

Preliminary Technical Data

FEATURES

Low offset voltage: 200 µV maximum Offset drift: 1 µV/°C typical Very low input bias current: 5 pA maximum Extended temperature range: -40°C to +125°C ±5 V to ±15 V dual-supply GBW: 80 MHz Stable in Gain ≥ 5 Voltage noise: 6.1 nV/√Hz at 1 kHz High slew rate: 170 V/µs High gain: 120 dB typical High CMRR: 116 dB typical High PSRR: 112 dB typical Low supply current: 7.5 mA maximum

APPLICATIONS

High impedance sensors Photo diode amplifier Precision instrumentation Phase-locked loop filters High end, professional audio DAC output amplifier ATE Medical

GENERAL DESCRIPTION

The ADA4637-1 is a wide bandwidth de-compensated precision amplifier featuring low noise, very low offset, drift, and bias current. Operation specified from ± 5 V to ± 15 V, dual supply.

The ADA4637-1 provides benefits previously found in few amplifiers. This amplifier combines the best specifications of precision dc and high speed ac op amps.

With a typical offset voltage of only 70 μ V, drift of less than 1 μ V/°C, and noise of only 0.86 μ V p-p (0.1 Hz to 10 Hz), the ADA4637-1 is suited for applications in which error sources cannot be tolerated.

The ADA4637-1 is specified for both the industrial temperature range of -25° C to $+85^{\circ}$ C and the extended industrial temper-

36 V, 80 MHz, Low Noise, Low Bias Current, JFET Op Amp

ADA4637-1

PIN CONFIGURATIONS

Figure 2. 8-Lead LFCSP_VD (CP-8-2)

ature range of -40° C to $+125^{\circ}$ C. It is available in tiny 8-lead LFCSP and 8-lead SOIC packages.

The ADA4637-1 is a member of a growing series of high speed, precision op amps offered by Analog Devices, Inc (see Table 1).

Supply	5 V Low Cost	5 V	26 V Low Power	30 V Low Cost	30 V
Single	AD8615	AD8651	AD8610	AD8510	ADA4627-1
					ADA4637-1
Dual	AD8616	AD8652	AD8620	AD8512	
Quad	AD8618			AD8513	

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

ADA4637-1

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS—30 V OPERATION

 V_{SY} = ±15 V, V_{CM} = 0 V, T_{A} = 25°C, unless otherwise noted.

Table 2.

				B Grade			A Grade		
Parameter	Symbol	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
INPUT CHARACTERISTICS									
Offset Voltage ¹	Vos			70	200		120	300	μV
		$-40^{\circ}C \le T_A \le +85^{\circ}C$			350			410	
		$-40^{\circ}C \le T_A \le +125^{\circ}C$			400			660	μV
Offset Voltage Drift, Average	ΔV _{os} /ΔT	$-40^{\circ}C \le T_{A} \le +125^{\circ}C$		1	2		1	3	μV/°C
Power Supply Rejection Ratio	PSRR	$V_{SY} = \pm 4.5 \text{ V to } \pm 18 \text{ V}$	106	112		103	108		dB
		$-40^{\circ}C \le I_{A} \le +125^{\circ}C$	101	1	F	99	1	-	dB
Input Blas Current-	IB	-40°C < T. < +85°C		I	5		I	5	pA nA
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$			0.5			0.5	nA nA
Input Offset Current	lac	+0 C = 1A = 1125 C		0.5	2		0.5	2	nA nA
input onset current	105	–40°C ≤ T₄ ≤ +85°C		0.5	05		0.5	0.5	nA
		$-40^{\circ}C \le T_A \le +125^{\circ}C$			2			2	nA
NOISE PERFORMANCE					-			-	
Voltage Noise Density	en	f = 10 Hz		16.5	40		16.5	40	nV/√Hz
		f = 100 Hz		7.9	20		7.9	20	nV/√Hz
		f = 1 kHz		6.1	8		6.1	8	nV/√Hz
		f = 10 kHz		4.8	6		4.8	6	nV/√Hz
Voltage Noise	e _n p-p	0.1 Hz to 10 Hz		0.69	1.6		0.69	1.6	μV p-р
Current Noise Density	in	f = 100 Hz		1.6			2.5		fA/√Hz
Current Noise	I _n p-p	0.1 Hz to 10 Hz		30			48		fA p-p
Input Resistance	R _{IN}			10			10		ΤΩ
Input Capacitance,	CINDM			8			8		pF
Differential Mode				_			_		_
Input Capacitance, Common Mode	CINCM			7			7		pF
Input Voltage Range			-11		+11	-11		+11	V
		$-40^{\circ}C \le T_A \le +125^{\circ}C$	-10.5		+10.5	-10.5		+10.5	V
Common-Mode Rejection Ratio	CMRR	$-40^{\circ}C \le T_A \le +125^{\circ}C,$ V _{CM} = -11 V to +11 V	106	116		100	110		dB
		$V_{CM} = -10.5 \text{ V to } +10.5 \text{ V}$	98			97			
Large Signal Voltage Gain	Avo	$R_L = 1 \ k\Omega, V_O = -10 \ V \ to + 10 \ V$	112	120		106	120		dB
		$-40 \le T_A \le +85^{\circ}C$	110			104			dB
		$-40 \le T_A \le +125^{\circ}C$	102			100			dB
DYNAMIC PERFORMANCE									
Slew Rate	SR	10 V step, $R_L = 1k\Omega$, $C_L = 100 \text{ pF}$,		170			170		Vμs
Settling Time to 0.01%	ts	$N_s = 49902$, $N_f = 2 K02$, $AV = -4$ $V_{IN} = 10 V \text{ step}$, $C_L = 35 \text{ pF}$,		300			300		ns
Settling Time to 0.1%	ts	$V_{IN} = 10 \text{ V step}, C_L = 35 \text{ pF},$ $R_I = 14 \text{ O}, A_{VI} = -4$		200			200		ns
Gain Bandwidth Product	GBP	$R_L = 1 \text{ k}\Omega, C_L = 20 \text{ pF}, A_V = 1$		80		Т	80		MHz
Total Harmonic Distortion + Noise	THD + N	$f = 1 \text{ kHz}, A_V = 1$		0.000045			0.000045		%

Preliminary Technical Data

ADA4637-1

				B Grade			A Grade		
Parameter	Symbol	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
POWER SUPPLY									
Supply Current per Amplifier	Isy	$I_0 = 0 \text{ mA}$		±7.0	±7.5		±7.0	±7.5	mA
		$-40^\circ C \le T_A \le +125^\circ C$			±7.8			±7.8	mA
OUTPUT CHARACTERISTICS									
Output Voltage High	Vон	$R_L = 1 \ k\Omega$ to V_{CM}	12.0	12.3		12.0	12.3		V
		$-40^{\circ}C \le T_A \le +85^{\circ}C$	11.8			11.8			V
		$-40^{\circ}C \le T_A \le +125^{\circ}C$	11.7			11.7			V
Output Voltage Low	Vol	$R_L = 1 \ k\Omega$ to V_{CM}		-12.7	-12.3	-12.7	-12.3		V
		$-40^{\circ}C \le T_A \le +85^{\circ}C$			-12.1		-12.1		V
		$-40^{\circ}C \le T_A \le +125^{\circ}C$			-12.0		-12.0		V
Output Current	lout	$V_0 = \pm 10 \text{ V}$		±45			±45		mA
Short-Circuit Current	Isc	$T_A = 25^{\circ}C$		+70/-55			+70/-55		mA
Closed-Loop Output	Zout	$f = 1 MHz, A_V = -100$		41			41		Ω
Impedance									

 $^1\,\text{V}_{\text{OS}}$ is measured fully warmed-up. $^2\,\text{Tested/extrapolated}$ from 125°C

ABSOLUTE MAXIMUM RATING

Table 3.

Parameter	Rating
Supply Voltage	36 V
Input Voltage Range ¹	(V–) – 0.3 V to (V+) + 0.3 V
Input Current ¹	±10 mA
Differential Input Voltage ²	±Vsγ
Output Short-Circuit Duration to GND	Indefinite
Storage Temperature Range	–65°C to +150°C
Operating Temperature Range	-40°C to +125°C
Junction Temperature Range	–65°C to +150°C
Lead Temperature (Soldering, 60 sec)	300°C
ESD Human Body Model	2.5 kV

¹ Input pin has clamp diodes to the power supply pins. Input current should be limited to 10 mA or less whenever input signals exceed the power supply rail by 0.3 V.

 2 Differential input voltage is limited to ± 30 V or the supply voltage, whichever is less.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

 θ_{JA} is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages. This was measured using a standard two-layer board. For the LFCSP package, the exposed pad should be soldered to a copper plane.

Table 4. Thermal Resistance

Package Type	θ _{JA}	οισ	Unit
8-Lead SOIC_N (R-8)	155	45	°C/W
8-Lead LFCSP (CP-8-2)	77	14	°C/W

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option	Branding
ADA4637-1ACPZ-R21	-40°C to +125°C	8 Lead LFCSP_VD	CP-8-2	A29
ADA4637-1ACPZ-RL ¹	-40°C to +125°C	8 Lead LFCSP_VD	CP-8-2	A29
ADA4637-1ACPZ-R71	-40°C to +125°C	8 Lead LFCSP_VD	CP-8-2	A29
ADA4637-1ARZ ¹	-40°C to +125°C	8-Lead SOIC_N	R-8	
ADA4637-1ARZ-RL1	-40°C to +125°C	8-Lead SOIC_N	R-8	
ADA4637-1ARZ-R71	-40°C to +125°C	8-Lead SOIC_N	R-8	
ADA4637-1BRZ ¹	-40°C to +125°C	8-Lead SOIC_N	R-8	
ADA4637-1BRZ-R71	-40°C to +125°C	8-Lead SOIC_N	R-8	
ADA4637-1BRZ-RL1	-40°C to +125°C	8-Lead SOIC_N	R-8	

 1 Z = RoHS Compliant Part.