}$ Rise	t_{3}		1			tcre
Input Clock Pulse Width	$\mathrm{t}_{4}, \mathrm{t}_{5}$	Clock level high or low	10			ns
Data Setup Time	t_{6}	From positive CLK transition	5			ns
Data Hold Time	t_{7}	From positive CLK transition	5			ns
$\overline{\mathrm{CS}}$-to-SDO-SPI Line Acquire	t_{8}				40	ns
$\overline{\mathrm{CS}}$-to-SDO-SPI Line Release	t_{9}				50	ns
CLK-to-SDO Propagation Delay ${ }^{2}$	t_{10}	$\mathrm{R}_{\mathrm{P}}=2.2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}<20 \mathrm{pF}$			50	ns
CLK-to-SDO Data Hold Time	t_{11}	$\mathrm{R}_{\mathrm{P}}=2.2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}<20 \mathrm{pF}$	0			ns
$\overline{\mathrm{CS}}$ High Pulse Width ${ }^{3}$	t_{12}		10			ns
$\overline{\mathrm{CS}}$ High to $\overline{\mathrm{CS}} \mathrm{High}^{3}$	t_{13}		4			tcrc
RDY Rise to $\overline{C S}$ Fall	t_{14}		0			ns
$\overline{\mathrm{CS}}$ Rise to RDY Fall Time	t_{15}			0.15	0.3	ms
Store/Read EEMEM Time ${ }^{4}$	t_{16}	Applies to instructions $0 \times 2,0 \times 3$, and 0×9		30		ms
$\overline{\mathrm{CS}}$ Rise to Clock Rise/Fall Setup	t_{17}		15			ns
Preset Pulse Width (Asynchronous) ${ }^{5}$	$\mathrm{t}_{\text {PRW }}$		50			ns
Preset Response Time to Wiper Setting ${ }^{5}$	trResp	$\overline{\text { PR }}$ pulsed low to refresh wiper positions		140		$\mu \mathrm{s}$
Power-On EEMEM Restore Time ${ }^{5}$	$\mathrm{t}_{\text {Eemem }}$			140		$\mu \mathrm{s}$
FLASH/EE MEMORY RELIABILITY						
Endurance ${ }^{6}$			100			kCycles
Data Retention ${ }^{7}$				100		Years

[^1]
AD5235-EP

Timing Diagrams

CPHA $=1$

*THE EXTRA BIT THAT IS NOT DEFINED IS NORMALY THE LSB OF THE CHARACTER PREVIOUSLY TRANSMITTED. THE CPOL = 1 MICROCONTROLLER COMMAND ALIGNS THE INCOMING DATA TO THE POSITIVE EDGE OF THE CLOCK.

Figure 2. $C P H A=1$ Timing Diagram

*THE EXTRA BIT THAT IS NOT DEFINED IS NORMALLY THE MSB OF THE CHARACTER JUST RECEIVED. THE CPOL = 0 MICROCONTROLLER COMMAND ALIGNS THE INCOMING DATA TO THE POSITIVE EDGE OF THE CLOCK.

Figure 3. CPHA $=0$ Timing Diagram

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Table 3.

Parameter	Rating
$V_{\text {DD }}$ to GND	-0.3 V to +7V
$V_{\text {ss }}$ to GND	+0.3 V to -7 V
$V_{\text {dD }}$ to V $V_{\text {SS }}$	7 V
$\mathrm{V}_{\mathrm{A}}, \mathrm{V}_{\mathrm{B}}, \mathrm{V}_{\mathrm{W}}$ to GND	$\mathrm{V}_{S S}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
I_{A}, I_{B}, I_{w}	
Pulsed ${ }^{1}$	$\pm 2.5 \mathrm{~mA}$
Continuous	$\pm 1.1 \mathrm{~mA}$
Digital Input and Output Voltage to GND	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Operating Temperature Range ${ }^{2}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Maximum Junction Temperature (T, max)	$150^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature, Soldering	
Vapor Phase (60 sec)	$215^{\circ} \mathrm{C}$
Infrared (15 sec)	$220^{\circ} \mathrm{C}$
Thermal Resistance	
Junction-to-Ambient, θ_{JA}	$150^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Case, θ_{Jc}	$28^{\circ} \mathrm{C} / \mathrm{W}$
Package Power Dissipation	$\left(\mathrm{T}, \max -\mathrm{T}_{\mathrm{A}}\right.$) $/ \theta_{\mathrm{JA}}$

[^2]Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 4. Pin Configuration

Table 4. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	CLK	Serial Input Register Clock. Shifts in one bit at a time on positive clock edges.
2	SDI	Serial Data Input. Shifts in one bit at a time on positive clock CLK edges. MSB loads first.
3	SDO	Serial Data Output. Serves readback and daisy-chain functions. Command 9 and Command 10 activate the SDO output for the readback function, delayed by 24 or 25 clock pulses, depending on the clock polarity before and after the data-word (see Figure 2 and Figure 3). In other commands, the SDO shifts out the previously loaded SDI bit pattern, delayed by 24 or 25 clock pulses depending on the clock polarity (see Figure 2 and Figure 3). This previously shifted out SDI can be used for daisy-chaining multiple devices. Whenever SDO is used, a pull-up resistor in the range of $1 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$ is needed.
4	GND	Ground Pin, Logic Ground Reference.
5	Vss	Negative Supply. Connect to 0 V for single-supply applications. If V_{ss} is used in dual supply, it must be able to sink 35 mA for 30 ms when storing data to EEMEM.
6	A1	Terminal A of RDAC1.
7	W1	Wiper terminal of RDAC1. ADDR $($ RDAC1 $)=0 \times 0$.
8	B1	Terminal B of RDAC1.
9	B2	Terminal B of RDAC2.
10	W2	Wiper terminal of RDAC2. ADDR (RDAC2) $=0 \times 1$.
11	A2	Terminal A of RDAC2.
12	V_{DD}	Positive Power Supply.
13	$\overline{W P}$	Optional Write Protect. When active low, $\overline{\mathrm{WP}}$ prevents any changes to the present contents, except $\overline{\mathrm{PR}}$ strobe. CMD_1 and COMD_8 refresh the RDAC register from EEMEM. Execute a NOP instruction before returning to $\overline{W P}$ high. Tie $\overline{W P}$ to $V_{D D}$, if not used.
14	$\overline{P R}$	Optional Hardware Override Preset. Refreshes the scratchpad register with current contents of the EEMEM register. Factory default loads midscale 512_{10} until EEMEM is loaded with a new value by the user. $\overline{\text { PR }}$ is activated at the logic high transition. Tie $\overline{P R}$ to $V_{D D}$, if not used.
15	$\overline{C S}$	Serial Register Chip Select Active Low. Serial register operation takes place when $\overline{\mathrm{CS}}$ returns to logic high.
16	RDY	Ready. Active high open-drain output. Identifies completion of Instruction 2, Instruction 3, Instruction 8, Instruction 9, Instruction 10, and PR.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 5. INL vs. Code, $T_{A}=-40^{\circ} \mathrm{C},+25^{\circ} \mathrm{C},+85^{\circ} \mathrm{C}$ Overlay

Figure 6. $D N L$ vs. Code, $T_{A}=-40^{\circ} \mathrm{C},+25^{\circ} \mathrm{C},+85^{\circ} \mathrm{C}$ Overlay

Figure 7. R-INL vs. Code, $T_{A}=-40^{\circ} \mathrm{C},+25^{\circ} \mathrm{C},+85^{\circ} \mathrm{C}$ Overlay

Figure 8. R-DNL vs. Code, $T_{A}=-40^{\circ} \mathrm{C},+25^{\circ} \mathrm{C},+85^{\circ} \mathrm{C}$ Overlay

Figure 9. $\left(\Delta V_{w} / V_{w}\right) / \Delta T \times 10^{6}$ Potentiometer Mode Tempco

Figure 10. $\left(\Delta R_{w B} / R_{w B}\right) / \Delta T \times 10^{6}$ Rheostat Mode Tempco

AD5235-EP

Figure 11. Wiper On Resistance vs. Code

Figure 12. IDD vs. Temperature

Figure 13. IDD vs. Clock Frequency

Figure 14. THD + Noise vs. Frequency

Figure 15. $-3 d B$ Bandwidth vs. Resistance (See Figure 29)

Figure 16. Gain vs. Frequency vs. Code (See Figure 29)

Figure 17. PSRR vs. Frequency

Figure 18. Power-On Reset, $V_{D D}=2.25 \mathrm{~V}$,
Previously Stored Code $=0 \times 2 A A$

Figure 19. Midscale Glitch Energy, Code 0x200 to Code 0x1FF

Figure 20. IDD vs. Time when Storing Data to EEMEM

*SUPPLY CURRENT RETURNS TO MINIMUM POWER CONSUMPTION, IF INSTRUCTION 0 (NOP) IS EXECUTED IMMEDIATELY AFTER INSTRUCTION 1
(READ EEMEM).

Figure 21. IDD vs. Time when Restoring Data from EEMEM

Figure 22. Iwb_max vs. Code.

AD5235-EP

TEST CIRCUITS

Figure 23 to Figure 33 define the test conditions used in the Specifications section.

Figure 23. Resistor Position Nonlinearity Error (Rheostat Operation; R-INL, R-DNL)

Figure 24. Potentiometer Divider Nonlinearity Error (INL, DNL)

Figure 27. Inverting Gain

Figure 28. Noninverting Gain

Figure 29. Gain vs. Frequency

Figure 30. Incremental On Resistance

Figure 31. Common-Mode Leakage Current

Figure 33. Load Circuit for Measuring $V_{\text {он }}$ and $V_{\text {OL }}$ (The diode bridge test circuit is equivalent to the application circuit with Rpull-up of $2.2 \mathrm{k} \Omega$.)

OUTLINE DIMENSIONS

ORDERING GUIDE

Model	$\mathbf{R}_{\text {AB }}(\mathbf{k} \boldsymbol{\Omega})$	Temperature Range	Package Description	Package Option
AD5235BRU25-EP-RL7	25	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 -Lead TSSOP	RU-16

AD5235-EP

NOTES
AD5235-EP

NOTES

AD5235-EP

NOTES

[^0]: ${ }^{1}$ The terms nonvolatile memory and EEMEM are used interchangeably.
 ${ }^{2}$ The terms digital potentiometer and RDAC are used interchangeably.

[^1]: ${ }^{1}$ Typicals represent average readings at $25^{\circ} \mathrm{C}$ and $\mathrm{V}_{D D}=5 \mathrm{~V}$.
 ${ }^{2}$ Propagation delay depends on the value of V_{DD}, R Pull-up, and C_{L}.
 ${ }^{3}$ Valid for commands that do not activate the RDY pin.
 ${ }^{4}$ RDY pin low only for Instruction 2, Instruction 3, Instruction 8, Instruction 9, Instruction 10, and the $\overline{\text { PR }}$ hardware pulse: CMD_8~1 ms; CMD_9, CMD_10~0.1 ms; CMD_2, CMD_3~20 ms. Device operation at $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}<3 \mathrm{~V}$ extends the save time to 35 ms .
 ${ }^{5}$ Not shown in Figure 2 and Figure 3.
 ${ }^{6}$ Endurance is qualified to 100,000 cycles per JEDEC Standard 22, Method A117 and measured at $-40^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+85^{\circ} \mathrm{C}$; typical endurance at $+25^{\circ} \mathrm{C}$ is 700,000 cycles.
 ${ }^{7}$ Retention lifetime equivalent at junction temperature $\left(\mathrm{T}_{\mathrm{J}}\right)=55^{\circ} \mathrm{C}$ per JEDEC Standard 22, Method A117. Retention lifetime based on an activation energy of 0.6 eV derates with junction temperature in the Flash/EE memory.

[^2]: ${ }^{1}$ Maximum terminal current is bounded by the maximum current handling of the switches, maximum power dissipation of the package, and maximum applied voltage across any two of the A, B, and W terminals at a given resistance.
 ${ }^{2}$ Includes programming of nonvolatile memory.

