FEATURES
• Adjustable Sense Voltage With Two External Resistors
• Adjustable Hysteresis of Sense Voltage
• Wide Operating Supply-Voltage Range: 1.8 V to 40 V
• Wide Operating Temperature Range: −40°C to 85°C
• Low Power Consumption: $I_{CC} = 0.6 \text{ mA Typ, } V_{CC} = 40 \text{ V}$
• Minimum External Components
• Now Available in MSOP (DGK) package

DESCRIPTION/ORDERING INFORMATION
The TL7700 is a bipolar integrated circuit designed for use as a reset controller in microcomputer and microprocessor systems. The SENSE voltage can be set to any value greater than 0.5 V using two external resistors. The hysteresis value of the sense voltage also can be set by the same resistors. The device includes a precision voltage reference, fast comparator, timing generator, and output driver, so it can generate a power-on reset signal in a digital system.

The TL7700 has an internal 1.5-V temperature-compensated voltage reference from which all function blocks are supplied. Circuit function is very stable, with supply voltage in the 1.8-V to 40-V range. Minimum supply current allows use with ac line operation, portable battery operation, and automotive applications.

ORDERING INFORMATION(1)

<table>
<thead>
<tr>
<th>T_A</th>
<th>PACKAGE(2)</th>
<th>ORDERABLE PART NUMBER</th>
<th>TOP-SIDE MARKING</th>
</tr>
</thead>
<tbody>
<tr>
<td>–40°C to 85°C</td>
<td>PDIP – P</td>
<td>Tube of 50</td>
<td>TL7700CP</td>
</tr>
<tr>
<td></td>
<td>SOP – PS</td>
<td>Reel of 2000</td>
<td>TL7700CPSR</td>
</tr>
<tr>
<td></td>
<td>TSSOP – PW</td>
<td>Tube of 150</td>
<td>TL7700CPW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reel of 2000</td>
<td>TL7700CPWR</td>
</tr>
<tr>
<td></td>
<td>MSOP – DGK</td>
<td>Reel of 250</td>
<td>TL7700CDGKT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reel of 2500</td>
<td>TL7700CDGKR</td>
</tr>
</tbody>
</table>

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.
(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
TERMINAL FUNCTIONS

<table>
<thead>
<tr>
<th>TERMINAL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
<td>NO.</td>
</tr>
<tr>
<td>CT</td>
<td>1 3</td>
</tr>
<tr>
<td>GND</td>
<td>4 5</td>
</tr>
<tr>
<td>NC</td>
<td>3 6 7 2 6 7</td>
</tr>
<tr>
<td>RESET</td>
<td>8 1</td>
</tr>
<tr>
<td>SENSE</td>
<td>2 4</td>
</tr>
<tr>
<td>VCC</td>
<td>5 8</td>
</tr>
</tbody>
</table>

A. I_{CT} = 15 μA (Typ), I_s = 2.5 μA (Typ)
Absolute Maximum Ratings\(^{(1)}\)

over operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{CC})</td>
<td>Supply voltage</td>
<td>1.8 V</td>
<td>40 V</td>
<td></td>
</tr>
<tr>
<td>(V_s)</td>
<td>Sense input voltage range</td>
<td>–0.3 V to 41 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{OH})</td>
<td>Output voltage (off state)</td>
<td>41 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{OL})</td>
<td>Output current (on state)</td>
<td>5 mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\theta_{JA})</td>
<td>Package thermal impedance (^{(3)}) (^{(4)})</td>
<td>P package 85°C/W, PS package 95°C/W, PW package 149°C/W, DPK package 172°C/W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T_J)</td>
<td>Operating virtual-junction temperature</td>
<td>150°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T_{stg})</td>
<td>Storage temperature range</td>
<td>–65°C to 150°C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^{(1)}\) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

\(^{(2)}\) All voltage values are with respect to the network ground terminal.

\(^{(3)}\) Maximum power dissipation is a function of \(T_J(max) \), \(\theta_{JA} \), and \(T_A \). The maximum allowable power dissipation at any allowable ambient temperature is \(P_D = (T_J(max) - T_A) / \theta_{JA} \). Operating at the absolute maximum \(T_J \) of 150°C can impact reliability.

\(^{(4)}\) The package thermal impedance is calculated in accordance with JESD 51-7.

Recommended Operating Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{CC})</td>
<td>Supply voltage</td>
<td>1.8 V</td>
<td>40 V</td>
<td></td>
</tr>
<tr>
<td>(I_{OL})</td>
<td>Low-level output current</td>
<td>3 mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T_A)</td>
<td>Operating free-air temperature</td>
<td>–40°C to 85°C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Electrical Characteristics

\(V_{CC} = 3 \) V (unless otherwise noted)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>(T_A)</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_s)</td>
<td>Sense input voltage</td>
<td>(V_s = 0.4) V</td>
<td>25°C</td>
<td>495 mV</td>
<td>500 mV</td>
<td>505 mV</td>
</tr>
<tr>
<td>(I_s)</td>
<td>Sense input current</td>
<td>(I_{OL} = 3) mA</td>
<td>25°C</td>
<td>1.5 μA</td>
<td>3 μA</td>
<td>3.5 μA</td>
</tr>
<tr>
<td>(I_{CC})</td>
<td>Supply current</td>
<td>(V_{CC} = 40) V, (V_s = 0.6) V, No load</td>
<td>25°C</td>
<td>0.6 mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{OL})</td>
<td>Low-level output voltage</td>
<td>(I_{OL} = 1.5) mA</td>
<td>25°C</td>
<td>0.4 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{OH})</td>
<td>High-level output current</td>
<td>(V_{OH} = 40) V, (V_s = 0.6) V</td>
<td>25°C</td>
<td>0.8 μA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{CT})</td>
<td>Timing-capacitor charge current</td>
<td>(V_s = 0.6) V</td>
<td>25°C</td>
<td>11 μA</td>
<td>15 μA</td>
<td>19 μA</td>
</tr>
</tbody>
</table>

Switching Characteristics

\(V_{CC} = 3 \) V, \(T_A = 25°C \) (unless otherwise noted)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>(T_A)</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{pi})</td>
<td>SENSE pulse duration</td>
<td>(C_T = 0.01) μF</td>
<td>2 μs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t_{po})</td>
<td>Output pulse duration</td>
<td>(C_T = 0.01) μF</td>
<td>0.5 ms</td>
<td>1.5 ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t_r)</td>
<td>Output rise time</td>
<td>(C_T = 0.01) μF, (R_L = 2.2) kΩ, (C_L = 100) pF</td>
<td>15 μs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t_f)</td>
<td>Output fall time</td>
<td>(C_T = 0.01) μF, (R_L = 2.2) kΩ, (C_L = 100) pF</td>
<td>0.5 μs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t_{pd})</td>
<td>Propagation delay time, SENSE to output</td>
<td>(C_T = 0.01) μF</td>
<td>10 μs</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PARAMETER MEASUREMENT INFORMATION

Figure 1. V_{CC} vs I_{CC} Measurement Circuit

Figure 2. V_{CC} vs I_{CT} Measurement Circuit

Figure 3. I_{OL} vs V_{OL} Measurement Circuit
PARAMETER MEASUREMENT INFORMATION (continued)

Figure 4. V_s, I_s Characteristics Measurement Circuit

Figure 5. Switching Characteristics Measurement Circuit
TYPICAL CHARACTERISTICS

Data at high and low temperatures are applicable only within the recommended operating conditions.

SUPPLY CURRENT vs SUPPLY VOLTAGE

- \(V_{CC} \) – Supply Voltage – V
- \(I_{CC} \) – Supply Current – mA

- \(T_A = 85°C \)
- \(T_A = 25°C \)
- \(T_A = -40°C \)

TIMING-CAPACITOR CHARGE CURRENT vs SUPPLY VOLTAGE

- \(V_{CC} \) – Supply Voltage – V
- Timing-Capacitor Charge Current – \(\mu \)A

- \(T_A = -40°C \)
- \(T_A = 25°C \)
- \(T_A = 85°C \)

SENSE INPUT VOLTAGE vs TEMPERATURE

- \(V_s \) – Sense Input Voltage – mV
- \(T_A \) – Free-Air Temperature – °C

- \(T_A = 25°C \)
 - \(V_s = 500.8 \text{ mV} \)
 - \(V_s = 498.3 \text{ mV} \)

VOL vs IOL

- \(V_{OL} \) – Low-Level Output Voltage – V
- \(I_{OL} \) – Low-Level Output Current – mA

- \(T_A = 85°C \)
- \(T_A = 25°C \)
- \(T_A = -40°C \)
TYPICAL CHARACTERISTICS (continued)

Data at high and low temperatures are applicable only within the recommended operating conditions.

Figure 10. SENSE INPUT CURRENT vs TEMPERATURE

Figure 11. SENSE INPUT CURRENT vs SENSE INPUT VOLTAGE

Figure 12. OUTPUT PULSE DURATION vs TIMING CAPACITOR
TYPICAL CHARACTERISTICS (continued)

Data at high and low temperatures are applicable only within the recommended operating conditions.

Figure 13. VCC vs Output Test Circuit 1

Figure 14. VCC vs Output Waveform 1

Figure 15. VCC vs Output Test Circuit 2

Figure 16. VCC vs Output Waveform 2
TYPICAL CHARACTERISTICS (continued)

Data at high and low temperatures are applicable only within the recommended operating conditions.

Figure 17. V_{CC} vs Output Test Circuit 3

Figure 18. V_{CC} vs Output Waveform 3

X-Axis = 0.2 ms/Division
Y-Axis (TP1) = 1 V/Division
Y-Axis (TP2) = 2 V/Division
Detailed Description

Sense-Voltage Setting

The SENSE terminal input voltage, \(V_s\), of the TL7700 typically is 500 mV. By using two external resistors, the circuit designer can obtain any sense voltage over 500 mV. In Figure 19, the sensing voltage, \(V_s'\), is calculated as:

\[
V_s' = V_s \times \frac{R_1 + R_2}{R_2}
\]

Where:

\(V_s = 500 \text{ mV typ at } T_A = 25°C\)

At room temperature, \(V_s\) has a variation of 500 mV \(\pm 5\) mV. In the basic circuit shown in Figure 19, variations of \([\pm 5 \pm (R_1 + R_2)/R_2]\) mV are superimposed on \(V_s\).

![Figure 19.](image)

Sense-Voltage Hysteresis Setting

If the sense voltage (\(V_s\)) does not have hysteresis in it, and the voltage on the sensing line contains ripples, the resetting of TL7700 is unstable. Hysteresis is added to the sense voltage to prevent such problems. As shown in Figure 20, the hysteresis (\(V_{hys}\)) is added, and the value is determined as:

\[
V_{hys} = I_s \times R_1
\]

Where:

\(I_s = 2.5 \text{ μA typ at } T_A = 25°C\)

At room temperature, \(I_s\) has variations of 2.5 mA \(\pm 0.5\) mA. Therefore, in the circuit shown in Figure 19, \(V_{hys}\) has variations of \((\pm 0.5 \times R_1)\) mV. In circuit design, it is necessary to consider the voltage-dividing resistor tolerance and temperature coefficient in addition to variations in \(V_s\) and \(V_{hys}\).
Output Pulse-Duration Setting

Constant-current charging starts on the timing capacitor when the sensing-line voltage reaches the TL7700 sense voltage. When the capacitor voltage exceeds the threshold level of the output drive comparator, RESET changes from a low to a high level. The output pulse duration is the time between the point when the sense-pin voltage exceeds the threshold level and the point when the RESET output changes from a low level to a high level. When the TL7700 is used for system power-on reset, the output pulse duration, \(t_{po} \), must be set longer than the power rise time. The value of \(t_{po} \) is:

\[
t_{po} = C_t \times 10^5 \text{ seconds}
\]

Where:

- \(C_t \) is the timing capacitor in farads

There is a limit on the device response speed. Even if \(C_t = 0 \), \(t_{po} \) is not 0, but approximately 5 \(\mu \)s to 10 \(\mu \)s. Therefore, when the TL7700 is used as a comparator with hysteresis without connecting \(C_t \), switching speeds (\(t_r/t_f \), \(t_{po}/t_{pd} \), etc.) must be considered.
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan (2)</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp (3)</th>
<th>Samples (Requires Login)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TL7700CDGKR</td>
<td>ACTIVE</td>
<td>MSOP</td>
<td>DGK</td>
<td>8</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>TL7700CDGKRG4</td>
<td>ACTIVE</td>
<td>MSOP</td>
<td>DGK</td>
<td>8</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>TL7700CDGTKT</td>
<td>ACTIVE</td>
<td>MSOP</td>
<td>DGK</td>
<td>8</td>
<td>250</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>TL7700CDGKRTG4</td>
<td>ACTIVE</td>
<td>MSOP</td>
<td>DGK</td>
<td>8</td>
<td>250</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>TL7700CP</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>P</td>
<td>8</td>
<td>50</td>
<td>Pb-Free (RoHS)</td>
<td>CU NIPDAU</td>
<td>N / A for Pkg Type</td>
<td></td>
</tr>
<tr>
<td>TL7700CPE4</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>P</td>
<td>8</td>
<td>50</td>
<td>Pb-Free (RoHS)</td>
<td>CU NIPDAU</td>
<td>N / A for Pkg Type</td>
<td></td>
</tr>
<tr>
<td>TL7700CPSR</td>
<td>ACTIVE</td>
<td>SO</td>
<td>PS</td>
<td>8</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>TL7700CPSR4</td>
<td>ACTIVE</td>
<td>SO</td>
<td>PS</td>
<td>8</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>TL7700CPW</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>8</td>
<td>150</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>TL7700CPWE4</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>8</td>
<td>150</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>TL7700CPWG4</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>8</td>
<td>150</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>TL7700CPWR</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>8</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>TL7700CPWRE4</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>8</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>TL7700CPWRG4</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>8</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBsolete: TI has discontinued the production of the device.
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>TL7700CDGKR</td>
<td>MSOP</td>
<td>DGK</td>
<td>8</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>5.3</td>
<td>3.4</td>
<td>1.4</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TL7700CDGTK</td>
<td>MSOP</td>
<td>DGK</td>
<td>8</td>
<td>2500</td>
<td>177.8</td>
<td>12.4</td>
<td>5.3</td>
<td>3.4</td>
<td>1.4</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TL7700CPSR</td>
<td>SO</td>
<td>PS</td>
<td>8</td>
<td>2000</td>
<td>330.0</td>
<td>16.4</td>
<td>8.2</td>
<td>6.6</td>
<td>2.5</td>
<td>12.0</td>
<td>16.0</td>
<td>Q1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TL7700CPWR</td>
<td>TSSOP</td>
<td>PW</td>
<td>8</td>
<td>2000</td>
<td>330.0</td>
<td>12.4</td>
<td>7.0</td>
<td>3.6</td>
<td>1.6</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TL7700CPWRG4</td>
<td>TSSOP</td>
<td>PW</td>
<td>8</td>
<td>2000</td>
<td>330.0</td>
<td>12.4</td>
<td>7.0</td>
<td>3.6</td>
<td>1.6</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*All dimensions are nominal.

A0: Dimension designed to accommodate the component width
B0: Dimension designed to accommodate the component length
K0: Dimension designed to accommodate the component thickness
W: Overall width of the carrier tape
P1: Pitch between successive cavity centers

*All dimensions are nominal.
<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TL7700CDGKR</td>
<td>MSOP</td>
<td>DGK</td>
<td>8</td>
<td>2500</td>
<td>358.0</td>
<td>335.0</td>
<td>35.0</td>
</tr>
<tr>
<td>TL7700CDGKT</td>
<td>MSOP</td>
<td>DGK</td>
<td>8</td>
<td>250</td>
<td>358.0</td>
<td>335.0</td>
<td>35.0</td>
</tr>
<tr>
<td>TL7700CPSR</td>
<td>SO</td>
<td>PS</td>
<td>8</td>
<td>2000</td>
<td>346.0</td>
<td>346.0</td>
<td>33.0</td>
</tr>
<tr>
<td>TL7700CPWR</td>
<td>TSSOP</td>
<td>PW</td>
<td>8</td>
<td>2000</td>
<td>346.0</td>
<td>346.0</td>
<td>29.0</td>
</tr>
<tr>
<td>TL7700CPWRG4</td>
<td>TSSOP</td>
<td>PW</td>
<td>8</td>
<td>2000</td>
<td>346.0</td>
<td>346.0</td>
<td>29.0</td>
</tr>
</tbody>
</table>

All dimensions are nominal
NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001 variation BA.
NOTES:

A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.
D. Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
E. Falls within JEDEC MO-187 variation AA, except interlead flash.
NOTES:

A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

B. This drawing is subject to change without notice.

C. Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 each side.

D. Body width does not include interlead flash. Interlead flash shall not exceed 0.25 each side.

E. Falls within JEDEC MO-153
MECHANICAL DATA

PS (R-PDSO-G8) PLASTIC SMALL-OUTLINE PACKAGE

NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0.15.

4040063/C 03/03
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.
NOTES:
A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.
 ▲ Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 each side.
 ▲ Body width does not include interlead flash. Interlead flash shall not exceed 0.25 each side.
E. Falls within JEDEC MO-153
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal and regulatory requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or “enhanced plastic.” Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

- **Audio**: www.ti.com/audio
- **Amplifiers**: amplifier.ti.com
- **Data Converters**: dataconverter.ti.com
- **DLP® Products**: www.dlp.com
- **DSP**: dsp.ti.com
- **Clocks and Timers**: www.ti.com/clocks
- **Interface**: interface.ti.com
- **Logic**: logic.ti.com
- **Power Mgmt**: power.ti.com
- **Microcontrollers**: microcontroller.ti.com
- **RFID**: www.ti-rfid.com
- **OMAP Mobile Processors**: www.ti.com/omap
- **Wireless Connectivity**: www.ti.com/wirelessconnectivity

Applications

- **Automotive and Transportation**: www.ti.com/automotive
- **Communications and Telecom**: www.ti.com/communications
- **Computers and Peripherals**: www.ti.com/computers
- **Consumer Electronics**: www.ti.com/consumer-apps
- **Energy and Lighting**: www.ti.com/energy
- **Industrial**: www.ti.com/industrial
- **Medical**: www.ti.com/medical
- **Security**: www.ti.com/security
- **Space, Avionics and Defense**: www.ti.com/space-avionics-defense
- **Video and Imaging**: www.ti.com/video

TI E2E Community Home Page: e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265

Copyright © 2012, Texas Instruments Incorporated