

11 μA, Rail-to-Rail I/O, Zero Input Crossover Distortion Amplifiers

Preliminary Technical Data

ADA4505-1

FEATURES

PSRR: 100 dB minimum CMRR: 105 dB typical

Very low supply current: 11 μ A maximum

1.8 V to 5 V single-supply or ±0.9 V to ±2.5 V dual-supply

operation

Rail-to-rail input and output 3 mV offset voltage maximum

Very low input bias current: 0.5 pA typical

APPLICATIONS

Pressure and position sensors
Remote security
Medical monitors
Battery-powered consumer equipment
Hazard detectors

PIN CONFIGURATIONS

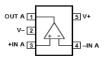


Figure 1. 5-Lead SOT23 (RJ-5)

NC = No Connec

Figure 2. 6-Ball WLCSP (CB-6-2)

GENERAL DESCRIPTION

The ADA4505-1 is single micropower amplifiers featuring rail-to-rail input and output swings while operating from a single 1.8 V to 5 V power supply or from dual ± 0.9 V to ± 2.5 V power supplies.

Employing a new circuit technology, these low cost amplifiers offer zero input crossover distortion (excellent PSRR and CMRR performance) and very low bias current, while operating with a supply current of less than 11 μ A per amplifier.

This combination of features makes the ADA4505-1 amplifier ideal choices for battery-powered applications because they minimize errors due to power supply voltage variations over the lifetime of the battery, and maintain high CMRR even for a rail-to-rail op amp.

Remote battery-powered sensors, handheld instrumentation and consumer equipment, hazard detectors (for example, smoke, fire, and gas), and patient monitors can benefit from the features of the ADA4505-1 amplifiers.

The ADA4505-1is specified for both the industrial temperature range (-40° C to $+85^{\circ}$ C) and the extended industrial temperature range (-40° C to $+125^{\circ}$ C). The ADA4505-1 single amplifier is available in standard 5-lead SOT23 and 6-ball WLCSP packages.

The ADA4505-1 is members of a growing series of zero crossover op amps offered by Analog Devices, Inc., including the AD8506/AD8508/ADA4505-2/ADA4505-4, which also operate from a single 1.8 V to 5 V power supply or from dual $\pm 0.9~\rm V$ to $\pm 2.5~\rm V$ power supplies.

ADA4505-1

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS—5 V OPERATION

 V_{SY} = 5 V, V_{CM} = $V_{\text{SY}}/2$, T_{A} = 25°C, R_{L} = 100 k Ω to GND, unless otherwise specified.

Table 1.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos	$0 \text{ V} \leq V_{CM} \leq 5 \text{ V}$		0.5	3	mV
		-40°C ≤ T _A ≤ +125°C			4	mV
Input Bias Current	I _B			0.5	2	pА
		-40 °C $\leq T_A \leq +85$ °C			50	pA
		-40°C ≤ T _A ≤ +125°C			375	pА
Input Offset Current	los			0.05	1	pA
		-40 °C $\leq T_A \leq +85$ °C			25	pА
		-40°C ≤ T _A ≤ +125°C			130	pА
Input Voltage Range		-40°C ≤ T _A ≤ +125°C	0		5	V
Common-Mode Rejection Ratio	CMRR	$0 \text{ V} \leq V_{CM} \leq 5 \text{ V}$	90	105		dB
		-40 °C $\leq T_A \leq +85$ °C	90			dB
		-40°C ≤ T _A ≤ +125°C	85			dB
Large Signal Voltage Gain	A _{VO}	$0.05 \text{ V} \le \text{V}_{\text{OUT}} \le 4.95 \text{ V}$	105	120		dB
		-40°C ≤ T _A ≤ +125°C	100			dB
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$	$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$		2		μV/°C
Input Resistance	R _{IN}			220		GΩ
Input Capacitance Differential Mode	C _{INDM}			2.5		pF
Input Capacitance Common Mode	CINCM			4.7		pF
OUTPUT CHARACTERISTICS				· · · · · · · · · · · · · · · · · · ·		-
Output Voltage High	V _{OH}	$R_L = 100 \text{ k}\Omega \text{ to GND}$	4.98	4.99		V
3.4		-40 °C \leq T _A \leq $+125$ °C	4.98			V
		$R_L = 10 \text{ k}\Omega \text{ to GND}$	4.9	4.95		V
		-40°C ≤ T _A ≤ +125°C	4.9			V
Output Voltage Low	V _{OL}	$R_L = 100 \text{ k}\Omega \text{ to V}_{SY}$		2	5	mV
output voltage zow		-40°C ≤ T _A ≤ +125°C			5	mV
		$R_L = 10 \text{ k}\Omega \text{ to V}_{SY}$		10	25	mV
		-40°C ≤ T _A ≤ +125°C			25	mV
Short-Circuit Limit	Isc	$V_{OUT} = V_{SY}$ or GND		±40		mA
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_{SY} = 1.8 \text{ V to 5 V}$	100	110		dB
,,,,		-40°C ≤ T _A ≤ +85°C	100			dB
		-40°C ≤ T _A ≤ +125°C	95			dB
Supply Current per Amplifier	I _{SY}	$V_{OUT} = V_{SY}/2$		7	11	μΑ
,		-40°C ≤ T _A ≤ +125°C			15	μA
DYNAMIC PERFORMANCE						<u> </u>
Slew Rate	SR	$R_L = 100 \text{ k}\Omega$, $C_L = 20 \text{ pF, G} = 1$		6		mV/μs
Gain Bandwidth Product	GBP	$R_L = 1 M\Omega$, $C_L = 20 pF$, $G = 1$		50		kHz
Phase Margin	Фм	$R_L = 1 \text{ M}\Omega$, $C_L = 20 \text{ pF, G} = 1$		52		Degrees
NOISE PERFORMANCE						
Voltage Noise	e _n p-p	f = 0.1 Hz to 10 Hz		2.95		μV p-p
Voltage Noise Density	e _n	f = 1 kHz		65		nV/√Hz
Current Noise Density	in	f=1 kHz		20		fA/√Hz

ELECTRICAL CHARACTERISTICS—1.8 V OPERATION

 V_{SY} = 1.8 V, V_{CM} = $V_{\text{SY}}/2$, T_{A} = 25°C, R_{L} = 100 k Ω to GND, unless otherwise specified.

Table 2.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos	$0 \text{ V} \leq V_{\text{CM}} \leq 1.8 \text{ V}$		0.5	3	mV
		$-40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$			4	mV
Input Bias Current	I _B			0.5	2	pА
		$-40^{\circ}\text{C} \le T_{A} \le +85^{\circ}\text{C}$			50	pА
		$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$			375	рА
Input Offset Current	los			0.05	1	рА
		$-40^{\circ}\text{C} \le T_{A} \le +85^{\circ}\text{C}$			25	pА
		$-40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$			130	pА
Input Voltage Range		$-40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$	0		1.8	V
Common-Mode Rejection Ratio	CMRR	$0~V \leq V_{CM} \leq 1.8~V$	85	100		dB
		$-40^{\circ}\text{C} \le T_{A} \le +85^{\circ}\text{C}$	85			dB
		$-40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$	80			dB
Large Signal Voltage Gain	Avo	$0.05 \text{ V} \le V_{\text{OUT}} \le 1.75 \text{ V}$	95	115		dB
		$-40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$	95			dB
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$	$-40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$		2.5		μV/°C
Input Resistance	R _{IN}			220		GΩ
Input Capacitance Differential Mode	CINDM			2.5		pF
Input Capacitance Common Mode	CINCM			4.7		pF
OUTPUT CHARACTERISTICS						
Output Voltage High	V _{OH}	$R_L = 100 \text{ k}\Omega \text{ to GND}$	1.78	1.79		V
, , ,		$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$	1.78			V
		$R_L = 10 \text{ k}\Omega \text{ to GND}$	1.65	1.75		V
		$-40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$	1.65			V
Output Voltage Low	V _{OL}	$R_L = 100 \text{ k}\Omega \text{ to V}_{SY}$		2	5	mV
, ,		-40 °C $\leq T_A \leq +125$ °C			5	mV
		$R_L = 10 \text{ k}\Omega \text{ to } V_{SY}$		12	25	mV
		$-40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$			25	mV
Short-Circuit Limit	I _{SC}	$V_{OUT} = V_{SY}$ or GND		±3.8		mA
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_{SY} = 1.8 \text{ V to 5 V}$	100	110		dB
		-40 °C $\leq T_A \leq +85$ °C	100			dB
		$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$	95			dB
Supply Current per Amplifier	I _{SY}	$V_{OUT} = V_{SY}/2$		7	11	μΑ
		$-40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$			15	μΑ
DYNAMIC PERFORMANCE						
Slew Rate	SR	$R_L = 100 \text{ k}\Omega$, $C_L = 20 \text{ pF}$, $G = 1$		6.5		mV/μs
Gain Bandwidth Product	GBP	$R_L = 1 M\Omega$, $C_L = 20 pF$, $G = 1$		50		kHz
Phase Margin	Φ_{M}	$R_L = 1 \text{ M}\Omega, C_L = 20 \text{ pF, G} = 1$		52		Degree
NOISE PERFORMANCE						
Voltage Noise	e _n p-p	f = 0.1 Hz to 10 Hz		2.95		μV p-p
Voltage Noise Density	e _n	f = 1 kHz		65		nV/√Hz
Current Noise Density	i _n	f = 1 kHz		20		fA/√Hz

ABSOLUTE MAXIMUM RATINGS

Table 3.

Parameter	Rating
Supply Voltage	5.5 V
Input Voltage	$\pm V_{SY} \pm 0.1 V$
Input Current ¹	±10 mA
Differential Input Voltage ²	$\pm V_{SY}$
Output Short-Circuit Duration to GND	Indefinite
Storage Temperature Range	−65°C to +150°C
Operating Temperature Range	−40°C to +125°C
Junction Temperature Range	−65°C to +150°C
Lead Temperature (Soldering, 60 sec)	300°C

¹ Input pins have clamp diodes to the supply pins. Input current should be limited to 10 mA or less whenever the input signal exceeds the power supply rail by 0.5 V.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

 θ_{JA} is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages. This was measured using a standard 2-layer board, unless otherwise specified.

Table 4. Thermal Resistance

Package Type	θја	Θ_{JB}^{1}	Ө лс	Unit
5-Lead SOT23 (RJ-5)	TBD	TBD	TBD	°C/W
6-Ball WLCSP (CB-6-2)				
2-Layer PCB (1SOP)	TBD	TBD	N/A	°C/W
4-Layer PCB (2SOP)	TBD	TBD	N/A	°C/W

¹ Junction-to-board thermal resistance.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

²Differential input voltage is limited to 5 V or the supply voltage, whichever is less.