Features
* Core
— ARM® Cortex®M4 with a 2 Kbytes cache running at up to 120 MHz
— Memory Protection Unit (MPU)
— DSP Instruction Set
— Thumb®-2 instruction set
* Pin-to-pin compatible with SAM3N, SAM3S products (64- and 100- pin versions) and _®

SAMTYS legacy products (64-pin version)
* Memories
— Up to 2048 Kbytes embedded Flash with optional dual bank and cache memory

— Up to 160 Kbytes embedded SRAM ATglsAM

— 16 Kbytes ROM with embedded boot loader routines (UART, USB) and IAP routines

— 8-bit Static Memory Controller (SMC): SRAM, PSRAM, NOR and NAND Flash
Support ARM-based
* System
— Embedded voltage regulator for single supply operation FI as h MCU

— Power-on-Reset (POR), Brown-out Detector (BOD) and Watchdog for safe operation

— Quartz or ceramic resonator oscillators: 3 to 20 MHz main power with Failure
Detection and optional low-power 32.768 kHz for RTC or device clock .

— RTC with Gregorian and Persian Calendar mode, waveform generation in low- SA M4S SerleS
power modes

— RTC clock calibration circuitry for 32.768 kHz crystal frequency compensation

— High precision 8/12 MHz factory trimmed internal RC oscillator with 4 MHz default
frequency for device startup. In-application trimming access for frequency

adjustment
— Slow Clock Internal RC oscillator as permanent low-power mode device clock . .
— Two PLLs up to 240 MHz for device clock and for USB Prel Imin ary
— Temperature Sensor
— Up to 22 Peripheral DMA (PDC) Channels Data.S h eet

* Low Power Modes
— Sleep and Backup modes, down to 1 pA in Backup mode
— Ultra low-power RTC
* Peripherals
— USB 2.0 Device: 12 Mbps, 2668 byte FIFO, up to 8 bidirectional Endpoints. On-Chip
Transceiver
— Up to 2 USARTSs with I1ISO7816, IrDA®, RS-485, SPI, Manchester and Modem Mode
— Two 2-wire UARTSs
— Up to 2 Two Wire Interface (12C compatible), 1 SPI, 1 Serial Synchronous Controller
(12S), 1 High Speed Multimedia Card Interface (SDIO/SD Card/MMC)
— 2 Three-Channel 16-bit Timer/Counter with capture, waveform, compare and PWM
mode. Quadrature Decoder Logic and 2-bit Gray Up/Down Counter for Stepper Motor
— 4-channel 16-bit PWM with Complementary Output, Fault Input, 12-bit Dead Time
Generator Counter for Motor Control
— 32-bit Real-time Timer and RTC with calendar and alarm features
— Up to 16-channel, 1Msps ADC with differential input mode and programmable gain
stage and auto calibration
— One 2-channel 12-bit 1Msps DAC
— One Analog Comparator with flexible input selection, Selectable input hysteresis
— 32-bit Cyclic Redundancy Check Calculation Unit (CRCCU)
— Write Protected Registers
* /O
— Up to 79 I/0O lines with external interrupt capability (edge or level sensitivity),
debouncing, glitch filtering and on-die Series Resistor Termination
— Three 32-bit Parallel Input/Output Controllers, Peripheral DMA assisted Parallel
Capture Mode
* Packages
— 100-lead LQFP, 14 x 14 mm, pitch 0.5 mm/100-ball TFBGA, 9 x 9 mm, pitch
0.8 mm/100-ball VFBGA, 7 x 7 mm, pitch 0.65 mm
— 64-lead LQFP, 10 x 10 mm, pitch 0.5 mm/64-lead QFN 9x9 mm, pitch 0.5 mm 11100B—ATARM-31-Jul-12

ATMEL

1. Description

ATMEL

The Atmel SAMA4S series is a member of a family of Flash microcontrollers based on the high
performance 32-bit ARM Cortex-M4 RISC processor. It operates at a maximum speed of
120 MHz and features up to 2048 Kbytes of Flash, with optional dual bank implementation and
cache memory, and up to 160 Kbytes of SRAM. The peripheral set includes a Full Speed USB
Device port with embedded transceiver, a High Speed MCI for SDIO/SD/MMC, an External Bus
Interface featuring a Static Memory Controller providing connection to SRAM, PSRAM, NOR
Flash, LCD Module and NAND Flash, 2x USARTS, 2x UARTSs, 2x TWIs, 3x SPI, an 12S, as well
as 1 PWM timer, 2x three channel general-purpose 16-bit timers (with stepper motor and
guadrature decoder logic support), an RTC, a 12-bit ADC, a 12-bit DAC and an analog
comparator.

The SAMA4S series is ready for capacitive touch thanks to the QTouch® library, offering an easy
way to implement buttons, wheels and sliders.

The SAM4S device is a medium range general purpose microcontroller with the best ratio in
terms of reduced power consumption, processing power and peripheral set. This enables the
SAMA4S to sustain a wide range of applications including consumer, industrial control, and PC
peripherals.

It operates from 1.62V to 3.6V.

The SAMA4S series is pin-to-pin compatible with the SAM3N, SAM3S series (64- and 100-pin
versions) and SAM7S legacy series (64-pin versions).

2 SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

1.1 Configuration Summary
The SAM4S series devices differ in memory size, package and features. Table 1-1 summarizes
the configurations of the device family.
Table 1-1. Configuration Summary
Feature SAM4SD32C | SAM4SD32B | SAM4SD16C | SAM4SD16B | SAM4SA16C | SAM4SA16B | SAM4S16C | SAM4S16B | SAM4S8C | SAM4S8B
2 x 1024 2 x 1024 2x512 2 x 512 1024
Flash Kbytes Kbytes Kbytes Kbytes 1024 Kbytes | 1024 Kbytes | 1024 Kbytes Kbytes 512 Kbytes | 512 Kbytes
SRAM 160 Kbytes 160 Kbytes 160 Kbytes 160 Kbytes 160 Kbytes 160 Kbytes 128 Kbytes | 128 Kbytes 128 Kbytes 128 Kbytes
HCACHE 2KBytes 2KBytes 2KBytes 2KBytes 2KBytes 2KBytes - - - -
LQFP 100
LQFP 100 LQFP 64 LQFP 100 LQFP 64 LQFP 100 LQFP 64 LQFP100 | orpes | TFBGA100 | LQFP 64
TFBGA 100 QFN 64 TFBGA 100 QFN 64 TFBGA 100 QFN 64 TFBGA 100 OFN 64 VEBGA 100 QFN 64
VFBGA 100 VFBGA 100 VFBGA 100 VFBGA 100
Package
Number of
PIOs 79 47 79 47 79 47 79 47 79 47
External 8-bit data, 8-bit data, 8-bit data, 8-bit data, 8-bit data,
Bus 4chip selects, - 4chip selects, - 4chip selects, - 4chip selects, - 4chip selects, -
Interface 24-bit address 24-bitaddress 24-bit address 24-bitaddress 24-bitaddress
12-bit ADC 16 ch.® 11 ch.® 16 ch.® 11 ch.® 16 ch.® 11 ch.® 16 ch.® 11 ch.® 16 ch.® 11 ch.®
12-bit DAC 2 ch. 2 ch. 2 ch. 2 ch. 2 ch. 2 ch. 2 ch. 2 ch. 2 ch. 2 ch.
Timer
Counter 6 3 6 3 6 3 6 3 6 3
Channels
PDC 22 22 22 22 22 22 22 22 22 22
Channels
USART/ 2/2@ 2/2@ 2/2 2/2@ 2/2@ 2/2@ 22 2/2@ 2/2 2/2@
UART
1 port 1 port 1 port 1 port 1 port 1 port 1 port 1 port 1 port 1 port
HSMCI 4 bits 4 bits 4 bits 4 bits 4 bits 4 bits 4 bits 4 bits 4 bits 4 bits
Notes: 1. One channel is reserved for internal temperature sensor.
2. Full Modem support on USART1.
ATMEL 3
Y 5

11100B-ATARM-31-Jul-12

2. Block Diagram

Figure 2-1. SAMA4S16, S8 Series 100-pin version Block Diagram

o
N A &
7 & S
NGO Q Q
QNG N &S
\ A AA ¢ T
TST —>»| System Controller rYYY Voltage
PCKO-PCK2 €] |€— Regulator
PLLA ¢ Y = 5
— PMC " " asi ser
PLLB }_» I JTAG & Serial Wire Unique Signature]
@ + T + * * Identifier
2/8/4 MH: —
In-Circuit Emulator ¢ ¢
XIN <> 248t N
XOouT (—) S-ZOOSI\(I:IHZ Cortex-M4 Processor [SYSTick Counter| v/ FLASH SRAM ROM
Emax 120 MHz 1 1024 Kbytes 128 Kbytes||16 Kbytes|
DSP C 512 Kbytes
XIN32 <€ MPU
XOUT32 <> lI/D ls 1
ERASE €3> RC 32 kHz
VDDIO —» 8 GPBREG
VDDCORE — RTT
VDDPLL —» POR__]
RTCOUTO €| |« .
RTCOUT1 €>| |
NRST <€ >»| RsTC [9
eriphers) 2668 [usB 2.0[2
» DDP
WDT SM " Bytes Full 3 >
[sm_| Bridge FIFO | Speed | & » DDM
£
TWCKO <)< »> TWIO <« External Bus | >| |<—> D[7:0]
TWDO % > g LPDC Interface > [e—> A[0:23]
TWCK1 < > < -« »| |<«}—> A21/NANDALE
TWD1 <——+ > TWi1_[Pbc »| |<«l— A22/NANDCLE
URXDO > NAND Flash NGSO
D id > UARTO [FpC ™ Logic | |< 4
UTXDO < > | g »| |<«}— NCs1
URXD1 < > > »| |« NCS2
UTXD1 < > |« UART1 |poc ™ »| |<«+—> NCS3
I1?_§88 > <> > Static Memory »>{ |<«1—> NRD
< > < > <> Controller | |«—> NWE
%%8 E : < > USARTO > < » NANDOE
CTSO < > > PDC - > NANDWE
- <}— NWAIT
Bot ~—> = > PDC - <«—» PiODC[7:0]
SCK1 < <> > <> PIO <«}—> PIODCEN1
RTS1 < > USART1 > - <«f—> PIODCEN2
gg% D <l < <«{—> PIODCCLK
DTR1 < > | >
RI1T < > |« NPCSO
DCD1 < > > PDC < »| |<|— NPCS1
»| |<«}—> NPCS2
PDC SPI »| |<f—> NPCS3
-« < > |« MISO
TCLK[0:2] > »| Timer Counter A < »| |<—> MOSI
TIOA[D:2] < > l< > «— SPCK
TIOB[0:2] <+ |« »| TC0.2] PDC < <l i il
<> > |<—> TD
TCLK[3:5 ss¢ < D Byt
[35] < - "| Timer Counter B < > | EE
TIOA[3:5] > |« > <> PDC
. TC[3.5] - < >| |< MCCK
TIOB[3:5] < - > High Speed MCI [< »| [<]=- mccba
PwMH[0:3] | | | < >N+ McDA.3]
PWML[0:3] > PWM «> Analog < ADVREF
PWMFIO = > PDC g Comparator ADC Ch.
ADTRG < » > ‘
AD[D.14] < i< > |empA Sensor - > CRC Unit
ADVREF - |:: 12-bit ADC oG
DACO = >]=)
DACL o e 12-bit DAC >
DATRG <+——>|_| > 2oC

4 SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

SAMA4S Series [Preliminary]

Figure 2-2. SAM4S16, S8 Series 64-pin version Block Diagram

o
Nt &
$<>$o é"V N N)
N ")\%96 ?Q Qo\ O
PNZY N LS
AAdAA i T
TST }—>| SystemController YYVYY Voltage
PCKO-PCK2 | €] |€—— 'W,¢ Regulator
| PLLA [PMC - h 4 Flash User
PLLB > | JTAG & Serial Wire | Unique | [Signature
——— * T * * Identifier’
12/8/4MHZP — ¢ i
In-Circuit Emulator
24-Bit N
XIN [SysTi FLASH SRAM ROM
| ysTick Counter| \/
XOuT (—) Osc Cortex-M4 Processor 1024 Kbytes 128 Kbytes | [16 kbytes
Fmax 120 MHz |
SUPC DSP c 512 Kbytes
> ™ I . MP
XIN32 [|osc 32 kHz| .
xouT32 f€>| [0 lI/D ls 1 I
ERASE [€> RC 32 kHz
N —
VDDIO |—+| 8 GPBREG|
VDDCORE |— RTT
VDDPLL |— POR |
RTCOUTO [&»| |« RTC
RTCOUT1 [&>»| [«
NRST |«€ >»| RSTC 3
Peripheral 0 | < > DDP
WDT SM : 3 < > >
- Bridge FIFO | speed | £[* > |« »{ DDM
:
TWCKO [> Je—
TWDO | > PDC
TWCK1 | > | —>
TWD1 | > [—> PDC
URXDO |[<+—> - N
UTXDO | PhC
< <—> PIODC[7:0]
URXD1 | +—— =5c - PIO - <—>{ PIODCEN1
< <—| PIODCEN2
RXDO | > > <—»| PIODCCLK
TXDO | > <«
SCKO | +—>| |« > USARTO Dl
RTSO |« >
CTSO | = > > PDC
> < »| |<«—>»| NPCSO
RDH=— |< < FLC »| [«<—>| NPCS1
SCK1 |+ > > »| |<«—>| NPCS2
RTSI|<+—>| |« -« SPI < o E= Niso®
CT31 |*+—> > USART1 <> < > | |<«—>| MOSI
DSRI1 |<+—| |« > [S]<«—>] sPck
DTRI | »| 2]« > o
RI1 |- > |«
DCD1 | > |« B PDC
PDC < »| |«—>| TF
TCLK[0:2] |- > »1 Timer Counter A - > <—;.'. K
-« »| |«—>| D
TIOA[0:2] | > | >| To0.2] | <> SsC < <—>| RD
< »l |l > - < »| |<+—>| RK
TIOB[0:2] |[+—| |« > - o |[«—| RF
PWMH[0:3] | «—] |« PDC < > < MCCK
PWML[0:3] | +—>| [* PWM <> . MCCDA
> <> High Speed MCI |™ -
PWMFI0 | <+— > PoC < »| l«—»] McDAD. 3]
ADTRG |+—> > |Temp. Sensor ~
ADI0..9] | = > > >
10-9] N |—>12-bitADc BOC o Analog <+———— | ADVREF
ADVREF e Comparator < ADCCh.
DACO | «—»[- >
DACL|<+—| |« 12-bit DAC Rl , | ! |
DATRG _ [PocC | CRC Unit

ATMEL ;

11100B-ATARM-31-Jul-12

ATMEL

Figure 2-3. SAM4SD32, SD16, SA16 100-pin version Block Diagram

S &y
S O
O N &
N N & N
¢ & N O Q\OJ{B(O 2 O\% &
QLN s@(’ KR
AAA ¢ *
ST —> ITI YVVY Voltage
(| Regulator
PCKO-PCK2 €] Je— 4 9
PLLA |—>) 2
PMC 2l Wi
PLLB > | 97AG & Serial wire | —
RC Unique
L vivvt w
120 1 In-Circuit Emulator Identifier
24-Bit N l
XIN <€ 3-20 MHz g SysTick Counter
XOUT <> Osc. Coréfr:(ayiz%“;jﬁisor \I’ FLASH SRAM ROM
] c 2*1024 KBytes| | 160 KBytes | |16 KBytes
SUPC DSP 2*512 KBytes
xIN32 €> T > o o MPU 1024 KBytes
xoUT32 €>] |€ l| lD
ERASE €| [—» [RC32%k
~ CMCC
8 GPBREG (2 KB cache)
VDDIO —» L _RTT_|
VDDCORE —» RTC
VDDPLL —» POR
NRST <€ >| F5C T I 5
- g oo 2668 [UsB 2.0| = —
ripheral Bytes S |- >| |e » DDP
Bridge feo | 2= »| [<]— Dowm
Speed | ©
PIOA / PIOB / PIOC =
TWCKO > > External B D[7:0]
< > < > TWIO <> xternal Bus - - < > .
TWDO < > > 1PDC Interface | [« Al0:23]
TWCK1 < > | wi -«— »| |<}—> A21/NANDALE
TWD1 < B = [PDC ——»| |<{—> A22/NANDCLE
P - _ NAND Flash - o -
URXDO = > > UARTO <> i > < » NCSO
UTXDO > | 1PDC Logic | |<«]— NCs1
URXD1 > > > | |<—> NCS2
UTXD1 < > UARTL _ [FoC | |<«f—> NCS3
RTxxgg < > > Static Memory | |<f—> NRD
- i< N D o <> Controll - < » NWE
SCKO > | > USARTO onromer »| |<1—» NANDOE
RTSO < > — W o >
CTSO <= > > - <—»> NANDWE
RXD1 < <> »> - <—» NWAIT
gé% 2 <l >
RIST <+—|—> — [POC | < <«—» PiODC[7:0]
= il e "| usarT1 > R IO < <«1—> PIODCENL
DTR1 < > [« > > - <|—> PIODCEN2
RI1 < > |« - <|—» PIODCCLK
DCD1 <+—{—> > [Foc
TCLK][0:2] < > »| Timer Counter A PG | »| |<«l—» NPCSO
TIOA[0:2] < [> <> POC »| |<«|—> NPCS1
o~ <l >| TCl0..2] | »| |[<«—>NPCS2
TIOB[0:2] < > |« > SPl »| |[<«]—> NPCS3
> < »| [<—> MisO
< > i E MOSI
TCLK[3:5] +——> > Timer Counter 8 - DI | DG
TIOA[3:5] +—1—>{ |« o | | e | —] |<—~ 1k
TIOB[3:5] < > - - ssc < a1 i L}
PWMHI|0:3] > e < > [+—>RK
o > PWM < » |<4+—> RF
PWMLI0:3] < > <« PDC |
PWMFIO < > > |PDC <> - < > < MCCK
< > High Speed MCI | > |« » MCCDA
ADTRG > > | Temp. Sensor < »| |<«—> MCDA[0..3]
AD[0..14] «-—> > <> Anal ADC N
| | ADC [EoC] _ nalog DAG
ADVREF ‘_4|_ - PDC o Comparator Temp Sensor
oact~—1] |< DAC > CRC Unit TR
« - <> ni
DATRG < > | > [Poc

6 SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

SAMA4S Series [Preliminary]

Figure 2-4. SAM4SD32, SD16, SA16 64-pin version Block Diagram
Qo
N &
S’ éo\’ N I
O, ®\®©® © oo\ OO
INAAE S LS
A\ A A A l T
TST —p| System Controller Y YYVY Voltage
PCKO-PCK2 <> |€—— 'W' Regulator
| PLLA | PMC — A J Flash
PLLB }_» I JTAG & Serial Wire Unique
Mo o | * T * ¢ Identifier
lZIB/AMHZP — ¢
— In-Circuit Emulator
24-Bit N
XIN <€]—> 3-20 MHz)
XOUT <> Cortex-M4 Processor | ysTick Counter | v/ FLASH SRAM ROM
Fmax 120 MHz DSP cI; 2*1024 KBytes | | 160 KBytes | |16 KBytes
| SUPC | 2*512 KBytes
xinz2 <> 7 ‘ MPY 1024 KBytes
XOUT32 €| je—0sc32kHz | D
ERASE €«>»| > IRC 32 kHz) 4 \ 4
~ | P CcMCC
VDDIO —» 8 GPBREG (2 KB cache)
VDDCORE —| RTT
VDDPLL —>»] POR
RT! T <
COUTO <€ I
RTCOUT1 €>| |«
NRST <€ >»| RSTC @
eripherel 2668 [usB 2.0(2 o
y Bytes Full Q »-
WDT SM Y/ 2 >
- Bridge FIFO | Speed | 2 DDM
£
TWCKO <>]<«—>
TWDO <= > |[—> PDC
TWCK1 > |e—>
TWD1 = > [—> PDC
URXDO > — N
UTXDO < > PDC
URXD1 > - PIO Dl I EISBSE&C
UTXD1 - £ PDC <>
<{—> PIODCEN.
RXDO < > = <t <{—> PIODCCLI
TXDO <> »>
SCKO > | > USARTO >
RTSO < <l
CTSO = > L PDC
< > < »| |<}— NPCSO
RXDL <> — e | |<—~ NPCS1
ERT = i [> >| |[<«—> NPCS2
RTS1 < <l <> SPI | [Miso
CTS1 < > > USART1 > < | 1< Vos!
DSR1 < > o< < > o|< = Shck
DTR1 >l o
RI1 < > |«
DCD1 - > |« > PDC
PDC < > |« TF
TCLK[0:2] -—1— > Timer Counter A L < i [l DI IS
TIOA[0:2] > |« "o | — > sSscC = <+ rD
) TC[o..2 < > RK
TIOB[0:2] >| |« > - >| | <> RF
PWMHI0:3] > |« PDC < »| |< MCCK
PV;'\\;I\/LI\EI%% > = P a1 D <—>| High Speed MCI [M Mees
< »| |« MCDA[0..2
ADTRG = > > |Temp. Sensor| ~J
ADJ[0..9] = L > <>
[0-9] - J 12-bit ADC FDC Analog < ADVREF
ADVREF _4[: e Comparator ADC Ch.
DACO <—}»[T
< ol l< 12-bit DAC <>
D,Eﬁé:é < > > PDC <—>| CRC Unit |

11100B-ATARM-31-Jul-12

ATMEL

ATMEL

3. Signal Description

Table 3-1 gives details on signal names classified by peripheral.

Table 3-1. Signal Description List

Active Voltage
Signal Name Function Type Level reference | Comments
Power Supplies
VDDIO Peripherals I/O Lines and USB transceiver Power 1.62V to 3.6V
Power Supply
VDDIN Voltage Regulator Input, ADC, DAC and Power 162V t0 3.6V@
Analog Comparator Power Supply
VDDOUT Voltage Regulator Output Power 1.2V Output
VDDPLL Oscillator and PLL Power Supply Power 1.08 Vto 1.32V
i 1.08V to 1.32V
VDDCORE Power the core, the embedded memories Power
and the peripherals
GND Ground Ground
Clocks, Oscillators and PLLs
XIN Main Oscillator Input Input Reset State:
XOUT Main Oscillator Output Output - PIO Input
XIN32 Slow Clock Oscillator Input Input - Internal Pull-up disabled
- i i (1)
XOUT32 Slow Clock Oscillator Output Output VDDIO Schmitt Trigger enabled
Reset State:
- PIO Input
PCKO - PCK2 Programmable Clock Output Output P
- Internal Pull-up enabled
- Schmitt Trigger enabled®
Real Time Clock
RTCOUTO Programmable RTC waveform output Output
Reset State:
- PI1O Input
VDDIO
RTCOUT1 Programmable RTC waveform output Output - Internal Pull-up enabled
- Schmitt Trigger enabled®
Serial Wire/JTAG Debug Port - SWJ-DP
TCK/SWCLK Test Clock/Serial Wire Clock Input
TDI Test Data In Input Reset State:
- SWJ-DP Mode
TDO/TRACESWO 'gest Data Out / Trace Asynchronous Data Output VBDIO - Internal pull-up disabled®
ut - Schmitt Trigger enabled®
TMS/SWDIO Test Mode Select /Serial Wire Input/Output | Input/ 1/O
JTAGSEL JTAG Selection Input High Permanent Internal
pull-down

8 SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

Table 3-1. Signal Description List (Continued)
Active Voltage
Signal Name Function Type Level reference | Comments
Flash Memory
Reset State:
ERASE Elgrihminn% NVM Configuration Bits Erase Input High VDDIO :Enrtisrﬁairs;lltl_down b
- Schmitt Trigger enabled™®
Reset/Test
NRST Synchronous Microcontroller Reset I/O Low Permanent Internal
vDDIO | pull-up
TST Test Select Input Permanent Internal
pull-down
Universal Asynchronous Receiver Transceiver - UARTX
URXDx UART Receive Data Input
UTXDx UART Transmit Data Output
PIO Controller - PIOA - PIOB - PIOC
PAO - PA31 Parallel IO Controller A 110 Reset State:
PBO - PB14 Parallel 10 Controller B o voDlo | - P10 or System 10s®
- Internal pull-up enabled
PCO - PC31 Parallel 1O Controller C I/0 - Schmitt Trigger enabled®
PI1O Controller - Parallel Capture Mode
PIODCO-PIODC7 Parallel Capture Mode Data Input
PIODCCLK Parallel Capture Mode Clock Input VDDIO
PIODCEN1-2 Parallel Capture Mode Enable Input
External Bus Interface
DO - D7 Data Bus I/10
AO - A23 Address Bus Output
NWAIT External Wait Signal Input Low
Static Memory Controller - SMC
NCSO0 - NCS3 Chip Select Lines Output Low
NRD Read Signal Output Low
NWE Write Enable Output Low
NAND Flash Logic
NANDOE NAND Flash Output Enable Output Low
NANDWE NAND Flash Write Enable Output Low
High Speed Multimedia Card Interface - HSMCI
MCCK Multimedia Card Clock I/0
MCCDA Multimedia Card Slot A Command 110
MCDAO - MCDAS3 Multimedia Card Slot A Data I/0

11100B-ATARM-31-Jul-12

ATMEL

ATMEL

Table 3-1. Signal Description List (Continued)

Active Voltage
Signal Name Function Type Level reference | Comments

Universal Synchronous Asynchronous Receiver Transmitter USARTX

SCKx USARTX Serial Clock I/0
TXDx USARTX Transmit Data /0
RXDx USARTX Receive Data Input
RTSx USARTx Request To Send Output
CTSx USARTX Clear To Send Input
DTR1 USART1 Data Terminal Ready I/O
DSR1 USART1 Data Set Ready Input
DCD1 USART1 Data Carrier Detect Output
RI1 USART1 Ring Indicator Input

Synchronous Serial Controller - SSC

D SSC Transmit Data Output
RD SSC Receive Data Input
TK SSC Transmit Clock /0
RK SSC Receive Clock I/10
TF SSC Transmit Frame Sync I/0
RF SSC Receive Frame Sync I/O

Timer/Counter - TC

TCLKXx TC Channel x External Clock Input Input

TIOAX TC Channel x I/O Line A I/0

TIOBX TC Channel x I/O Line B I/0

Pulse Width Modulation Controller- PWMC

PWMHXx PWM Waveform Output High for channel x Output
only output in

PWMLXx PWM Waveform Output Low for channel x Output Sv%rgglsg]ae dn:frl]?é rirr]::;?tion
is enabled.

PWMFIO PWM Fault Input Input

Serial Peripheral Interface - SPI

MISO Master In Slave Out /10

MOSI Master Out Slave In 110

SPCK SPI Serial Clock 110
SPI_NPCSO0 SPI Peripheral Chip Select 0 I/0 Low
SPI_NPCS1 - . .

SPI_NPCS3 SPI Peripheral Chip Select Output Low

10 SAMA4S Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

Table 3-1. Signal Description List (Continued)
Active Voltage
Signal Name Function Type Level reference | Comments
Two-Wire Interface- TWI
TWDXx TWIx Two-wire Serial Data I/0
TWCKX TWIx Two-wire Serial Clock I/0
Analog
ADVREE ADC, DAC and Analog Comparator Analog
Reference
12-bit Analog-to-Digital Converter - ADC
ADO-AD14 Analog Inputs AS}S:?EI l
ADTRG ADC Trigger Input VDDIO
12-bit Digital-to-Analog Converter - DAC
DACO - DAC1 Analog output /332?3’
DACTRG DAC Trigger Input VDDIO
Fast Flash Programming Interface - FFPI
igmgmg Programming Enabling Input VDDIO
PGMMO-PGMM3 Programming Mode Input
PGMDO0-PGMD15 Programming Data I/O
PGMRDY Programming Ready Output High
PGMNVALID Data Direction Output Low VDDIO
PGMNOE Programming Read Input Low
PGMCK Programming Clock Input
PGMNCMD Programming Command Input Low
USB Full Speed Device
DDM USB Full Speed Data - Reset State:
Analog, VDDIO - USB Mode
DDP USB Full Speed Data + Digital Internal Pull-down®
Note: . Schmitt Triggers can be disabled through PIO registers.

1
2. Some PIO lines are shared with System 1/Os.

3. Refer to USB Section of the product Electrical Characteristics for information on Pull-down value in USB Mode.
4. See “Typical Powering Schematics” Section for restrictions on voltage range of Analog Cells.

5

. TDO pinis set in input mode when the Cortex-M4 Core is not in debug mode. Thus the internal pull-up corresponding to this

PIO line must be enabled to avoid current consumption due to floating input

ATMEL

11100B-ATARM-31-Jul-12

11

ATMEL

4. Package and Pinout

SAMA4S devices are pin-to-pin compatible with SAM3N, SAM3S products in 64- and 100-pin ver-
sions, and AT91SAMYS legacy products in 64-pin versions.

4.1 SAMA4SD32/SD16/SA16/S16/S8C Package and Pinout
41.1 100-Lead LQFP Package Outline

Figure 4-1. Orientation of the 100-lead LQFP Package

75 51

1 1
76 — 50

100 o

L 26

=

41.2 100-ball TFBGA Package Outline

The 100-Ball TFBGA package has a 0.8 mm ball pitch and respects Green Standards. Its
dimensions are 9 x 9 x 1.1 mm. Figure 4-2 shows the orientation of the 100-ball TFBGA
Package.

Figure 4-2. Orientation of the 100-ball TFBGA Package
TOP VIEW

N
15)

BN WA OO N ® ©
O 0O 0 0O 00 0 O O 0o
O 0 0 0 0 0 0 0 0 0
O O 0 0O 00 0 0 O 0o
0O O 0O OO0 OO0 O O 0o
O 0O 0 O 00O 0 0 0 0
O 0O 0 O 00O 0 0 O ©°

0O 00 0 0 0 0 0 0 o0
0O 00 000 0 0 O o
0O 0o OO0 OO0 O O 0o
o 0 0o 0O 000 0 0 o

©

oA
BALL A1

w
(e}
o
m
n
@
I
o
=

12 SAMA4S Series [Preliminary] m—s——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

41.3

11100B-ATARM-31-Jul-12

Figure 4-3.

100-ball VFBGA Package Outline

Orientation of the 100-ball VFBGA Package

Al CORNER

1

2

w

~

ul

[opl

~

[oe}

N\e}

o

AN Cc I oM mMmg O o >

OO0 00000000
OO0 00000000
OO0 00000000
OO0 00000000
OO0 00000000
OO0 00000000
OO0 00000000
OO0 00000000
OO0 00000000
OO0 00000000

ATMEL

—

n

w

~

ul

[op)

~

@

D

o

AR Cc I oy Mmoo O o >

13

ATMEL

41.4 100-Lead LQFP Pinout

Table 4-1. SAM4SD32/SD16/SA16/S16/S8C 100-lead LQFP pinout

1 ADVREF 26 GND 51 TDI/PB4 76 TDO/TRFQ’%ESWO/
2 GND 27 VDDIO 52 PA6/PGMNOE 77 JTAGSEL
3 PBO/AD4 28 PA16/PGMD4 53 PA5/PGMRDY 78 PC18
4 PC29/AD13 29 PC7 54 PC28 79 TMS/SWDIO/PB6
5 PB1/AD5 30 PA15/PGMD3 55 PA4/PGMNCMD 80 PC19
6 PC30/AD14 31 PA14/PGMD2 56 VDDCORE 81 PA31
7 PB2/AD6 32 PC6 57 PA27/PGMD15 82 PC20
8 PC31 33 PA13/PGMD1 58 PC8 83 TCK/SWCLK/PB7
9 PB3/AD7 34 PA24/PGMD12 59 PA28 84 PC21
10 VDDIN 35 PC5 60 NRST 85 VDDCORE
11 VDDOUT 36 VDDCORE 61 TST 86 PC22
12 PA]'?/APD%MDS/ 37 PC4 62 PC9 87 ERASE/PB12
13 PC26 38 PA25/PGMD13 63 PA29 88 DDM/PB10
PA18/PGMD6/
14 AD1 39 PA26/PGMD14 64 PA30 89 DDP/PB11
15 PA21/PGMDY/ 40 PC3 65 PC10 90 PC23
AD8
16 VDDCORE 41 PA12/PGMDO 66 PA3 91 VDDIO
17 PC27 42 PA11/PGMM3 67 PA2/PGMEN2 92 PC24
18 PA19/APDGZMD7/ 43 PC2 68 PC11 93 PB13/DACO
19 PC15/AD11 44 PA10/PGMM2 69 VDDIO 94 PC25
20 PA22/PGMD10/ 45 GND 70 GND 95 GND
AD9
21 PC13/AD10 46 PA9/PGMM1 71 PC14 96 PB8/XOUT
22 PA23/PGMD11 47 PC1 72 PA1/PGMEN1 97 PB9/PGMCK/XIN
PAB/XOUT32/
23 PC12/AD12 48 PGMMO 73 PC16 98 VDDIO
PA20/PGMD8/ PA7/XIN32/
24 AD3 49 PGMNVALID 74 PAO/PGMENO 99 PB14/DAC1
25 PCO 50 VDDIO 75 PC17 100 VDDPLL

14 SAMA4S Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

415 100-Ball TFBGA Pinout
Table 4-2. SAM4SD32/SD16/SA16/S16/S8 100-ball TFBGA pinout
PA18/PGMD6/
Al PB1/AD5 C6 TCK/SWCLK/PB7 F1 AD1 H6 PC4
A2 PC29 C7 PC16 F2 PC26 H7 PA11/PGMM3
A3 VDDIO C8 PA1/PGMEN1 F3 VDDOUT H8 PC1
A4 PB9/PGMCKI/XIN C9 PC17 F4 GND H9 PA6/PGMNOE
A5 PB8/XOUT C10 PAO/PGMENO F5 VDDIO H10 TDI/PB4
A6 PB13/DACO D1 PB3/AD7 F6 PA27/PGMD15 J1 PC15/AD11
A7 DDP/PB11 D2 PBO/AD4 F7 PC8 J2 PCO
A8 DDM/PB10 D3 PC24 F8 PA28 J3 PA16/PGMDA4
A9 TMS/SWDIO/PB6 D4 PC22 F9 TST J4 PC6
Al10 JTAGSEL D5 GND F10 PC9 J5 PA24/PGMD12
Bl PC30 D6 GND G1 PA21/PGMD9/AD8 J6 PA25/PGMD13
B2 ADVREF D7 VDDCORE G2 PC27 J7 PA10/PGMM2
B3 GNDANA D8 PA2/PGMEN2 G3 PA15/PGMD3 J8 GND
B4 PB14/DAC1 D9 PC11 G4 VDDCORE J9 VDDCORE
BS PC21 D10 PC14 G5 VDDCORE J10 VDDIO
PA22/PGMD10/
B6 PC20 El PAL7/PGMDS/ G6 PA26/PGMD14 K1
ADO AD9
B7 PA31 E2 PC31 G7 PA12/PGMDO K2 PC13/AD10
B8 PC19 E3 VDDIN G8 PC28 K3 PC12/AD12
PA20/PGMD8/
B9 PC18 E4 GND G9 PA4/PGMNCMD K4 AD3
B10 TDO/TI:\;'AI;%ESWO/ E5 GND G10 PA5/PGMRDY K5 PC5
C1 PB2/AD6 E6 NRST H1 PAlQL\PDGZMDW K6 PC3
C2 VDDPLL E7 PA29/AD13 H2 PA23/PGMD11 K7 PC2
C3 PC25 E8 PA30/AD14 H3 PC7 K8 PA9/PGMM1
PA8/XOUT32/
C4 PC23 E9 PC10 H4 PA14/PGMD2 K9 PGMMO
PA7/XIN32/
C5 ERASE/PB12 E10 PA3 H5 PA13/PGMD1 K10 PGMNVALID

11100B-ATARM-31-Jul-12

ATMEL

15

ATMEL

4.1.6 100-Ball VFBGA Pinout

Table 4-3. SAM4SD32/SD16/SA16/S16/S8 100-ball VFBGA pinout

Al ADVREF C6 PC9 F1 VDDOUT H6 PA12/PGMDO
PA18/PGMD6/
A2 VDDPLL Cc7 TMS/SWDIO/PB6 F2 AD1 H7 PA9/PGMM1
A3 PB9/PGMCK/XIN C8 PA1/PGMEN1 F3 PAl?//A\PDGOMDS/ H8 VDDCORE
A4 PB8/XOUT C9 PAO/PGMENO F4 GND H9 PA6/PGMNOE
PA5/PGMRDY
A5 JTAGSEL C10 PC16 F5 GND H10
A6 DDP/PB11 D1 PB1/AD5 F6 PC26 J1 PA20/AD3
A7 DDM/PB10 D2 PC30 F7 PA4/PGMNCMD J2 PC12/AD12
A8 PC20 D3 PC31 F8 PA28 J3 PA16/PGMD4
A9 PC19 D4 PC22 F9 TST J4 PC6
A10 TDO/T%;%ESWO/ D5 PC5 F10 PC8 J5 PA24
Bl GNDANA D6 PA29/AD13 Gl PC15/AD11 J6 PA25
B2 PC25 D7 PA30/AD14 G2 PAlg'/APDCZMDW J7 PA11/PGMM3
B3 PB14/DAC1 D8 GND G3 PA21/AD8 J8 VDDCORE
B4 PB13/DACO D9 PC14 G4 PA15/PGMD3 J9 VDDCORE
BS PC23 D10 PC11 G5 PC3 J10 TDI/PB4
B6 PC21 El VDDIN G6 PA10/PGMM2 K1 PA23
B7 TCK/SWCLK/PB7 E2 PB3/AD7 G7 PC1 K2 PCO
B8 PA31 E3 PB2/AD6 G8 PC28 K3 PC7
B9 PC18 E4 GND G9 NRST K4 PA13/PGMD1
B10 PC17 ES GND G10 PA27 K5 PA26
C1 PBO/AD4 E6 GND H1 PC13/AD10 K6 PC2
Cc2 PC29 E7 VDDIO H2 PA22/AD9 K7 VDDIO
C3 PC24 E8 PC10 H3 PC27 K8 VDDIO
C4 ERASE/PB12 E9 PA2/PGMEN2 H4 PA14/PGMD2 K9 PABIXOUTS2/
PGMMO
PA7/XIN32/
C5 VDDCORE E10 PA3 H5 PC4 K10 PGMNVALID

16 SAMA4S Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

4.2 SAMA4SD32/SD16/SA16/S16/S8 Package and Pinout
421 64-Lead LQFP Package Outline

Figure 4-4. Orientation of the 64-lead LQFP Package

48 33
]]

49 9 D32
64 = P 17
u u

16

4.2.2 64-lead QFN Package Outline

Figure 4-5. Orientation of the 64-lead QFN Package
64 49

uyguyuuuuuuyuuuuuu
(©)

uuuuuuyuuuuuuuuuu
AANANANNANNNNNNN

16

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂg
TOP VIEW

ATMEL

11100B-ATARM-31-Jul-12

48

33

17

ATMEL

4.2.3 64-Lead LQFP and QFN Pinout
Table 4-4. 64-pin SAM4SD32/SD16/SA16/S16/S8 pinout
1 ADVREF 17 GND 33 TDI/PB4 49 TDO/TRPAB%ESWO/
2 GND 18 VDDIO 34 PA6/PGMNOE 50 JTAGSEL
3 PBO/AD4 19 PA16/PGMDA4 35 PA5/PGMRDY 51 TMS/SWDIO/PB6
4 PB1/AD5 20 PA15/PGMD3 36 PA4/PGMNCMD 52 PA31
5 PB2/AD6 21 PA14/PGMD2 37 PA27/PGMD15 53 TCK/SWCLK/PB7
6 PB3/AD7 22 PA13/PGMD1 38 PA28 54 VDDCORE
7 VDDIN 23 PA24/PGMD12 39 NRST 55 ERASE/PB12
8 VDDOUT 24 VDDCORE 40 TST 56 DDM/PB10
9 PAl?}i‘PD%MDSI 25 PA25/PGMD13 41 PA29 57 DDP/PB11
10 PAlSI/APD(iMD& 26 PA26/PGMD14 42 PA30 58 VDDIO
11 PAZlLPD(ZMDgl 27 PA12/PGMDO 43 PA3 59 PB13/DACO
12 VDDCORE 28 PA11/PGMM3 44 PA2/PGMEN2 60 GND
13 PA19'/APDGZMD7/ 29 PA10/PGMM2 45 VDDIO 61 XOUT/PB8
14 PAZZ/:SQAD:LO/ 30 PA9/PGMM1 46 GND 62 XIN/PGMCK/PB9
15 PA23/PGMD11 31 PAB/XOUT32/ 47 PA1/PGMEN1 63 PB14/DAC1
PGMMO
PA20/PGMD8/ PA7/XIN32/
16 AD3 32 PGMNVALID 48 PAO/PGMENO 64 VDDPLL
Note: The bottom pad of the QFN package must be connected to ground.
18 SAMA4S Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

5. Power Considerations

5.1 Power Supplies
The SAMA4S has several types of power supply pins:

« VDDCORE pins: Power the core, the embedded memories and the peripherals. Voltage
ranges from 1.08V to 1.32V.

« VDDIO pins: Power the Peripherals 1/O lines (Input/Output Buffers), USB transceiver, Backup
part, 32 kHz crystal oscillator and oscillator pads. Voltage ranges from 1.62V to 3.6V.

< VDDIN pin: Voltage Regulator Input, ADC, DAC and Analog Comparator Power Supply.
Voltage ranges from 1.62V to 3.6V.

* VDDPLL pin: Powers the PLLA, PLLB, the Fast RC and the 3 to 20 MHz oscillator. Voltage
ranges from 1.08V to 1.32V.

5.2 Voltage Regulator
The SAM4S embeds a voltage regulator that is managed by the Supply Controller.

This internal regulator is designed to supply the internal core of SAMA4S It features two operating
modes:

« In Normal mode, the voltage regulator consumes less than 500 pA static current and draws
80 mA of output current. Internal adaptive biasing adjusts the regulator quiescent current
depending on the required load current. In Wait Mode quiescent current is only 5 pA.

« In Backup mode, the voltage regulator consumes less than 1pA while its output (VDDOUT) is
driven internally to GND. The default output voltage is 1.20V and the start-up time to reach
Normal mode is less than 300 ps.

For adequate input and output power supply decoupling/bypassing, refer to the “Voltage Regula-
tor” section in the “Electrical Characteristics” section of the datasheet.

5.3 Typical Powering Schematics
The SAMA4S supports a 1.62V-3.6V single supply mode. The internal regulator input is con-
nected to the source and its output feeds VDDCORE. Figure 5-1 below shows the power
schematics.

As VDDIN powers the voltage regulator, the ADC, DAC and the analog comparator, when the
user does not want to use the embedded voltage regulator, it can be disabled by software via
the SUPC (note that this is different from Backup mode).

ATMEL i

11100B-ATARM-31-Jul-12

ATMEL

Figure 5-1. Single Supply

_ 'VDDIO _ UsB
- Transceivers.

Main Supply ‘I’
(1.62V-3.6V)

ADC, DAC
Analog Comp.

VDDIN

L
VDDOUT =
—— T votage

! Regulator

VDDCORE E:l
VDDPLL E:I

Note: Restrictions
For USB, VDDIO needs to be greater than 3.0V.
For ADC, VDDIN needs to be greater than 2.0V.
For DAC, VDDIN needs to be greater than 2.4V.

Figure 5-2. Core Externally Supplied

Main Supply VDDIO]
(1.62Vv-3.6V) - ' USB
'. - H ! | Transceivers.
Can be the E I, E
samo supply ! : ADC, DAC
| . Analog Comp.
ADC, DAC, Analog y _ VDDIN t
Comparator Supply RS L
(2.0V-3.6V) ‘I’ T
VDDOUT Di Voltage
! Regulator
VDDCORE Supply VDDCOREI T |

(1.08V-1.32V) ‘f

VDDPLL

Note: Restrictions
For USB, VDDIO needs to be greater than 3.0V.
For ADC, VDDIN needs to be greater than 2.0V.
For DAC, VDDIN needs to be greater than 2.4V.

Figure 5-3 below provides an example of the powering scheme when using a backup battery.
Since the PIO state is preserved when in backup mode, any free PIO line can be used to switch
off the external regulator by driving the PIO line at low level (P1O is input, pull-up enabled after
backup reset). External wake-up of the system can be from a push button or any signal. See
Section 5.6 “Wake-up Sources” for further details.

20 SAMAS Series [Preliminary] m—s—

11100B-ATARM-31-Jul-12

5.4

5.5

55.1

Active Mode

SAMA4S Series [Preliminary]

Figure 5-3. Backup Battery

ADC, DAC, Analog

Comparator Supply
(2.0V-3.6V)
VDDIO .
Backup o ' uss
1 Transceivers.
Battery | + v
= ' ADC, DAC
- ' Analog Comp.
VDDIN
Main Supply N our VDDOUT =
3.3V 4@‘7 Voltage
Lbo ! Regulator
VDDCORE
ON/OFF I,r‘—>|:é:|

VDDPLL EI
I E | PIOx (Output)
4>|:[| WAKEUPX
External wakeup signal T

Note: The two diodes provide a “switchover circuit” (for illustration purpose)
between the backup battery and the main supply when the system is put in
backup mode.

Active mode is the normal running mode with the core clock running from the fast RC oscillator,
the main crystal oscillator or the PLLA. The power management controller can be used to adapt
the frequency and to disable the peripheral clocks.

Low-power Modes

Backup Mode

11100B-ATARM-31-Jul-12

The various low-power modes of the SAM4S are described below:

The purpose of backup mode is to achieve the lowest power consumption possible in a system
which is performing periodic wake-ups to perform tasks but not requiring fast startup time. Total
current consumption is 1 pA typical (VDDIO = 1.8 V to 25°).

The Supply Controller, zero-power power-on reset, RTT, RTC, Backup registers and 32 kHz
oscillator (RC or crystal oscillator selected by software in the Supply Controller) are running. The
regulator and the core supply are off.

Backup mode is based on the Cortex-M4 deep sleep mode with the voltage regulator disabled.

The SAMA4S can be awakened from this mode through WUPO0-15 pins, the supply monitor (SM),
the RTT or RTC wake-up event.

Backup mode is entered by writing the Supply Controller Control Register (SUPC_CR) with the
VROFF bit at 1 (A key is needed to write the VROFF bit, please refer to Supply Controller SUPC
section of the product datasheet) and with the SLEEPDEEP bit in the Cortex-M4 System Control
Register set to 1. (See the Power management description in The ARM Cortex-M4 Processor
section of the product datasheet).

ATMEL 2

55.2

22

Wait Mode

ATMEL

Entering Backup mode:

» Set the SLEEPDEEP bit of Cortex_M4 to 1
 Set the VROFF bit of SUPC_CR to 1
Exit from Backup mode happens if one of the following enable wake up events occurs:

« WKUPENO-15 pins (level transition, configurable debouncing)
* Supply Monitor alarm

* RTC alarm

* RTT alarm

The purpose of the wait mode is to achieve very low power consumption while maintaining the
whole device in a powered state for a startup time of less than 10 pys. Current Consumption in
Wait mode is typically 32 pA (total current consumption) if the internal voltage regulator is used.

In this mode, the clocks of the core, peripherals and memories are stopped. However, the core,
peripherals and memories power supplies are still powered. From this mode, a fast start up is
available.

This mode is entered by setting WAITMODE bit to 1 (in PMC clock generator Main Oscillator
register) with LPM = 1 (Low Power Mode bit in PMC_FSMR) and with FLPM = 00 or FLPM=01
(Flash Low Power Mode bits in PMC_FSMR).

The Cortex-M4 is able to handle external events or internal events in order to wake-up the core.
This is done by configuring the external lines WUPO-15 as fast startup wake-up pins (refer to
Section 5.7 “Fast Startup”). RTC or RTT Alarm and USB wake-up events can be used to wake
up the CPU.

Entering Wait Mode:

* Select the 4/8/12 MHz fast RC oscillator as Main Clock

» Set the LPM bit in the PMC Fast Startup Mode Register (PMC_FSMR)

* Set the FLPM bitfield in the PMC Fast Startup Mode Register (PMC_FSMR)

* Set Flash Wait State at O.

» Set the WAITMODE bit = 1 in PMC Main Oscillator Register (CKGR_MOR)

» Wait for Master Clock Ready MCKRDY =1 in the PMC Status Register (PMC_SR)

Note: Internal Main clock resynchronization cycles are necessary between the writing of MOSCRCEN
bit and the effective entry in Wait mode. Depending on the user application, waiting for
MOSCRCEN bit to be cleared is recommended to ensure that the core will not execute undesired
instructions.

Depending on Flash Low Power Mode (FLPM) value, the Flash will enter in three different
modes:

e FLPM[00] in Standby mode
* FLPM[01] in Deep Power Down mode
e FLPMJ[10] in Idle mode.
Following the Flash mode selection, the consumption in wait mode will decrease. In Deep Power

Down mode the recovery time of the Flash in Standby mode will be less than the power up
delay.

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

5.5.3 Sleep Mode
The purpose of sleep mode is to optimize power consumption of the device versus response
time. In this mode, only the core clock is stopped. The peripheral clocks can be enabled. The
current consumption in this mode is application dependent.
This mode is entered via Wait for Interrupt (WFI) instructions with LPM = 0 in PMC_FSMR.
The processor can be awakened from an interrupt if WFI instruction of the Cortex-M4 is used.
5.5.4 Low Power Mode Summary Table
The modes detailed above are the main low-power modes. Each part can be set to on or off sep-
arately and wake up sources can be individually configured. Table 5-1 below shows a summary
of the configurations of the low-power modes.
Table 5-1. Low-power Mode Configuration Summary
SUPC,
32 kHz Osc,
RTC, RTT
Backup
Registers,
POR Core PIO State
(Backup Memory Potential Wake Up | Core at |whilein Low | PIO State | Consumption | Wake-up
Mode Region) |Regulator |Peripherals| Mode Entry Sources Wake Up |Power Mode |at Wake Up (OO Time®
. PIOA &
Backup OFF VROFF bit = 1 \évl\bljzgrlr: i Previous PIOB &
@)
Mode ON OFF (Not powered) ;_SEEEPDEEP RTC alarm Reset state saved IF;IOu(t:s with LiAtyp 300 ms
=1 RTT alarm P
pull ups
Wait _AfLAITMODE bit Any Event from:
Mode - Fast startup through
w/Flash Powered +.SEEEPDEEP WUPO-15 pins Clocked |Previous ©)
. ON ON bit=0 Unchanged (32.2 pA <10 ps
in (Not clocked) +LPM bit = 1 RTC alarm back state saved
Standby o RTT alarm
mode FLPMO bit = 0 USB wake-u
FLPML bit = 0 P
Wait _NAlTMODE bit Any Event from:
Mode =1 Fast startup through
wiFlash +SLEEPDEEP b throug .
. Powered o WUPO-15 pins Clocked |Previous
in Deep ON ON bit=0 Unchanged (27.6 pA < 10ups
(Not clocked) o RTC alarm back state saved
Power +LPM bit=1 RTT alarm
Down FLPMO bit=0 USB wake-u
mode FLPM1 bit = 1 P
WFI Entry mode =WFI
Sleep Powered® |+S| EEPDEEP Interrupt Only; Clocked |Previous @ @
Mode ON ON (Not clocked) |bit=0 Any Enabled back state saved |~nchanged
+LPM bit= 0 Interrupt
Notes: 1. The external loads on PIOs are not taken into account in the calculation.

2. Supply Monitor current consumption is not included.

3. When considering wake-up time, the time required to start the PLL is not taken into account. Once started, the device works
with the 4/8/12 MHz fast RC oscillator. The user has to add the PLL start-up time if it is needed in the system. The wake-up
time is defined as the time taken for wake up until the first instruction is fetched.

4. Total consumption 1 pA typ to 1.8V on VDDIO to 25°C.

5. 20.4 pA on VDDCORE, 32.2 pA for total current consumption.

6. Depends on MCK frequency.

7. Depends on MCK frequency. In this mode, the core is supplied but some peripherals can be clocked.

11100B-ATARM-31-Jul-12

ATMEL

23

ATMEL

5.6 Wake-up Sources
The wake-up events allow the device to exit the backup mode. When a wake-up event is
detected, the Supply Controller performs a sequence which automatically reenables the core
power supply and the SRAM power supply, if they are not already enabled.

Figure 5-4. Wake-up Source

EEIEEEN
smout __ —— |)
el
rtc_alarm /)
Core
) Supply
rtt_alarm —_/ Restart
[wkupeNo| [wiupiso
Falling/Rising I—
wkupo [|—— Edge
Detector
WKUPT1 | WKUPENll |WKUPISl | SLC|_K>>
|
Falling/Rising Debouncer h
WKUP1 D— Edge
| Detector
1
1
: [wkupPeN1s| | wkupis1s|
1
! Falling/Rising I—
WKUP15 D— Edge
Detector
24 SAMA4S Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

5.7 Fast Startup

11100B-ATARM-31-Jul-12

The SAMA4S allows the processor to restart in a few microseconds while the processor is in wait
mode or in sleep mode. A fast start up can occur upon detection of a low level on one of the 19
wake-up inputs (WKUPO to 15 + SM + RTC + RTT).

The fast restart circuitry, as shown in Figure 5-5, is fully asynchronous and provides a fast start-
up signal to the Power Management Controller. As soon as the fast start-up signal is asserted,
the PMC automatically restarts the embedded 4/8/12 MHz Fast RC oscillator, switches the mas-
ter clock on this 4 MHz clock and reenables the processor clock.

Figure 5-5. Fast Start-Up Sources

FSTTO

WKUPO Di\

WKUP1 P

|

|

| FSTP1
' [rstPe]
|

|

WKUP15 P

FSTP15 RTTAL

RTT Alarm —————————————
RTCAL

FSTT15

YA YAYE

D
=

Pa=

D

RTC Alarm —————
USBAL

UsB Alarm ——)

i

ATMEL 2

ATMEL

6. Input/Output Lines

The SAMA4S has several kinds of input/output (I/O) lines such as general purpose 1/0s (GPIO)
and system 1/0s. GPIOs can have alternate functionality due to multiplexing capabilities of the
P10 controllers. The same PIO line can be used whether in I/O mode or by the multiplexed
peripheral. System I/Os include pins such as test pins, oscillators, erase or analog inputs.

6.1 General Purpose I/O Lines
GPIO Lines are managed by PIO Controllers. All I/0Os have several input or output modes such
as pull-up or pull-down, input Schmitt triggers, multi-drive (open-drain), glitch filters, debouncing
or input change interrupt. Programming of these modes is performed independently for each 1/0
line through the P10 controller user interface. For more details, refer to the product “P1O Control-
ler” section.

The input/output buffers of the PIO lines are supplied through VDDIO power supply rail.

The SAM4S embeds high speed pads able to handle up to 70 MHz for HSMCI (MCK/2), 70 MHz
for SPI clock lines and 46 MHz on other lines. See the “AC Characteristics” sub-section of the
product Electrical Characteristics. Typical pull-up and pull-down value is 100 kQfor all 1/Os.

Each 1/O line also embeds an ODT (On-Die Termination), (see Figure 6-1 below). It consists of
an internal series resistor termination scheme for impedance matching between the driver out-
put (SAM4S) and the PCB trace impedance preventing signal reflection. The series resistor
helps to reduce 10s switching current (di/dt) thereby reducing in turn, EMI. It also decreases
overshoot and undershoot (ringing) due to inductance of interconnect between devices or
between boards. In conclusion ODT helps diminish signal integrity issues.

Figure 6-1. On-Die Termination

”””””””””””””””” Z0 ~ Zout + Rodt

1

1

1
oDT
36 Ohms Typ. !
1

1

Rodt

Receiver
SAM4 Driver with

PCB Trace
Zout ~ 10 Ohms

Z0 ~ 50 Ohms

6.2 System I/O Lines

System 1/O lines are pins used by oscillators, test mode, reset and JTAG to nhame but a few.
Described below in Table 6-1are the SAM4S system I/O lines shared with PIO lines.

These pins are software configurable as general purpose 1/O or system pins. At startup the
default function of these pins is always used.

26 SAMAS Series [Preliminary] m—s——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

Table 6-1. System I/O Configuration Pin List.

SYSTEM_IO Default function Constraints for
bit number after reset Other function normal start Configuration
12 ERASE PB12 Low Level at startup™®
10 DDM PB10 -
11 DDP PB11 - In Matrix User Interface Registers
7 TCK/SWCLK PB7) (Refer to the System I/O
Configuration Register in the “Bus
6 TMS/SWDIO PB6 - Matrix” section of the datasheet.)
5 TDO/TRACESWO PB5 -
4 TDI PB4 -
- PA7 XIN32 -
See footnote @ below
- PA8 XOUT32 -
- PB9 XIN -
See footnote) below
- PB8 XOouT -

Notes: 1. If PB12is used as PIO input in user applications, a low level must be ensured at startup to prevent Flash erase before the
user application sets PB12 into PIO mode,

2. In the product Datasheet Refer to: “Slow Clock Generator” of the “Supply Controller” section.

3. Inthe product Datasheet Refer to: “3 to 20 MHZ Crystal Oscillator” information in the “PMC” section.

6.2.1 Serial Wire JTAG Debug Port (SWJ-DP) Pins

11100B-ATARM-31-Jul-12

The SWJ-DP pins are TCK/SWCLK, TMS/SWDIO, TDO/SWO, TDI and commonly provided on
a standard 20-pin JTAG connector defined by ARM. For more details about voltage reference
and reset state, refer to Table 3-1 on page 8.

At startup, SWJ-DP pins are configured in SWJ-DP mode to allow connection with debugging
probe. Please refer to the “Debug and Test” Section of the product datasheet.

SWJ-DP pins can be used as standard 1/0Os to provide users more general input/output pins
when the debug port is not needed in the end application. Mode selection between SWJ-DP
mode (System 10 mode) and general IO mode is performed through the AHB Matrix Special
Function Registers (MATRIX_SFR). Configuration of the pad for pull-up, triggers, debouncing
and glitch filters is possible regardless of the mode.

The JTAGSEL pin is used to select the JTAG boundary scan when asserted at a high level. It
integrates a permanent pull-down resistor of about 15 kQ to GND, so that it can be left uncon-
nected for normal operations.

By default, the JTAG Debug Port is active. If the debugger host wants to switch to the Serial
Wire Debug Port, it must provide a dedicated JTAG sequence on TMS/SWDIO and
TCK/SWCLK which disables the JTAG-DP and enables the SW-DP. When the Serial Wire
Debug Port is active, TDO/TRACESWO can be used for trace.

The asynchronous TRACE output (TRACESWO) is multiplexed with TDO. So the asynchronous
trace can only be used with SW-DP, not JTAG-DP. For more information about SW-DP and
JTAG-DP switching, please refer to the “Debug and Test” Section.

ATMEL 2

6.3

6.4

6.5

28

Test Pin

NRST Pin

ERASE Pin

ATMEL

The TST pin is used for JTAG Boundary Scan Manufacturing Test or Fast Flash programming
mode of the SAM4S series. The TST pin integrates a permanent pull-down resistor of about 15
kQto GND, so that it can be left unconnected for normal operations. To enter fast programming
mode, see the Fast Flash Programming Interface (FFPI) section. For more on the manufacturing
and test mode, refer to the “Debug and Test” section of the product datasheet.

The NRST pin is bidirectional. It is handled by the on-chip reset controller and can be driven low
to provide a reset signal to the external components or asserted low externally to reset the
microcontroller. It will reset the Core and the peripherals except the Backup region (RTC, RTT
and Supply Controller). There is no constraint on the length of the reset pulse and the reset con-
troller can guarantee a minimum pulse length. The NRST pin integrates a permanent pull-up
resistor to VDDIO of about 100 kQ2 By default, the NRST pin is configured as an input.

The ERASE pin is used to reinitialize the Flash content (and some of its NVM bits) to an erased
state (all bits read as logic level 1). It integrates a pull-down resistor of about 100 kQto GND, so
that it can be left unconnected for normal operations.

This pin is debounced by SCLK to improve the glitch tolerance. When the ERASE pin is tied high
during less than 100 ms, it is not taken into account. The pin must be tied high during more than
220 ms to perform a Flash erase operation.

The ERASE pin is a system I/O pin and can be used as a standard I/O. At startup, the ERASE
pin is not configured as a PIO pin. If the ERASE pin is used as a standard |/O, startup level of
this pin must be low to prevent unwanted erasing. Refer to Section 10.2 “Peripheral Signal Mul-
tiplexing on 1/O Lines” on page 40. Also, if the ERASE pin is used as a standard 1/0 output,
asserting the pin to low does not erase the Flash.

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

7. Product Mapping

Figure 7-1. SAMA4S Product Mapping

Address memory space Peripherals
0x00000000 Code . 0%00000000 yep 0x40000000 P .
Boot Memory ,' HSMCI “
0x00400000 Code 0x40004600 81
Internal Flash | 1 MByte ,-0x20000000 K ssc 2|
0x00800000 bit band ¢_ 0320100600 0x40008000 '
i “0x ‘. "
Internal ROM region - *LE SRAM sl “
0x00C00000 o 020400000 b -] ,0X40000000 2L
Reserved Lot) o Reserved |
Ox 1FFFFFFF - UimsEiiies . 0x40010000 .
0x24000000 |——————— * T 1o .
32 MBytes S 23 '
0x40000000 bit band alias . +0x40 T '
TC1 \
24 :
+0x80 ,
Peripherals % TCO B
External RAM TC2 '
0x60000000 .- 0%66000000- 0x40014000 [25 \
i \ TC3 .
0x61000000 SMC Chip Select 0 External SRAM ‘ 26 '
B +0x40 '
SMC Chip Select 1 \ TC1 TCa Y
0x62000000 0xA00000Q0 1 . 97 \
R \ +0x80 |
SMC Chip Select 2, .’ Reserved [TCL '
0x63000000 P ' TC5 " .
SMC Chip Select 3 ,-*0xE0000000 v 0x40018000 |
0x64000000 \ TWIO |
Reserved System ' 0x40010000 19
Ox9FFFFFFF OXFFFFFFFF | TWI1 |
' 0x40020000 20 1 MByte
System Controller . i
0x400E0000 —2 \ Pwm bit band
SMC : . 0x40024000 regiion
s ' :
0x400E0200 EI0H USARTO ;
MATRIX 0x40028000 !
of f set [y N K
bl ock 0x400E0400 ' | USART1 15 :
peripheral D PMC ' 0x4002C000 N
0x400E0600 5 Vo Reserved :
UARTO » 0x40030000 .
0x400E0740 8 o ResEReE ;
CHIPID \0x40034000 .
v !
0x400E0800 N voP 33 ‘
UARTL 0%40038000 ;
0X400E0AQ0 9 ' ARG ;
ErC 0x4003€000 ;
0x400E0CO0 6 . 40("-‘ 2000 DACC % :
EFC1 X ‘3‘ :
0x400EOE00 \ ACC 2 ;
PIOA 0x40042000 .
0x400E1000 1 " A
PIOB 0x40048000 N
0x400E1200 12 v Reserved ;
PIOC 0x400E00Q0" :
0x400E1400 13 B System Controller :
RSTC 0x400E2600, .
1 Y Reserved '
+0x10 0
SUPC 0x40100000
+0x30 . 402’0';000 Reserved
X
RTT 3 S 32 MBytes
+ . : :
0x50 0x40400000 bit band alias
WDT)
+OX60 4 S Reserved
:Hx60000000
RTC , g
+0x90 ./
GPBR K
0x400E1600 .
Reserved S
0x4007FFFF !

ATMEL 2

11100B-ATARM-31-Jul-12

8. Memories

8.1

8.1.1

8.1.2

8.1.3

8.1.3.1

30

ATMEL

Embedded Memories

Internal SRAM

Internal ROM

The SAM4SD32 device (2x1024 Kbytes) embeds a total of 160-Kbytes high-speed SRAM.
The SAM4SD16 device (2x512KBytes)embeds a total of 160-Kbytes high-speed SRAM.
The SAM4SA16 device (1024 Kbytes) embeds a total of 160-Kbytes high-speed SRAM.
The SAM4S16 device (1024 Kbytes) embeds a total of 128-Kbytes high-speed SRAM.
The SAM4S8 device (512 Kbytes) embeds a total of 128-Kbytes high-speed SRAM.

The SRAM is accessible over System Cortex-M4 bus at address 0x2000 0000.

The SRAM is in the bit band region. The bit band alias region is from 0x2200 0000 to
O0x23FF FFFF.

The SAM4S embeds an Internal ROM, which contains the SAM Boot Assistant (SAM-BA®), In
Application Programming routines (IAP) and Fast Flash Programming Interface (FFPI).

At any time, the ROM is mapped at address 0x0080 0000.

Embedded Flash

Flash Overview

The memory is organized in sectors. Each sector has a size of 64 KBytes. The first sector of 64
KBytes is divided into 3 smaller sectors.

The three smaller sectors are organized to consist of 2 sectors of 8 KBytes and 1 sector of 48
KBytes. Refer to Figure 8-1, "Global Flash Organization" below.

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

11100B-ATARM-31-Jul-12

Figure 8-1. Global Flash Organization

Sector size

8 KBytes

8 KBytes

48 KBytes

64 KBytes

64 KBytes

Each Sector is organized in pages of 512 Bytes.

For sector O:

Sector name
Small Sector 0

Small Sector 1 | sector 0

Larger Sector

Sector 1

Sector n

* The smaller sector 0 has 16 pages of 512Bytes

» The smaller sector 1 has 16 pages of 512 Bytes

» The larger sector has 96 pages of 512 Bytes

From Sector 1 to n:

The rest of the array is composed of 64-KByte sectors of 128 pages, each page of 512 bytes.
Refer to Figure 8-2, "Flash Sector Organization" below.

ATMEL

31

ATMEL

Figure 8-2. Flash Sector Organization

A sector size is 64 KBytes

16 pages of 512 Bytes Smaller sector 0

Sector 0 16 pages of 512 Bytes Smaller sector 1

96 pages of 512 Bytes Larger sector

Sector 1 128 pages of 512 Bytes

Sector n 128 pages of 512 Bytes

Flash size varies by product:

* SAM4S8/S16: the Flash size is 512 KBytes
— Internal Flash address is 0x0040_0000
* SAM4SD16/SA16: the Flash size is 2 x 512 KBytes
— Internal FlashO address is 0x0040_0000
— Internal Flashl address is 0x0048_0000
* SAM4SD32: the Flash size is 2 x 1024 KBytes
— Internal FlashO address is 0x0040 0000
— Internal Flashl address is 0x0050_0000

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

Refer to Figure 8-3, "Flash Size" below for the organization of the Flash following its size.

Figure 8-3. Flash Size

Flash 1 MBytes Flash 512 KBytes Flash 256 KBytes
2 * 8 KBytes 2 * 8 KBytes 2 * 8 KBytes
1* 48 KBytes 1 * 48 KBytes 1* 48 KBytes

3 * 64 KBytes
7 * 64 KBytes

15 * 64 KBytes

Erasing the memory can be performed as follows:

* On a 512-byte page inside a sector, of 8K Bytes
Note: EWP and EWPL commands can be only used in 8 KBytes sectors.
* On a 4-Kbyte Block inside a sector of 8 KBytes/48 Kbytes/64 KBytes
« On a sector of 8 KBytes/48 KBytes/64 KBytes
* On chip

8.1.3.2 Enhanced Embedded Flash Controller
The Enhanced Embedded Flash Controller manages accesses performed by the masters of the
system. It enables reading the Flash and writing the write buffer. It also contains a User Inter-
face, mapped on the APB.

The Enhanced Embedded Flash Controller ensures the interface of the Flash block.

It manages the programming, erasing, locking and unlocking sequences of the Flash using a full
set of commands.

One of the commands returns the embedded Flash descriptor definition that informs the system
about the Flash organization, thus making the software generic.

8.1.3.3 Flash Speed
The user needs to set the number of wait states depending on the frequency used:

For more details, refer to the “AC Characteristics” sub-section of the product “Electrical
Characteristics”.

ATMEL 5

11100B-ATARM-31-Jul-12

ATMEL

8.1.34 Lock Regions
Several lock bits are used to protect write and erase operations on lock regions. A lock region is
composed of several consecutive pages, and each lock region has its associated lock bit.

Table 8-1. Lock Bit Number

Product Number of Lock Bits Lock Region Size
SAM4SD32 256 (128 + 128) 8 Kbytes
SAM4SD16 128 (64 + 64) 8 Kbytes

SAM4S16/SA16 128 8 Kbytes

SAM4S8 64 8 Khytes

If a locked-region’s erase or program command occurs, the command is aborted and the EEFC
triggers an interrupt.

The lock bits are software programmable through the EEFC User Interface. The command “Set
Lock Bit” enables the protection. The command “Clear Lock Bit” unlocks the lock region.

Asserting the ERASE pin clears the lock bits, thus unlocking the entire Flash.

8.1.3.5 Security Bit Feature
The SAM4SD32 and SAM4SD16 feature 2 security bits, the SAM4S16/SA16/S8 feature a secu-
rity bit, based on a specific General Purpose NVM bit (GPNVM bit 0). When one of the security
bits is enabled, any access to the Flash, SRAM, Core Registers and Internal Peripherals either
through the ICE interface or through the Fast Flash Programming Interface, is forbidden. This
ensures the confidentiality of the code programmed in the Flash.

This security bit can only be enabled, through the command “Set General Purpose NVM Bit 0" of
the EEFC User Interface. Disabling the security bit can only be achieved by asserting the
ERASE pin at 1, and after a full Flash erase is performed. When the security bit is deactivated,
all accesses to the Flash, SRAM, Core registers, Internal Peripherals are permitted.

It is important to note that the assertion of the ERASE pin should always be longer than 200 ms.

As the ERASE pin integrates a permanent pull-down, it can be left unconnected during normal
operation. However, it is safer to connect it directly to GND for the final application.

8.1.3.6 Calibration Bits

NVM bits are used to calibrate the brownout detector and the voltage regulator. These bits are
factory configured and cannot be changed by the user. The ERASE pin has no effect on the cal-
ibration bits.

8.1.3.7 Unique Identifier
Each device integrates its own 128-bit unique identifier. These bits are factory configured and
cannot be changed by the user. The ERASE pin has no effect on the unique identifier.

8.1.3.8 User Signature
Each part contains a User Signature of 512 bytes. It can be used by the user to store user infor-
mation such as trimming, keys, etc., that the customer does not want to be erased by asserting
the ERASE pin or by software ERASE command. Read, write and erase of this area is allowed.

3¢ SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

8.1.3.9 Fast Flash Programming Interface
The Fast Flash Programming Interface allows programming the device through a multiplexed
fully-handshaked parallel port. It allows gang programming with market-standard industrial
programmers.

The FFPI supports read, page program, page erase, full erase, lock, unlock and protect
commands.

8.1.3.10 SAM-BA Boot

The SAM-BA Boot is a default Boot Program which provides an easy way to program in-situ the
on-chip Flash memory.

The SAM-BA Boot Assistant supports serial communication via the UART and USB.
The SAM-BA Boot provides an interface with SAM-BA Graphic User Interface (GUI).

The SAM-BA Boot is in ROM and is mapped in Flash at address 0x0 when GPNVM bit 1 is set to
0.

8.1.3.11 GPNVM Bits

The SAM4S516 features two GPNVM bits. These bits can be cleared or set respectively through
the commands “Clear GPNVM Bit” and “Set GPNVM Bit” of the EEFC User Interface.

The Flash of the SAM4S8 is composed of 512 Kbytes in a single bank.

The SAM4SA16/SD32/SD16 features 3 GPNVM bits (GPNVM from FlashOQ) that can be cleared
or set respectively through the "Clear GPNVM Bit" and "Set GPNVM Bit" commands of the
EEFCO User Interface. The GPNVM bits of the SAM4SA16/SD16/SD32 are only available on
FLashO. There is no GPNVM bit on Flashl. The GPNVMO is the security bit. The GPNVML1 is
used to select the boot mode (boot always at 0x00) on ROM or FLASH. The SAM4SD32/16
embeds an additional GPNVM bit: GPNVM2. This GPNVM bit is used only to swap the FlashO
and Flashl. If GPNVM bit 2 is:

ENABLE: the Flashl is mapped at address 0x0040_0000 (Flashl and FlashO are continuous).
DISABLE: the Flash0 is mapped at address 0x0040_0000 (FlashO and Flash1 are continuous).

Table 8-2. General-purpose Non volatile Memory Bits
GPNVMBIt[#] Function
0 Security bit
1 Boot mode selection
2 Flash selection (Flash 0 or Flash 1)

8.1.4 Boot Strategies

The system always boots at address 0x0. To ensure maximum boot possibilities, the memory
layout can be changed via GPNVM.

A general purpose NVM (GPNVM) bit is used to boot either on the ROM (default) or from the
Flash.

The GPNVM bit can be cleared or set respectively through the commands “Clear General-pur-
pose NVM Bit” and “Set General-purpose NVM Bit” of the EEFC User Interface.

Setting GPNVM Bit 1 selects the boot from the Flash, clearing it selects the boot from the ROM.
Asserting ERASE clears the GPNVM Bit 1 and thus selects the boot from the ROM by default.

ATMEL 5

11100B-ATARM-31-Jul-12

ATMEL

Setting the GPNVM Bit 2 selects bank 1, clearing it selects the boot from bank 0. Asserting
ERASE clears the GPNVM Bit 2 and thus selects the boot from bank 0 by default.

8.2 External Memories

The SAMA4S features one External Bus Interface to provide an interface to a wide range of exter-
nal memories and to any parallel peripheral.

8.2.1 Static Memory Controller
» 16-Mbyte Address Space per Chip Select
* 8- bit Data Bus
« Word, Halfword, Byte Transfers
* Programmable Setup, Pulse And Hold Time for Read Signals per Chip Select
« Programmable Setup, Pulse And Hold Time for Write Signals per Chip Select
* Programmable Data Float Time per Chip Select
» External Wait Request
» Automatic Switch to Slow Clock Mode
» Asynchronous Read in Page Mode Supported: Page Size Ranges from 4 to 32 Bytes
* NAND Flash additional logic supporting NAND Flash with Multiplexed Data/Address buses
« Hardware Configurable number of chip selects from 1 to 4
« Programmable timing on a per chip select basis

9. System Controller

The System Controller is a set of peripherals which allows handling of key elements of the sys-
tem, such as power, resets, clocks, time, interrupts, watchdog, etc...

See the system controller block diagram in Figure 9-1 on page 37.

36 SAMAS Series [Preliminary] m—s—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

Figure 9-1.

WKUPO - WKUP15

XIN32

XOUT32

NRST

FSTTO - FSTT15

XIN

XouT

VDDIO

VDDIO

L]

Power-on Reset

System Controller Block Diagram

[

L

ON
Supply
Monitor out
(Backup)
General Purpose
Backup Registers
rtc_nreset
SLCK
[RTC rtc_alarm
rtt_nreset
SLCK—> RTT rtt_alarm

osc32k_xtal_en

Xtal 32 kHz
Oscillator

Embedded
32 kHz RC
Oscillator

XTALSEL

osc32k_rc_en

Controller

vr_on

VDDOUT

vr_mode

Supply

Software Controlled

Voltage Regulator D VDDIN
VDDIO
PIOA/BIC
Input/Output Buffers PIOX
Analog
Comparator
ADC Analog e D ADX
Circuitry
[&
| ¢-o{ | Aovrer
DAC Analog
Circuitry D DACx
VDDIO
USB —| I DDP
Transeivers
—| I DDM

vddcore_nreset

bod_core_on

|core_brown_out

Backup Power Supply

vddcore_nreset

—> proc_nreset
Reset X
Controller —> Penph_nreset
D —> ice_nreset
| J' >
Embedded SCR
12/8/4 MHz N
RC Main Clock
Oscillator MAINCK Power
Management
3-20 MHZ Controller
XTAL Oscillator
MAINCK PLLACK
> PLLA
MAINCK PLLBCK
> PLLB

Brownout D ‘
Detector ===

(Core)

‘ ’ SRAM

Peripherals |
Matrix ¢

Peripheral

> Bridge

@@= Cortex-M4 [==]

<P Flash [

MCK

Master Clock

SLCK —>|

Watchdog
Timer

Core Power Supply

FSTTO - FSTT15 are possible Fast Startup sources, generated by WKUPO - WKUP15 pins,
but are not physical pins.

11100B-ATARM-31-Jul-12

ATMEL

VDDCORE

37

ATMEL

9.1 System Controller and Peripheral Mapping
Refer to Figure 7-1, "SAM4S Product Mapping".

All the peripherals are in the bit band region and are mapped in the bit band alias region.

9.2 Power-on-Reset, Brownout and Supply Monitor
The SAM4S embeds three features to monitor, warn and/or reset the chip:

* Power-on-Reset on VDDIO
* Brownout Detector on VDDCORE
 Supply Monitor on VDDIO

9.21 Power-on-Reset
The Power-on-Reset monitors VDDIO. It is always activated and monitors voltage at start up but
also during power down. If VDDIO goes below the threshold voltage, the entire chip is reset. For
more information, refer to the Electrical Characteristics section of the datasheet.

9.2.2 Brownout Detector on VDDCORE
The Brownout Detector monitors VDDCORE. It is active by default. It can be deactivated by soft-
ware through the Supply Controller (SUPC_MR). It is especially recommended to disable it
during low-power modes such as wait or sleep modes.

If VDDCORE goes below the threshold voltage, the reset of the core is asserted. For more infor-
mation, refer to the Supply Controller (SUPC) and Electrical Characteristics sections of the
datasheet.

9.2.3 Supply Monitor on VDDIO
The Supply Monitor monitors VDDIO. It is not active by default. It can be activated by software
and is fully programmable with 16 steps for the threshold (between 1.6V to 3.4V). It is controlled
by the Supply Controller (SUPC). A sample mode is possible. It allows to divide the supply mon-
itor power consumption by a factor of up to 2048. For more information, refer to the SUPC and
Electrical Characteristics sections of the datasheet.

38 SAMA4S Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

10. Peripherals

10.1 Peripheral Identifiers
Table 10-1 defines the Peripheral Identifiers of the SAM4S. A peripheral identifier is required for
the control of the peripheral interrupt with the Nested Vectored Interrupt Controller and control of
the peripheral clock with the Power Management Controller.

Table 10-1. Peripheral Identifiers
PMC
Instance ID Instance Name NVIC Interrupt Clock Control Instance Description
0 SUPC X Supply Controller
1 RSTC Reset Controller
2 RTC X Real Time Clock
3 RTT X Real Time Timer
4 WDT X Watchdog Timer
5 PMC X Power Management Controller
6 EEFCO X Enhanced Embedded Flash Controller O
7 EEFC1 - Enhanced Embedded Flash Controller 1
8 UARTO X X UART O
9 UART1 X X UART 1
10 SMC X X Static Memory Controller
11 PIOA X X Parallel I/O Controller A
12 PIOB X X Parallel /O Controller B
13 PIOC X X Parallel /O Controller C
14 USARTO X X USART O
15 USART1 X X USART 1
16 - - - Reserved
17 - - - Reserved
18 HSMCI X X Multimedia Card Interface
19 TWIO X X Two Wire Interface O
20 TWI1 X X Two Wire Interface 1
21 SPI X X Serial Peripheral Interface
22 SSC X X Synchronous Serial Controller
23 TCO X X Timer/Counter 0
24 TC1 X X Timer/Counter 1
25 TC2 X X Timer/Counter 2
26 TC3 X X Timer/Counter 3
27 TC4 X X Timer/Counter 4
28 TC5 X X Timer/Counter 5
29 ADC X X Analog To Digital Converter
30 DACC X X Digital To Analog Converter

11100B-ATARM-31-Jul-12

ATMEL

39

ATMEL

Table 10-1. Peripheral Identifiers (Continued)
PMC
Instance ID Instance Name NVIC Interrupt Clock Control Instance Description
31 PWM X X Pulse Width Modulation
32 CRCCU X X CRC Calculation Unit
33 ACC X X Analog Comparator
34 UDP X X USB Device Port

10.2 Peripheral Signal Multiplexing on 1/O Lines

The SAMA4S features 2 PIO controllers on 64-pin versions (PIOA and PIOB) or 3 PIO controllers
on the 100-pin version (PIOA, PIOB and PIOC), that multiplex the 1/O lines of the peripheral set.

40

The SAM4S 64-pin and 100-pin PIO Controllers control up to 32 lines. Each line can be
assigned to one of three peripheral functions: A, B or C. The multiplexing tables in the following
paragraphs define how the I/O lines of the peripherals A, B and C are multiplexed on the PIO
Controllers. The column “Comments” has been inserted in this table for the user's own com-
ments; it may be used to track how pins are defined in an application.

Note that some peripheral functions which are output only, might be duplicated within the tables.

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

10.2.1 P1O Controller A Multiplexing

Table 10-2. Multiplexing on PIO Controller A (PIOA)

I/O Line Peripheral A Peripheral B Peripheral C Extra Function System Function Comments
PAO PWMHO TIOAO Al7 WKUPO
PAl PWMH1 TIOBO Al18 WKUP1
PA2 PWMH2 SCKO DATRG WKUP2
PA3 TWDO NPCS3
PA4 TWCKO TCLKO WKUP3
PA5 RXDO NPCS3 WKUP4
PAG6 TXDO PCKO
PA7 RTSO PWMH3 XIN32
PA8 CTSO ADTRG WKUP5 XOUT32
PA9 URXDO NPCS1 PWMFIO WKUP6
PA10 UTXDO NPCS2
PAl1l NPCSO PWMHO WKUP7
PA12 MISO PWMH1
PA13 MOSI PWMH2
PAl14 SPCK PWMH3 WKUPS8
PA15 TF TIOA1 PWML3 WKUP14/PIODCEN1
PA16 TK TIOB1 PWML2 WKUP15/PIODCEN2
PAL17 TD PCK1 PWMH3 ADO
PA18 RD PCK2 Al4 AD1
PA19 RK PWMLO Al5 AD2/WKUP9
PA20 RF PWML1 Al6 AD3/WKUP10
PA21 RXD1 PCK1 AD8 64/100 pins versions
PA22 TXD1 NPCS3 NCS2 AD9 64/100 pins versions
PA23 SCK1 PWMHO Al9 PIODCCLK 64/100 pins versions
PA24 RTS1 PWMH1 A20 PIODCO 64/100 pins versions
PA25 CTS1 PWMH2 A23 PIODC1 64/100 pins versions
PA26 DCD1 TIOA2 MCDA2 PIODC2 64/100 pins versions
PA27 DTR1 TIOB2 MCDA3 PIODC3 64/100 pins versions
PA28 DSR1 TCLK1 MCCDA PIODC4 64/100 pins versions
PA29 RI1 TCLK2 MCCK PIODCS5 64/100 pins versions
PA30 PWML2 NPCS2 MCDAO WKUP11/PIODC6 64/100 pins versions
PA31 NPCS1 PCK2 MCDA1 PIODC7 64/100 pins versions

11100B-ATARM-31-Jul-12

ATMEL

41

ATMEL

10.2.2 P10 Controller B Multiplexing

Table 10-3. Multiplexing on PIO Controller B (PIOB)

:_/gle Peripheral A Peripheral B Peripheral C Extra Function System Function Comments
PBO PWMHO AD4/RTCOUTO
PB1 PWMH1 AD5/RTCOUT1
PB2 URXD1 NPCS2 AD6/WKUP12
PB3 UTXD1 PCK2 AD7
PB4 TWD1 PWMH2 TDI
PB5 TWCK1 PWMLO WKUP13 TDO/TRACESWO
PB6 TMS/SWDIO
PB7 TCK/SWCLK
PB8 XOouT
PB9 XIN
PB10 DDM
PB11 DDP
PB12 PWML1 ERASE
PB13 PWML2 PCKO DACO 64/100 pins versions
PB14 NPCS1 PWMH3 DAC1 64/100 pins versions

a2 SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

10.2.3 P10 Controller C Multiplexing
Table 10-4. Multiplexing on PIO Controller C (PIOC)
Extra System
1/0 Line Peripheral A Peripheral B Peripheral C Function Function Comments
PCO DO PWMLO 100 pin version
PC1 D1 PWML1 100 pin version
PC2 D2 PWML2 100 pin version
PC3 D3 PWML3 100 pin version
PC4 D4 NPCS1 100 pin version
PC5 D5 100 pin version
PC6 D6 100 pin version
PC7 D7 100 pin version
PC8 NWE 100 pin version
PC9 NANDOE 100 pin version
PC10 NANDWE 100 pin version
PC11 NRD 100 pin version
PC12 NCS3 AD12 100 pin version
PC13 NWAIT PWMLO AD10 100 pin version
PC14 NCSO 100 pin version
PC15 NCS1 PWML1 AD11 100 pin version
PC16 A21/NANDALE 100 pin version
PC17 A22/NANDCLE 100 pin version
PC18 A0 PWMHO 100 pin version
PC19 Al PWMH1 100 pin version
PC20 A2 PWMH2 100 pin version
PC21 A3 PWMH3 100 pin version
PC22 A4 PWML3 100 pin version
PC23 A5 TIOAS 100 pin version
PC24 A6 TIOB3 100 pin version
PC25 A7 TCLK3 100 pin version
PC26 A8 TIOA4 100 pin version
PC27 A9 TIOB4 100 pin version
PC28 A10 TCLK4 100 pin version
PC29 All TIOAS AD13 100 pin version
PC30 Al2 TIOB5 AD14 100 pin version
PC31 A13 TCLK5 100 pin version

11100B-ATARM-31-Jul-12

ATMEL

43

ATMEL

4 SAMAS Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

11. ARM Cortex-M4

11.1 Description

The Cortex-M4 processor is a high performance 32-bit processor designed for the microcon-
troller market. It offers significant benefits to developers, including outstanding processing
performance combined with fast interrupt handling, enhanced system debug with extensive
breakpoint and trace capabilities, efficient processor core, system and memories, ultra-low
power consumption with integrated sleep modes, and platform security robustness, with inte-
grated memory protection unit (MPU).

The Cortex-M4 processor is built on a high-performance processor core, with a 3-stage pipeline
Harvard architecture, making it ideal for demanding embedded applications. The processor
delivers exceptional power efficiency through an efficient instruction set and extensively opti-
mized design, providing high-end processing hardware including a range of single-cycle and
SIMD multiplication and multiply-with-accumulate capabilities, saturating arithmetic and dedi-
cated hardware division.

To facilitate the design of cost-sensitive devices, the Cortex-M4 processor implements tightly-
coupled system components that reduce processor area while significantly improving interrupt
handling and system debug capabilities. The Cortex-M4 processor implements a version of the
Thumb® instruction set based on Thumb-2 technology, ensuring high code density and reduced
program memory requirements. The Cortex-M4 instruction set provides the exceptional perfor-
mance expected of a modern 32-bit architecture, with the high code density of 8-bit and 16-bit
microcontrollers.

The Cortex-M4 processor closely integrates a configurable NVIC, to deliver industry-leading
interrupt performance. The NVIC includes a non-maskable interrupt (NMI), and provides up to
256 interrupt priority levels. The tight integration of the processor core and NVIC provides fast
execution of interrupt service routines (ISRs), dramatically reducing the interrupt latency. This is
achieved through the hardware stacking of registers, and the ability to suspend load-multiple
and store-multiple operations. Interrupt handlers do not require wrapping in assembler code,
removing any code overhead from the ISRs. A tail-chain optimization also significantly reduces
the overhead when switching from one ISR to another.

To optimize low-power designs, the NVIC integrates with the sleep modes, that include a deep
sleep function that enables the entire device to be rapidly powered down while still retaining pro-
gram state.

11.1.1 System Level Interface

11100B-ATARM-31-Jul-12

The Cortex-M4 processor provides multiple interfaces using AMBA® technology to provide high
speed, low latency memory accesses. It supports unaligned data accesses and implements
atomic bit manipulation that enables faster peripheral controls, system spinlocks and thread-safe
Boolean data handling.

The Cortex-M4 processor has a Memory Protection Unit (MPU) that provides fine grain memory
control, enabling applications to utilize multiple privilege levels, separating and protecting code,
data and stack on a task-by-task basis. Such requirements are becoming critical in many
embedded applications such as automotive.

ATMEL i

11.1.2

ATMEL

Integrated Configurable Debug

The Cortex-M4 processor implements a complete hardware debug solution. This provides high
system visibility of the processor and memory through either a traditional JTAG port or a 2-pin
Serial Wire Debug (SWD) port that is ideal for microcontrollers and other small package devices.

For system trace the processor integrates an Instrumentation Trace Macrocell (ITM) alongside
data watchpoints and a profiling unit. To enable simple and cost-effective profiling of the system
events these generate, a Serial Wire Viewer (SWV) can export a stream of software-generated
messages, data trace, and profiling information through a single pin.

The Flash Patch and Breakpoint Unit (FPB) provides up to 8 hardware breakpoint comparators
that debuggers can use. The comparators in the FPB also provide remap functions of up to 8
words in the program code in the CODE memory region. This enables applications stored on a
non-erasable, ROM-based microcontroller to be patched if a small programmable memory, for
example flash, is available in the device. During initialization, the application in ROM detects,
from the programmable memory, whether a patch is required. If a patch is required, the applica-
tion programs the FPB to remap a number of addresses. When those addresses are accessed,
the accesses are redirected to a remap table specified in the FPB configuration, which means
the program in the non-modifiable ROM can be patched.

11.2 Embedded Characteristics

46

« Tight integration of system peripherals reduces area and development costs

« Thumb instruction set combines high code density with 32-bit performance

« Code-patch ability for ROM system updates

» Power control optimization of system components

* Integrated sleep modes for low power consumption

« Fast code execution permits slower processor clock or increases sleep mode time
» Hardware division and fast digital-signal-processing oriented multiply accumulate
* Saturating arithmetic for signal processing

* Deterministic, high-performance interrupt handling for time-critical applications

* Memory Protection Unit (MPU) for safety-critical applications

« Extensive debug and trace capabilities:

— Serial Wire Debug and Serial Wire Trace reduce the number of pins required for
debugging, tracing, and code profiling.

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

11.3 Block Diagram

Figure 11-1. Typical Cortex-M4 Implementation

Cortex-M4
Processor
NVIC (&P
Processor
Core
vy
Debug Memor Serial
+ Access ProtectionyUnit Wire
Port t t Viewer
Flash Data
Patch \Watchpoints
Bus Matrix
Code SRAM and
Interface Peripheral Interface
A
v A

11100B-ATARM-31-Jul-12

ATMEL

47

ATMEL

11.4 Cortex-M4 Models

1141 Programmers Model
This section describes the Cortex-M4 programmers model. In addition to the individual core reg-
ister descriptions, it contains information about the processor modes and privilege levels for
software execution and stacks.

11411 Processor Modes And Privilege Levels for Software Execution
The processor modes are:

» Thread mode
Used to execute application software. The processor enters the Thread mode when it comes
out of reset.

» Handler mode
Used to handle exceptions. The processor returns to the Thread mode when it has finished
exception processing.

The privilege levels for software execution are:

« Unprivileged
The software:
— has limited access to the MSR and MRS instructions, and cannot use the CPS
instruction

— cannot access the System Timer, NVIC, or System Control Block
— might have a restricted access to memory or peripherals.
Unprivileged software executes at the unprivileged level.

* Privileged
The software can use all the instructions and has access to all resources. Privileged software
executes at the privileged level.
In Thread mode, the CONTROL register controls whether the software execution is privileged or
unprivileged, see “CONTROL Register” . In Handler mode, software execution is always
privileged.

Only privileged software can write to the CONTROL register to change the privilege level for
software execution in Thread mode. Unprivileged software can use the SVC instruction to make
a supervisor call to transfer control to privileged software.

11.4.1.2 Stacks
The processor uses a full descending stack. This means the stack pointer holds the address of
the last stacked item in memory When the processor pushes a new item onto the stack, it decre-
ments the stack pointer and then writes the item to the new memory location. The processor
implements two stacks, the main stack and the process stack, with a pointer for each held in
independent registers, see “Stack Pointer” .

In Thread mode, the CONTROL register controls whether the processor uses the main stack or
the process stack, see “CONTROL Register” .

In Handler mode, the processor always uses the main stack.

¢ SAMAS Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

The options for processor operations are:

Table 11-1. Summary of processor mode, execution privilege level, and stack use options
Processor Used to Privilege Level for
Mode Execute Software Execution Stack Used
S . - Main stack or
(0]
Thread Applications Privileged or unprivileged process stack®
Handler Exception handlers Always privileged Main stack
Note: 1. See “CONTROL Register”.

11.4.1.3 Core Registers

Figure 11-2. Processor Core Registers

—

Low registers

High registers

Stack Pointer
Link Register

Program Counter

Table 11-2. Core Processor Registers

RO

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

RN

General-purpose registers

SP (R13)

MspP*

PSP’ ” *Banked version of SP

LR (R14)

PC (R15)

PSR

PRIMASK

FAULTMASK

BASEPRI

CONTROL

Program status register
Exception mask registers Special registers

CONTROL register

Register

Name

Required

Access® Privilege® Reset

General-purpose registers

RO-R12

Read-write

Either

Unknown

Stack Pointer

MSP

Read-write

Privileged

See description

Stack Pointer

PSP

Read-write

Either

Unknown

11100B-ATARM-31-Jul-12

ATMEL

49

ATMEL

Table 11-2. Core Processor Registers
Required

Register Name Access® Privilege® Reset
Link Register LR Read-write Either OXFFFFFFFF
Program Counter PC Read-write Either See description
Program Status Register PSR Read-write Privileged 0x01000000
Application Program Status Register APSR Read-write Either 0x00000000
Interrupt Program Status Register IPSR Read-only Privileged 0x00000000
Execution Program Status Register EPSR Read-only Privileged 0x01000000
Priority Mask Register PRIMASK Read-write Privileged 0x00000000
Fault Mask Register FAULTMASK Read-write Privileged 0x00000000
Base Priority Mask Register BASEPRI Read-write Privileged 0x00000000
CONTROL register CONTROL Read-write Privileged 0x00000000

Notes: 1. Describes access type during program execution in thread mode and Handler mode. Debug access can differ.

2. An entry of Either means privileged and unprivileged software can access the register.

R0O-R12 are 32-bit general-purpose registers for data operations.

The Stack Pointer (SP) is register R13. In Thread mode, bit[1] of the CONTROL register indi-
cates the stack pointer to use:

« 0 = Main Stack Pointer (MSP). This is the reset value.

« 1 = Process Stack Pointer (PSP).
On reset, the processor loads the MSP with the value from address 0x00000000.

The Link Register (LR) is register R14. It stores the return information for subroutines, function
calls, and exceptions. On reset, the processor loads the LR value OxFFFFFFFF.

The Program Counter (PC) is register R15. It contains the current program address. On reset,
the processor loads the PC with the value of the reset vector, which is at address 0x00000004.
Bit[0] of the value is loaded into the EPSR T-bit at reset and must be 1.

11.4.1.4 General-purpose Registers
11.4.15 Stack Pointer

11.4.1.6 Link Register

11.4.1.7 Program Counter

50

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

11.4.1.8 Program Status Register

Name: PSR

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| N A C \Y | Q ICIIT T |
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8

| ICINT - ISR_NUMBER |
7 6 5 4 3 2 1 0

| ISR_NUMBER

The Program Status Register (PSR) combines:

 Application Program Status Register (APSR)

* Interrupt Program Status Register (IPSR)

» Execution Program Status Register (EPSR).

These registers are mutually exclusive bitfields in the 32-bit PSR.

Access these registers individually or as a combination of any two or all three registers, using the register name as an argu-

ment to the MSR or MRS instructions. For example:

* read all of the registers using PSR with the MRS instruction

* write to the APSR N, Z, C, V and Q bits using APSR_nzcvq with the MSR instruction.

The PSR combinations and attributes are:

Name Access Combination

PSR Read-write®® APSR, EPSR, and IPSR
IEPSR Read-only EPSR and IPSR

IAPSR Read-write® APSR and IPSR
EAPSR | Read-write® APSR and EPSR

Notes: 1. he processor ignores writes to the IPSR bits.
2. Reads of the EPSR bits return zero, and the processor ignores writes to the these bits

See the instruction descriptions “MRS” and “MSR” for more information about how to access the program status registers.

11100B-ATARM-31-Jul-12

ATMEL

51

11.4.1.9 Application Program Status Register

Name: APSR

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| N Z C Vv | Q | - |
23 22 21 20 19 18 17 16

| - [GE[3:.0] |
15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

The APSR contains the current state of the condition flags from previous instruction executions.

N: Negative Flag
: operation result was positive, zero, greater than, or equal

= O

: operation result was negative or less than.

Z: Zero Flag
: operation result was not zero

o

1. operation result was zero.

» C: Carry or Borrow Flag

Carry or borrow flag:

0: add operation did not result in a carry bit or subtract operation resulted in a borrow bit
1: add operation resulted in a carry bit or subtract operation did not result in a borrow bit.
* V: Overflow Flag

0: operation did not result in an overflow

1: operation resulted in an overflow.

e Q: DSP Overflow and Saturation Flag

Sticky saturation flag:

0: indicates that saturation has not occurred since reset or since the bit was last cleared to zero
1: indicates when an SSAT or USAT instruction results in saturation.

This bit is cleared to zero by software using an MRs instruction.

» GE[19:16]: Greater Than or Equal Flags
See “SEL” for more information.

52 SAMA4S Series [Preliminary] m—s—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

11.4.1.10 Interrupt Program Status Register

Name: IPSR
Access: Read-write
Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
| - ISR_NUMBER|
7 6 5 4 3 2 1 0

| ISR_NUMBER |

The IPSR contains the exception type number of the current Interrupt Service Routine (ISR).
* ISR_NUMBER: Number of the Current Exception
0 = Thread mode

1 = Reserved

2 = NMI

3 = Hard fault

4 = Memory management fault

5 = Bus fault

6 = Usage fault

7-10 = Reserved

11 = SVvCall

12 = Reserved for Debug

13 = Reserved

14 = PendSV

15 = SysTick

16 = IRQO

50 = IRQ34

See “Exception Types” for more information.

ATMEL 5

11100B-ATARM-31-Jul-12

11.4.1.11 Execution Program Status Register

Name: EPSR

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| - ICIIT T |
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8

| ICIIT - |
7 6 5 4 3 2 1 0

The EPSR contains the Thumb state bit, and the execution state bits for either the If-Then (IT) instruction, or the Interrupt-
ible-Continuable Instruction (ICl) field for an interrupted load multiple or store multiple instruction.

Attempts to read the EPSR directly through application software using the MSR instruction always return zero. Attempts to
write the EPSR using the MSR instruction in the application software are ignored. Fault handlers can examine the EPSR
value in the stacked PSR to indicate the operation that is at fault. See “Exception Entry and Return”

* ICI: Interruptible-continuable Instruction
When an interrupt occurs during the execution of an LDM, STM, PUSH, POP, VLDM, VSTM, VPUSH,

or VPOP instruction, the processor:

— stops the load multiple or store multiple instruction operation temporarily
— stores the next register operand in the multiple operation to EPSR bits[15:12].
After servicing the interrupt, the processor:

— returns to the register pointed to by bits[15:12]
— resumes the execution of the multiple load or store instruction.
When the EPSR holds the ICI execution state, bits[26:25,11:10] are zero.

e |T: If-Then Instruction
Indicates the execution state bits of the 1T instruction.

The If-Then block contains up to four instructions following an IT instruction. Each instruction in the block is conditional. The
conditions for the instructions are either all the same, or some can be the inverse of others. See “” for more information.

* T: Thumb State

The Cortex-M4 processor only supports the execution of instructions in Thumb state. The following can clear the T bit to O:
— instructions BLX, BX and POP{PC}
— restoration from the stacked xPSR value on an exception return
— bit[0] of the vector value on an exception entry or reset.

Attempting to execute instructions when the T bit is O results in a fault or lockup. See “Lockup” for more information.

54 SAMAS Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

11.4.1.12 Exception Mask Registers
The exception mask registers disable the handling of exceptions by the processor. Disable
exceptions where they might impact on timing critical tasks.
To access the exception mask registers use the MSR and MRS instructions, or the CPS instruc-
tion to change the value of PRIMASK or FAULTMASK. See “MRS” , “MSR” , and “CPS” for
more information.
11.4.1.13 Priority Mask Register
Name: PRIMASK
Access: Read-write
Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

- PRIMASK |

The PRIMASK register prevents the activation of all exceptions with a configurable priority.

« PRIMASK
0: no effect

1: prevents the activation of all exceptions with a configurable priority.

11100B-ATARM-31-Jul-12

ATMEL 5

ATMEL

11.4.1.14 Fault Mask Register
Name: FAULTMASK
Access: Read-write
Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0
| - | FAULTMASK |

The FAULTMASK register prevents the activation of all exceptions except for Non-Maskable Interrupt (NMI).

« FAULTMASK
0: No effect.

1: Prevents the activation of all exceptions except for NMI.

The processor clears the FAULTMASK bit to O on exit from any exception handler except the NMI handler.

56

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

11.4.1.15 Base Priority Mask Register

Name: BASEPRI

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

| BASEPRI

The BASEPRI register defines the minimum priority for exception processing. When BASEPRI is set to a nonzero value, it

prevents the activation of all exceptions with same or lower priority level as the BASEPRI value.

* BASEPRI
Priority mask bits:

0x0000 = no effect.

Nonzero = defines the base priority for exception processing.

The processor does not process any exception with a priority value greater than or equal to BASEPRI.

This field is similar to the priority fields in the interrupt priority registers. The processor implements only bits[7:4] of this field,
bits[3:0] read as zero and ignore writes. See “Interrupt Priority Registers” for more information. Remember that higher pri-
ority field values correspond to lower exception priorities.

11100B-ATARM-31-Jul-12

ATMEL

57

ATMEL

11.4.1.16 CONTROL Register

Name: CONTROL
Access: Read-write
Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

| - | - | SPSEL | nPRIV |

The CONTROL register controls the stack used and the privilege level for software execution when the processor is in
Thread mode.

» SPSEL: Active Stack Pointer

Defines the current stack:

0: MSP is the current stack pointer.

1: PSP is the current stack pointer.

In Handler mode, this bit reads as zero and ignores writes. The Cortex-M4 updates this bit automatically on exception
return.

 nPRIV: Thread Mode Privilege Level

Defines the Thread mode privilege level:

0: privileged.

1: unprivileged.

Handler mode always uses the MSP, so the processor ignores explicit writes to the active stack pointer bit of the CON-
TROL register when in Handler mode. The exception entry and return mechanisms update the CONTROL register based
on the EXC_RETURN value.

In an OS environment, ARM recommends that threads running in Thread mode use the process stack, and the kernel and
exception handlers use the main stack.

By default, the Thread mode uses the MSP. To switch the stack pointer used in Thread mode to the PSP, either:
« use the MSR instruction to set the Active stack pointer bit to 1, see “MSR”, or

« perform an exception return to Thread mode with the appropriate EXC_RETURN value, see Table 11-10.

Note: When changing the stack pointer, the software must use an ISB instruction immediately after the MSR instruction. This ensures
that instructions after the ISB execute using the new stack pointer. See “ISB” .

ss SAMA4S Series [Preliminary] m—s—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

11.4.1.17

11.4.1.18

11.4.1.19

11100B-ATARM-31-Jul-12

Exceptions and Interrupts
The Cortex-M4 processor supports interrupts and system exceptions. The processor and the
Nested Vectored Interrupt Controller (NVIC) prioritize and handle all exceptions. An exception
changes the normal flow of software control. The processor uses the Handler mode to handle all
exceptions except for reset. See “Exception Entry” and “Exception Return” for more
information.

The NVIC registers control interrupt handling. See “Nested Vectored Interrupt Controller (NVIC)”
for more information.

Data Types
The processor supports the following data types:
* 32-bit words
* 16-bit halfwords
« 8-bit bytes
» The processor manages all data memory accesses as little-endian. Instruction memory and

Private Peripheral Bus (PPB) accesses are always little-endian. See “Memory Regions,
Types and Attributes” for more information.

Cortex Microcontroller Software Interface Standard (CMSIS)
For a Cortex-M4 microcontroller system, the Cortex Microcontroller Software Interface Standard
(CMSIS) defines:
* a common way to:
— access peripheral registers
— define exception vectors
* the names of:
— the registers of the core peripherals
— the core exception vectors
* a device-independent interface for RTOS kernels, including a debug channel.
The CMSIS includes address definitions and data structures for the core peripherals in the Cor-
tex-M4 processor.

The CMSIS simplifies the software development by enabling the reuse of template code and the
combination of CMSIS-compliant software components from various middleware vendors. Soft-
ware vendors can expand the CMSIS to include their peripheral definitions and access functions
for those peripherals.

This document includes the register names defined by the CMSIS, and gives short descriptions
of the CMSIS functions that address the processor core and the core peripherals.

Note: This document uses the register short names defined by the CMSIS. In a few cases, these differ
from the architectural short names that might be used in other documents.

The following sections give more information about the CMSIS:

» Section 11.5.3 "Power Management Programming Hints”
 Section 11.6.2 "CMSIS Functions”
» Section 11.8.2.1 "NVIC Programming Hints” .

ATMEL 5

ATMEL

11.4.2 Memory Model
This section describes the processor memory map, the behavior of memory accesses, and the
bit-banding features. The processor has a fixed memory map that provides up to 4GB of
addressable memory.

Figure 11-3. Memory Map

OXFFFFFFFF
Vendor-specific 511MB
memory
0xE0100000
i i OXEOOFFFFF
Prlvate;)uesrlpheral 1.0MB
0xE000 0000
0x DFFFFFFF
External device 1.0GB
0xA0000000
OX9FFFFFFF
Ox43FFFFEF External RAM 1.0GB
32 MB Bit band alias
0x42000000 0x60000000
OX5FFFFFFF
Peripheral .5GB
OXAOOFFFFF e eripheral 0.5G
it Band region
0x40000000 0x40000000
Ox23FFFFFF Ox3FFFFFFF
RAM .5GB
32 MB Bit band alias S 0.56
0x20000000
0x22000000 OX1FFFFFFF
Code 0.5GB
0X20OFFF:FF| 1 MB Bit Band region
0x20000000 9 0x00000000

The regions for SRAM and peripherals include bit-band regions. Bit-banding provides atomic
operations to bit data, see “Bit-banding” .

The processor reserves regions of the Private peripheral bus (PPB) address range for core
peripheral registers.

This memory mapping is generic to ARM Cortex-M4 products. To get the specific memory map-
ping of this product, refer to the Memories section of the datasheet.

11421 Memory Regions, Types and Attributes
The memory map and the programming of the MPU split the memory map into regions. Each
region has a defined memory type, and some regions have additional memory attributes. The
memory type and attributes determine the behavior of accesses to the region.

0 SAMAS Series [Preliminary] m—s——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

Memory Types

* Normal
The processor can re-order transactions for efficiency, or perform speculative reads.

* Device
The processor preserves transaction order relative to other transactions to Device or
Strongly-ordered memory.

» Strongly-ordered
The processor preserves transaction order relative to all other transactions.

The different ordering requirements for Device and Strongly-ordered memory mean that the
memory system can buffer a write to Device memory, but must not buffer a write to Strongly-
ordered memory.

Additional Memaory Attributes

» Shareable
For a shareable memory region, the memory system provides data synchronization between
bus masters in a system with multiple bus masters, for example, a processor with a DMA
controller.
Strongly-ordered memory is always shareable.
If multiple bus masters can access a non-shareable memory region, the software must
ensure data coherency between the bus masters.

» Execute Never (XN)
Means the processor prevents instruction accesses. A fault exception is generated only on
execution of an instruction executed from an XN region.

11.4.2.2 Memory System Ordering of Memory Accesses
For most memory accesses caused by explicit memory access instructions, the memory system
does not guarantee that the order in which the accesses complete matches the program order of
the instructions, providing this does not affect the behavior of the instruction sequence. Nor-
mally, if correct program execution depends on two memory accesses completing in program
order, the software must insert a memory barrier instruction between the memory access
instructions, see “Software Ordering of Memory Accesses” .

However, the memory system does guarantee some ordering of accesses to Device and
Strongly-ordered memory. For two memory access instructions A1 and A2, if A1 occurs before
A2 in program order, the ordering of the memory accesses is described below.

Table 11-3. Ordering of the Memory Accesses Caused by Two Instructions

A2 Device Access Strongly-
Normal ordered
Al Access Non-shareable Shareable Access
Normal Access - — - —
Device access, non-shareable - < - <
Device access, shareable - — < <
Strongly-ordered access - < < <

ATMEL o

11100B-ATARM-31-Jul-12

ATMEL

Where:

- Means that the memory system does not guarantee the ordering of the accesses.

< Means that accesses are observed in program order, that is, Al is always observed
before A2.
11.4.2.3 Behavior of Memory Accesses

The behavior of accesses to each region in the memory map is:

Table 11-4. Memory Access Behavior

Memory
Address Range Memory Region Type XN | Description
0X00000000 - Ox1FFEFFEF Code Normal® | - Executable region for program code. Data can also be

put here.

Executable region for data. Code can also be put here.

0x20000000 - Ox3FFFFFFF | SRAM Normal® | - This region includes bit band and bit band alias areas,
see Table 11-6.

This region includes bit band and bit band alias areas,

0x40000000 - OX5FFFFFFF | Peripheral Device®™ | XN | " 6

0x60000000 - OX9FFFFFFF | External RAM Normal® | - Executable region for data.

0xA0000000 - OXDFFFFFFF | External device Device® XN | External Device memory

0XE0000000 - OXEOOFFFFF | Private Peripheral Bus i:gr'g%, XN Z;‘Sifern‘ig;z?]tir';‘f";ﬁiifhe NVIC, System timer, and
0xE0100000 - OxFFFFFFFF | Reserved Device® | XN | Reserved

Note: 1. See “Memory Regions, Types and Attributes” for more information.

The Code, SRAM, and external RAM regions can hold programs. However, ARM recommends
that programs always use the Code region. This is because the processor has separate buses
that enable instruction fetches and data accesses to occur simultaneously.

The MPU can override the default memory access behavior described in this section. For more
information, see “Memory Protection Unit (MPU)” .

Additional Memory Access Constraints For Shared Memory

When a system includes shared memory, some memory regions have additional access con-
straints, and some regions are subdivided, as Table 11-5 shows:

Table 11-5. Memory Region Shareability Policies

Address Range | Memory Region Memory Type Shareability
ot
ot -
I porphery e -

62 SAMAS Series [Preliminary] m—s——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

Table 11-5. Memory Region Shareability Policies (Continued)

Address Range | Memory Region Memory Type Shareability
0x60000000-
2

OX7FFFFFFF WBWA

External RAM Normal® -
0x80000000-

(@)

OX9FFFFFFF wT
0xA0000000- o)
OXBFFFFFFF Shareable

External device Device® -
0xC0000000-

- (€]

OXDEEEEEEE Non-shareable
0xE0000000- Private Peripheral @ e
OXEOOFEEFF BUS Strongly- ordered Shareable -
0xE0100000- Vendor-specific Device® i)
OXFFFFFFFF device

Notes: 1. See “Memory Regions, Types and Attributes” for more information.

2. WT = Write through, no write allocate. WBWA = Write back, write allocate. See the “Glossary”
for more information.

Instruction Prefetch And Branch Prediction
The Cortex-M4 processor:

« prefetches instructions ahead of execution
« speculatively prefetches from branch target addresses.

11.4.2.4 Software Ordering of Memory Accesses
The order of instructions in the program flow does not always guarantee the order of the corre-
sponding memory transactions. This is because:
« the processor can reorder some memory accesses to improve efficiency, providing this does
not affect the behavior of the instruction sequence.
« the processor has multiple bus interfaces
* memory or devices in the memory map have different wait states
* some memory accesses are buffered or speculative.

“Memory System Ordering of Memory Accesses” describes the cases where the memory sys-
tem guarantees the order of memory accesses. Otherwise, if the order of memory accesses is
critical, the software must include memory barrier instructions to force that ordering. The proces-
sor provides the following memory barrier instructions:

DMB
The Data Memory Barrier (DMB) instruction ensures that outstanding memory transactions com-
plete before subsequent memory transactions. See “DMB” .

DSB
The Data Synchronization Barrier (DSB) instruction ensures that outstanding memory transac-
tions complete before subsequent instructions execute. See “DSB” .

ISB

The Instruction Synchronization Barrier (ISB) ensures that the effect of all completed memory
transactions is recognizable by subsequent instructions. See “ISB” .

ATMEL o

11100B-ATARM-31-Jul-12

ATMEL

MPU Programming

Use a DSB followed by an ISB instruction or exception return to ensure that the new MPU con-
figuration is used by subsequent instructions.

11.4.25 Bit-banding
A bit-band region maps each word in a bit-band alias region to a single bit in the bit-band region.
The bit-band regions occupy the lowest 1 MB of the SRAM and peripheral memory regions.

The memory map has two 32 MB alias regions that map to two 1 MB bit-band regions:

* accesses to the 32 MB SRAM alias region map to the 1 MB SRAM bit-band region, as shown
in Table 11-6.

 accesses to the 32 MB peripheral alias region map to the 1 MB peripheral bit-band region, as
shown in Table 11-7.

Table 11-6. SRAM Memory Bit-banding Regions

Address Memory
Range Region Instruction and Data Accesses

Direct accesses to this memory range behave as SRAM
memory accesses, but this region is also bit-addressable
through bit-band alias.

0x20000000- SRAM bit-band
OX200FFFFF region

Data accesses to this region are remapped to bit-band
SRAM bit-band alias | region. A write operation is performed as read-modify-
write. Instruction accesses are not remapped.

0x22000000-
O0x23FFFFFF

Table 11-7. Peripheral Memory Bit-banding Regions

Address Memory
Range Region Instruction and Data Accesses

Direct accesses to this memory range behave as
peripheral memory accesses, but this region is also bit-
addressable through bit-band alias.

0x40000000- Peripheral bit-band
Ox400FFFFF alias

Data accesses to this region are remapped to bit-band
region. A write operation is performed as read-modify-
write. Instruction accesses are not permitted.

0x42000000- Peripheral bit-band
Ox43FFFFFF | region

Notes: 1. A word access to the SRAM or peripheral bit-band alias regions map to a single bit in the
SRAM or peripheral bit-band region.

2. Bit-band accesses can use byte, halfword, or word transfers. The bit-band transfer size
matches the transfer size of the instruction making the bit-band access.

The following formula shows how the alias region maps onto the bit-band region:
bit_word_offset = (byte_offset x 32) + (bit_nunmber x 4)
bit _word_addr = bit_band_base + bit_word_offset
where:
* Bit_word_offset is the position of the target bit in the bit-band memory region.

« Bit_word_addr is the address of the word in the alias memory region that maps to the
targeted bit.

64 SAMAS Series [Preliminary] m—s—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

« Bit_band_base is the starting address of the alias region.
« Byte offset is the number of the byte in the bit-band region that contains the targeted bit.
* Bit_number is the bit position, 0-7, of the targeted bit.
Figure 11-4 shows examples of bit-band mapping between the SRAM bit-band alias region and
the SRAM bit-band region:
» The alias word at 0x23FFFFEQ maps to bit[0] of the bit-band byte at 0x200FFFFF: 0x23FFFFEQ =
0x22000000 + (OXFFFFF*32) + (0*4).

» The alias word at 0x23FFFFFC maps to bit[7] of the bit-band byte at 0x200FFFFF: 0x23FFFFFC =
0x22000000 + (OXFFFFF*32) + (7*4).

« The alias word at 0x22000000 maps to bit[0] of the bit-band byte at 0x20000000: 0x22000000 =
0x22000000 + (0*32) + (0 *4).

 The alias word at 0x2200001C maps to bit[7] of the bit-band byte at 0x20000000: 0x2200001C =
0x22000000+ (0*32) + (7*4).

Figure 11-4. Bit-band Mapping

32 MB alias region

I 0x23FFFFFC I O0x23FFFFF8 || O0x23FFFFF4 | Ox23FFFFFO | Ox23FFFFEC | Ox23FFFFE8 | Ox23FFFFE4 I 0x23FFFFEO I

°
°
°

I 0x2200001C I 0x22000018 0x22000014 0x22000010 0x2200000C 0x22000008 0x22000004 I 0x22000000 I

1 MB SRAM bit-band region

‘76543210’765432107654321076543210

T ! 1 ! 1 ! 1
0x200FFFFF 0x200FFFFE 0x200FFFFD 0x200FFFFC
I | [| [| [

°
°

°

765432107654321076543210‘76543210’

UL UL UL ! U
0x20000003 0x20000002 0x20000001 0x20000000
I I I | [

Directly Accessing an Alias Region

11100B-ATARM-31-Jul-12

Writing to a word in the alias region updates a single bit in the bit-band region.

Bit[0] of the value written to a word in the alias region determines the value written to the tar-
geted bit in the bit-band region. Writing a value with bit[0] set to 1 writes a 1 to the bit-band bit,
and writing a value with bit[0] set to O writes a 0 to the bit-band bit.

Bits[31:1] of the alias word have no effect on the bit-band bit. Writing 0x01 has the same effect as
writing OxFF. Writing 0x00 has the same effect as writing OxOE.

Reading a word in the alias region:

« 0x00000000 indicates that the targeted bit in the bit-band region is set to 0
« 0x00000001 indicates that the targeted bit in the bit-band region is setto 1

ATMEL o

ATMEL

Directly Accessing a Bit-band Region

“Behavior of Memory Accesses” describes the behavior of direct byte, halfword, or word
accesses to the bit-band regions.

11.4.2.6 Memory Endianness

Little-endian Format

The processor views memory as a linear collection of bytes numbered in ascending order from
zero. For example, bytes 0-3 hold the first stored word, and bytes 4-7 hold the second stored
word. “Little-endian Format” describes how words of data are stored in memory.

In little-endian format, the processor stores the least significant byte of a word at the lowest-
numbered byte, and the most significant byte at the highest-numbered byte. For example:

Memory Register
7 0
31 2423 1615 8 7 0
Address A BO |Isbyte B3 B2 B1 BO
A+1 B1
A+2 B2

A+3 B3 [msbyte

11.4.2.7 Synchronization Primitives

The Cortex-M4 instruction set includes pairs of synchronization primitives. These provide a non-
blocking mechanism that a thread or process can use to obtain exclusive access to a memory
location. The software can use them to perform a guaranteed read-modify-write memory update
sequence, or for a semaphore mechanism.

A pair of synchronization primitives comprises:

A Load-exclusive Instruction, used to read the value of a memory location, requesting exclu-
sive access to that location.

A Store-Exclusive instruction, used to attempt to write to the same memory location, returning
a status bit to a register. If this bit is:

« 0: it indicates that the thread or process gained exclusive access to the memory, and the
write succeeds,

« 1:itindicates that the thread or process did not gain exclusive access to the memory, and no
write is performed.

The pairs of Load-Exclusive and Store-Exclusive instructions are:

« the word instructions LDREX and STREX
« the halfword instructions LDREXH and STREXH
« the byte instructions LDREXB and STREXB.

The software must use a Load-Exclusive instruction with the corresponding Store-Exclusive
instruction.

66 SAMAS Series [Preliminary] m—s——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

To perform an exclusive read-modify-write of a memory location, the software must:

1. Use a Load-Exclusive instruction to read the value of the location.
2. Update the value, as required.

3. Use a Store-Exclusive instruction to attempt to write the new value back to the memory
location

4. Test the returned status bit. If this bit is:
0: The read-modify-write completed successfully.

1: No write was performed. This indicates that the value returned at step 1 might be out of
date. The software must retry the read-modify-write sequence.

The software can use the synchronization primitives to implement a semaphore as follows:

1. Use a Load-Exclusive instruction to read from the semaphore address to check
whether the semaphore is free.

2. Ifthe semaphore is free, use a Store-Exclusive instruction to write the claim value to the
semaphore address.

3. If the returned status bit from step 2 indicates that the Store-Exclusive instruction suc-
ceeded then the software has claimed the semaphore. However, if the Store-Exclusive
instruction failed, another process might have claimed the semaphore after the soft-
ware performed the first step.

The Cortex-M4 includes an exclusive access monitor, that tags the fact that the processor has
executed a Load-Exclusive instruction. If the processor is part of a multiprocessor system, the
system also globally tags the memory locations addressed by exclusive accesses by each
processor.

The processor removes its exclusive access tag if:

« It executes a CLREX instruction
« It executes a Store-Exclusive instruction, regardless of whether the write succeeds.

< An exception occurs. This means that the processor can resolve semaphore conflicts
between different threads.

In a multiprocessor implementation:

« Executing a CLREX instruction removes only the local exclusive access tag for the processor

 executing a Store-Exclusive instruction, or an exception, removes the local exclusive access
tags, and all global exclusive access tags for the processor.

For more information about the synchronization primitive instructions, see Section 11.6.4.8
"LDREX and STREX” and Section 11.6.4.9 "CLREX" .

11.4.2.8 Programming Hints for the Synchronization Primitives
ISO/IEC C cannot directly generate the exclusive access instructions. CMSIS provides intrinsic
functions for generation of these instructions:

Table 11-8. CMSIS Functions for Exclusive Access Instructions

Instruction CMSIS Function

LDREX uint32_t __ LDREXW (uint32_t *addr)
LDREXH uintl6_t _ LDREXH (uint16_t *addr)
LDREXB uint8_t _ LDREXB (uint8_t *addr)

ATMEL o

11100B-ATARM-31-Jul-12

ATMEL

Table 11-8. CMSIS Functions for Exclusive Access Instructions (Continued)

Instruction CMSIS Function

STREX uint32_t _ STREXW (uint32_t value, uint32_t *addr)
STREXH uint32_t __ STREXH (uint16_t value, uintl6_t *addr)
STREXB uint32_t _ STREXB (uint8_t value, uint8_t *addr)
CLREX void __ CLREX (void)

The actual exclusive access instruction generated depends on the data type of the pointer
passed to the intrinsic function. For example, the following C code generates the require
LDREXB operation:

__ldrex((volatile char *) OxFF);

68 SAMAS Series [Preliminary] m—s——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

11.4.3 Exception Model

This section describes the exception model.

11431 Exception States

Inactive

Pending

Active

Active and Pending

Each exception is in one of the following states:

The exception is not active and not pending.

The exception is waiting to be serviced by the processor.

An interrupt request from a peripheral or from software can change the state of the correspond-
ing interrupt to pending.

An exception is being serviced by the processor but has not completed.

An exception handler can interrupt the execution of another exception handler. In this case, both
exceptions are in the active state.

The exception is being serviced by the processor and there is a pending exception from the
same source.

11.4.3.2 Exception Types

Reset

The exception types are:

Reset is invoked on power up or a warm reset. The exception model treats reset as a special
form of exception. When reset is asserted, the operation of the processor stops, potentially at
any point in an instruction. When reset is deasserted, execution restarts from the address pro-
vided by the reset entry in the vector table. Execution restarts as privileged execution in Thread
mode.

Non Maskable Interrupt (NMI)

Hard Fault

11100B-ATARM-31-Jul-12

A non maskable interrupt (NMI) can be signalled by a peripheral or triggered by software. This is
the highest priority exception other than reset. It is permanently enabled and has a fixed priority
of -2.

NMIls cannot be:

« Masked or prevented from activation by any other exception.
« Preempted by any exception other than Reset.

A hard fault is an exception that occurs because of an error during exception processing, or
because an exception cannot be managed by any other exception mechanism. Hard Faults
have a fixed priority of -1, meaning they have higher priority than any exception with configu-
rable priority.

ATMEL o

ATMEL

Memory Management Fault (MemManage)

Bus Fault

Usage Fault

Svcall

PendSV

SysTick

Interrupt (IRQ)

A Memory Management Fault is an exception that occurs because of a memory protection
related fault. The MPU or the fixed memory protection constraints determines this fault, for both
instruction and data memory transactions. This fault is used to abort instruction accesses to
Execute Never (XN) memory regions, even if the MPU is disabled.

A Bus Fault is an exception that occurs because of a memory related fault for an instruction or
data memory transaction. This might be from an error detected on a bus in the memory system.

A Usage Fault is an exception that occurs because of a fault related to an instruction execution.
This includes:

« an undefined instruction

« an illegal unaligned access

« an invalid state on instruction execution

* an error on exception return.
The following can cause a Usage Fault when the core is configured to report them:

« an unaligned address on word and halfword memory access
« a division by zero.

A supervisor call (SVC) is an exception that is triggered by the SVC instruction. In an OS envi-
ronment, applications can use SVC instructions to access OS kernel functions and device
drivers.

PendSV is an interrupt-driven request for system-level service. In an OS environment, use
PendSV for context switching when no other exception is active.

A SysTick exception is an exception the system timer generates when it reaches zero. Software
can also generate a SysTick exception. In an OS environment, the processor can use this
exception as system tick.

A interrupt, or IRQ, is an exception signalled by a peripheral, or generated by a software
request. All interrupts are asynchronous to instruction execution. In the system, peripherals use
interrupts to communicate with the processor.

Table 11-9. Properties of the Different Exception Types
Exception Vector Address
Number® Irqg Number® Exception Type Priority or Offset® Activation
1 - Reset -3, the highest | 0x00000004 Asynchronous
2 -14 NMI -2 0x00000008 Asynchronous
3 -13 Hard fault -1 0x0000000C -

70 SAMAS Series [Preliminary] m—s—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

Table 11-9. Properties of the Different Exception Types (Continued)
Exception Vector Address
Number® Irqg Number® Exception Type Priority or Offset® Activation
4 -12 Memory Configurable® | 0x00000010 Synchronous
management fault
Synchronous when
5 -11 Bus fault Configurable® | 0x00000014 precise, asynchronous
when imprecise
6 -10 Usage fault Configurable® | 0x00000018 Synchronous
7-10 - - - Reserved -
11 -5 Svcall Configurable® | 0x0000002C Synchronous
12-13 - - - Reserved -
14 -2 PendSV Configurable® | 0x00000038 Asynchronous
15 -1 SysTick Configurable® | 0x0000003C Asynchronous
16 and above | 0 and above Interrupt (IRQ) Configurable® 2;;282%?040 and Asynchronous
Notes: 1. To simplify the software layer, the CMSIS only uses IRQ numbers and therefore uses negative values for exceptions other
than interrupts. The IPSR returns the Exception number, see “Interrupt Program Status Register” .
2. See “Vector Table” for more information
3. See “System Handler Priority Registers”
4. See “Interrupt Priority Registers”
5. Increasing in steps of 4.
For an asynchronous exception, other than reset, the processor can execute another instruction
between when the exception is triggered and when the processor enters the exception handler.
Privileged software can disable the exceptions that Table 11-9 shows as having configurable pri-
ority, see:
« “System Handler Control and State Register”
« “Interrupt Clear-enable Registers” .
For more information about hard faults, memory management faults, bus faults, and usage
faults, see “Fault Handling” .
11.4.3.3 Exception Handlers

The processor handles exceptions using:

« Interrupt Service Routines (ISRs)
Interrupts IRQO to IRQ34 are the exceptions handled by ISRs.

« Fault Handlers
Hard fault, memory management fault, usage fault, bus fault are fault exceptions handled by
the fault handlers.

« System Handlers
NMI, PendSV, SVCall SysTick, and the fault exceptions are all system exceptions that are
handled by system handlers.

ATMEL m

11100B-ATARM-31-Jul-12

ATMEL

11434 Vector Table
The vector table contains the reset value of the stack pointer, and the start addresses, also
called exception vectors, for all exception handlers. Figure 11-5 shows the order of the excep-
tion vectors in the vector table. The least-significant bit of each vector must be 1, indicating that
the exception handler is Thumb code.

Figure 11-5. Vector Table

Exception number IRQ number Offset Vector
255 239 IRQ239
0x03FC
0x004C
18 2 IRQ2
0x0048
17 1 IRQ1
0x0044
16 0 IRQO
0x0040
15 -1 SysTick
0x003C
14 -2 PendSVv
0x0038
13 Reserved
12 Reserved for Debug
11 -5 SVcall
0x002C
10
9
Reserved
8
7
6 -10 Usage fault
0x0018
5 -11 Bus fault
0x0014
4 -12 Memory management fault
0x0010
3 -13 Hard fault
0x000C
2 -14 NMI
0x0008
1 Reset
0x0004
Initial SP value
0x0000

On system reset, the vector table is fixed at address 0x00000000. Privileged software can write to
the SCB_VTOR register to relocate the vector table start address to a different memory location,
in the range 0x00000080 to 0x3FFFFF80, see “Vector Table Offset Register” .

11.4.3.5 Exception Priorities
As Table 11-9 shows, all exceptions have an associated priority, with:
« a lower priority value indicating a higher priority
« configurable priorities for all exceptions except Reset, Hard fault and NMI.

If the software does not configure any priorities, then all exceptions with a configurable priority
have a priority of 0. For information about configuring exception priorities see “System Handler
Priority Registers” , and “Interrupt Priority Registers” .

72 SAMAS Series [Preliminary] m—s—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

Note: Configurable priority values are in the range 0-15. This means that the Reset, Hard fault, and NMI
exceptions, with fixed negative priority values, always have higher priority than any other
exception.

For example, assigning a higher priority value to IRQ[0] and a lower priority value to IRQ[1]

means that IRQ[1] has higher priority than IRQ[O]. If both IRQ[1] and IRQ[0] are asserted, IRQ[1]

is processed before IRQIO0].

If multiple pending exceptions have the same priority, the pending exception with the lowest
exception number takes precedence. For example, if both IRQ[0] and IRQ[1] are pending and
have the same priority, then IRQ[O0] is processed before IRQ[1].

When the processor is executing an exception handler, the exception handler is preempted if a
higher priority exception occurs. If an exception occurs with the same priority as the exception
being handled, the handler is not preempted, irrespective of the exception number. However,
the status of the new interrupt changes to pending.

11.4.3.6 Interrupt Priority Grouping

To increase priority control in systems with interrupts, the NVIC supports priority grouping. This
divides each interrupt priority register entry into two fields:

« an upper field that defines the group priority

« a lower field that defines a subpriority within the group.

Only the group priority determines preemption of interrupt exceptions. When the processor is
executing an interrupt exception handler, another interrupt with the same group priority as the
interrupt being handled does not preempt the handler.

If multiple pending interrupts have the same group priority, the subpriority field determines the
order in which they are processed. If multiple pending interrupts have the same group priority
and subpriority, the interrupt with the lowest IRQ number is processed first.

For information about splitting the interrupt priority fields into group priority and subpriority, see
“Application Interrupt and Reset Control Register” .

11.4.3.7 Exception Entry and Return

Preemption

Return

Tail-chaining

11100B-ATARM-31-Jul-12

Descriptions of exception handling use the following terms:

When the processor is executing an exception handler, an exception can preempt the exception
handler if its priority is higher than the priority of the exception being handled. See “Interrupt Pri-
ority Grouping” for more information about preemption by an interrupt.

When one exception preempts another, the exceptions are called nested exceptions. See
“Exception Entry” more information.

This occurs when the exception handler is completed, and:

« there is no pending exception with sufficient priority to be serviced
« the completed exception handler was not handling a late-arriving exception.

The processor pops the stack and restores the processor state to the state it had before the
interrupt occurred. See “Exception Return” for more information.

ATMEL 7

74

Late-arriving

Exception Entry

ATMEL

This mechanism speeds up exception servicing. On completion of an exception handler, if there
is a pending exception that meets the requirements for exception entry, the stack pop is skipped
and control transfers to the new exception handler.

This mechanism speeds up preemption. If a higher priority exception occurs during state saving
for a previous exception, the processor switches to handle the higher priority exception and initi-
ates the vector fetch for that exception. State saving is not affected by late arrival because the
state saved is the same for both exceptions. Therefore the state saving continues uninterrupted.
The processor can accept a late arriving exception until the first instruction of the exception han-
dler of the original exception enters the execute stage of the processor. On return from the
exception handler of the late-arriving exception, the normal tail-chaining rules apply.

An Exception entry occurs when there is a pending exception with sufficient priority and either
the processor is in Thread mode, or the new exception is of a higher priority than the exception
being handled, in which case the new exception preempts the original exception.

When one exception preempts another, the exceptions are nested.

Sufficient priority means that the exception has more priority than any limits set by the mask reg-
isters, see “Exception Mask Registers” . An exception with less priority than this is pending but is
not handled by the processor.

When the processor takes an exception, unless the exception is a tail-chained or a late-arriving
exception, the processor pushes information onto the current stack. This operation is referred as
stacking and the structure of eight data words is referred to as stack frame.

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

Figure 11-6. Exception Stack Frame

I Pre-IRQ top of stack

FPSCR
S15
S14
S13
S12
S11
S10

S9
S8
s7
S6
S5
S4
S3
S2
s1 P . Ll
SO ! {aligner} !
xPSR Decreasing XPSR
PC memory PC

R address R

R12 R12

R3 R3

R2 v R2

R1 R1

RO € IRQ top of stack RO < IRQ top of stack

Pre-IRQ top of stack

Exception frame with Exception frame without
floating-point storage floating-point storage

Immediately after stacking, the stack pointer indicates the lowest address in the stack frame.
The alignment of the stack frame is controlled via the STKALIGN bit of the Configuration Control
Register (CCR).

The stack frame includes the return address. This is the address of the next instruction in the
interrupted program. This value is restored to the PC at exception return so that the interrupted
program resumes.

In parallel to the stacking operation, the processor performs a vector fetch that reads the excep-
tion handler start address from the vector table. When stacking is complete, the processor starts
executing the exception handler. At the same time, the processor writes an EXC_RETURN
value to the LR. This indicates which stack pointer corresponds to the stack frame and what
operation mode the processor was in before the entry occurred.

If no higher priority exception occurs during the exception entry, the processor starts executing
the exception handler and automatically changes the status of the corresponding pending inter-
rupt to active.

If another higher priority exception occurs during the exception entry, the processor starts exe-
cuting the exception handler for this exception and does not change the pending status of the
earlier exception. This is the late arrival case.

ATMEL s

11100B-ATARM-31-Jul-12

ATMEL

Exception Return

An Exception return occurs when the processor is in Handler mode and executes one of the fol-
lowing instructions to load the EXC_RETURN value into the PC:

* an LDM or POP instruction that loads the PC

 an LDR instruction with the PC as the destination.

 a BX instruction using any register.

EXC_RETURN is the value loaded into the LR on exception entry. The exception mechanism
relies on this value to detect when the processor has completed an exception handler. The low-
est five bits of this value provide information on the return stack and processor mode. Table 11-
10 shows the EXC_RETURN values with a description of the exception return behavior.

All EXC_RETURN values have bits[31:5] set to one. When this value is loaded into the PC, it
indicates to the processor that the exception is complete, and the processor initiates the appro-
priate exception return sequence.

Table 11-10. Exception Return Behavior

EXC_RETURN[31:0] | Description
iFEEEEr | heutn G ander ode repion e e pon o pon i

11.4.3.8 Fault Handling
Faults are a subset of the exceptions, see “Exception Model” . The following generate a fault:
* a bus error on:
— an instruction fetch or vector table load
— a data access
« an internally-detected error such as an undefined instruction
 an attempt to execute an instruction from a memory region marked as Non-Executable (XN).
« a privilege violation or an attempt to access an unmanaged region causing an MPU fault.
Fault Types
Table 11-11 shows the types of fault, the handler used for the fault, the corresponding fault sta-

tus register, and the register bit that indicates that the fault has occurred. See “Configurable
Fault Status Register” for more information about the fault status registers.

Table 11-11. Faults

Fault Handler Bit Name Fault Status Register

Bus error on a vector read VECTTBL)
Hard fault “Hard Fault Status Register”

Fault escalated to a hard fault FORCED

76 SAMAS Series [Preliminary] m—s—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

Table 11-11. Faults (Continued)

Fault Handler Bit Name Fault Status Register
MPU or default memory map mismatch: - -
on instruction access IACCVIOL
on data access Memory DACCVIOL®
during exception stacking gilrt\agement MSTKERR ;'\:I;\:IUFSS;;Q:I eeé?sotg”Management Fault
during exception unstacking MUNSKERR
during lazy floating-point state preservation MLSPERR
Bus error: - -
during exception stacking STKERR
during exception unstacking UNSTKERR
during instruction prefetch Bus fault IBUSERR
“BFSR: Bus Fault Status Subregister”
during lazy floating-point state preservation LSPERR
Precise data bus error PRECISERR
Imprecise data bus error IMPRECISERR
Attempt to access a coprocessor NOCP
Undefined instruction UNDEFINSTR
Attempt to enter an invalid instruction set state® INVSTATE
Usage fault “UFSR: Usage Fault Status Subregister”
Invalid EXC_RETURN value INVPC
lllegal unaligned load or store UNALIGNED
Divide By 0 DIVBYZERO

Notes: 1. Occurs on an access to an XN region even if the processor does not include an MPU or the MPU is disabled.

2. Attempt to use an instruction set other than the Thumb instruction set, or return to a non load/store-multiple instruction with

ICI continuation.
Fault Escalation and Hard Faults

All faults exceptions except for hard fault have configurable exception priority, see “System Han-
dler Priority Registers” . The software can disable the execution of the handlers for these faults,
see “System Handler Control and State Register” .

Usually, the exception priority, together with the values of the exception mask registers, deter-
mines whether the processor enters the fault handler, and whether a fault handler can preempt
another fault handler, as described in “Exception Model” .

In some situations, a fault with configurable priority is treated as a hard fault. This is called prior-
ity escalation, and the fault is described as escalated to hard fault. Escalation to hard fault

occurs when:

« A fault handler causes the same kind of fault as the one it is servicing. This escalation to hard
fault occurs because a fault handler cannot preempt itself; it must have the same priority as
the current priority level.

« A fault handler causes a fault with the same or lower priority as the fault it is servicing. This is

because the handler for the new fault cannot preempt the currently executing fault handler.
» An exception handler causes a fault for which the priority is the same as or lower than the

currently executing exception.

11100B-ATARM-31-Jul-12

ATMEL

77

78

ATMEL

» A fault occurs and the handler for that fault is not enabled.

If a bus fault occurs during a stack push when entering a bus fault handler, the bus fault does not
escalate to a hard fault. This means that if a corrupted stack causes a fault, the fault handler
executes even though the stack push for the handler failed. The fault handler operates but the
stack contents are corrupted.

Note: Only Reset and NMI can preempt the fixed priority hard fault. A hard fault can preempt any excep-
tion other than Reset, NMI, or another hard fault.

Fault Status Registers and Fault Address Registers

The fault status registers indicate the cause of a fault. For bus faults and memory management
faults, the fault address register indicates the address accessed by the operation that caused
the fault, as shown in Table 11-12.

Table 11-12. Fault Status and Fault Address Registers

Status Register | Address
Handler Name Register Name Register Description

Hard fault SCB_HFSR - “Hard Fault Status Register”

“MMFSR: Memory Management Fault
MMFSR SCB_MMFAR Status Subregister”
“MemManage Fault Address Register”

Memory
management fault

“BFSR: Bus Fault Status Subregister”

Bus fault BFSR SCB_BFAR .
- “Bus Fault Address Register”

“UFSR: Usage Fault Status

Usage fault UFSR - Subregister”

Lockup

The processor enters a lockup state if a hard fault occurs when executing the NMI or hard fault
handlers. When the processor is in lockup state, it does not execute any instructions. The pro-
cessor remains in lockup state until either:

e it is reset

* an NMI occurs

« it is halted by a debugger.

Note: If the lockup state occurs from the NMI handler, a subsequent NMI does not cause the processor
to leave the lockup state.

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

11.5 Power Management
The Cortex-M4 processor sleep modes reduce the power consumption:

« Sleep mode stops the processor clock
» Deep sleep mode stops the system clock and switches off the PLL and flash memory.
The SLEEPDEEP bit of the SCR selects which sleep mode is used; see “System Control Regis-

ter”.

This section describes the mechanisms for entering sleep mode, and the conditions for waking
up from sleep mode.

1151 Entering Sleep Mode
This section describes the mechanisms software can use to put the processor into sleep mode.

The system can generate spurious wakeup events, for example a debug operation wakes up the
processor. Therefore, the software must be able to put the processor back into sleep mode after
such an event. A program might have an idle loop to put the processor back to sleep mode.

11511 Wait for Interrupt
The wait for interrupt instruction, WFI, causes immediate entry to sleep mode. When the proces-
sor executes a WFI instruction it stops executing instructions and enters sleep mode. See “WFI”
for more information.

11.51.2 Wait For Event
The wait for event instruction, WFE, causes entry to sleep mode conditional on the value of an
one-bit event register. When the processor executes a WFE instruction, it checks this register:

« if the register is 0, the processor stops executing instructions and enters sleep mode

« if the register is 1, the processor clears the register to 0 and continues executing instructions
without entering sleep mode.

See “WFE” for more information.

11.5.1.3 Sleep-On-Exit
If the SLEEPONEXIT bit of the SCR is set to 1 when the processor completes the execution of
an exception handler, it returns to Thread mode and immediately enters sleep mode. Use this
mechanism in applications that only require the processor to run when an exception occurs.

11.5.2 Wakeup From Sleep Mode
The conditions for the processor to wake up depend on the mechanism that cause it to enter
sleep mode.

115.2.1 Wakeup from WFI or Sleep-on-exit
Normally, the processor wakes up only when it detects an exception with sufficient priority to
cause exception entry.

Some embedded systems might have to execute system restore tasks after the processor
wakes up, and before it executes an interrupt handler. To achieve this, set the PRIMASK bit to 1
and the FAULTMASK bit to O. If an interrupt arrives that is enabled and has a higher priority than
the current exception priority, the processor wakes up but does not execute the interrupt handler
until the processor sets PRIMASK to zero. For more information about PRIMASK and FAULT-
MASK, see “Exception Mask Registers” .

ATMEL 7

11100B-ATARM-31-Jul-12

ATMEL

11.5.2.2 Wakeup from WFE
The processor wakes up if:

« it detects an exception with sufficient priority to cause an exception entry
« it detects an external event signal. See “External Event Input”
« in a multiprocessor system, another processor in the system executes an SEV instruction.
In addition, if the SEVONPEND bit in the SCR is set to 1, any new pending interrupt triggers an

event and wakes up the processor, even if the interrupt is disabled or has insufficient priority to
cause an exception entry. For more information about the SCR, see “System Control Register” .

11.5.2.3 External Event Input

The processor provides an external event input signal. Peripherals can drive this signal, either to
wake the processor from WFE, or to set the internal WFE event register to 1 to indicate that the
processor must not enter sleep mode on a later WFE instruction. See “Wait For Event” for more
information.

1153 Power Management Programming Hints

ISO/IEC C cannot directly generate the WFI and WFE instructions. The CMSIS provides the fol-
lowing functions for these instructions:

void _ WFE(void) // Wait for Event
void _ WE(void) // Wait for Interrupt

g0 SAMAS Series [Preliminary] m—s——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

11.6 Cortex-M4 Instruction Set

116.1 Instruction Set Summary
The processor implements a version of the Thumb instruction set. Table 11-13 lists the sup-

ported instructions.

« angle brackets, <>, enclose alternative forms of the operand

« braces, {}, enclose optional operands

« the Operands column is not exhaustive

* Op2 is a flexible second operand that can be either a register or a constant
e most instructions can use an optional condition code suffix.

For more information on the instructions and operands, see the instruction descriptions.

Table 11-13. Cortex-M4 Instructions

Mnemonic Operands Description Flags
ADC, ADCS {Rd,} Rn, Op2 Add with Carry N,Z,C,V
ADD, ADDS {Rd,} Rn, Op2 Add N,Z,CV
ADD, ADDW {Rd,} Rn, #imm12 Add N,Z,C\V
ADR Rd, label Load PC-relative address -

AND, ANDS {Rd,} Rn, Op2 Logical AND N,Z,C
ASR, ASRS Rd, Rm, <Rs|#n> Arithmetic Shift Right N,zZ,C

B label Branch -

BFC Rd, #lsb, #width Bit Field Clear -

BFI Rd, Rn, #lsb, #width Bit Field Insert -

BIC, BICS {Rd,} Rn, Op2 Bit Clear N,Z,C
BKPT #imm Breakpoint -

BL label Branch with Link -

BLX Rm Branch indirect with Link -

BX Rm Branch indirect -

CBNZ Rn, label Compare and Branch if Non Zero -

CcBz Rn, label Compare and Branch if Zero -
CLREX - Clear Exclusive -

CLz Rd, Rm Count leading zeros -

CMN Rn, Op2 Compare Negative N,Z,C,V
CMP Rn, Op2 Compare N,Z,C,V
CPSID i Change Processor State, Disable Interrupts -
CPSIE i Change Processor State, Enable Interrupts -

DMB - Data Memory Barrier -

DSB - Data Synchronization Barrier -

EOR, EORS {Rd,} Rn, Op2 Exclusive OR N,zZ,C
ISB - Instruction Synchronization Barrier -

11100B-ATARM-31-Jul-12

ATMEL

81

Table 11-13. Cortex-M4 Instructions (Continued)

Mnemonic Operands Description Flags
IT - I-Then condition block -
LDM Rn{!}, reglist Load Multiple registers, increment after -
LDMDB, LDMEA Rn{!}, reglist Load Multiple registers, decrement before -
LDMFD, LDMIA Rn{1}, reglist Load Multiple registers, increment after -
LDR Rt, [Rn, #offset] Load Register with word -
LDRB, LDRBT Rt, [Rn, #offset] Load Register with byte -
LDRD Rt, Rt2, [Rn, #offset] Load Register with two bytes -
LDREX Rt, [Rn, #offset] Load Register Exclusive -
LDREXB Rt, [Rn] Load Register Exclusive with byte -
LDREXH Rt, [Rn] Load Register Exclusive with halfword -
LDRH, LDRHT Rt, [Rn, #offset] Load Register with halfword -
LDRSB, DRSBT Rt, [Rn, #offset] Load Register with signed byte -
LDRSH, LDRSHT Rt, [Rn, #offset] Load Register with signed halfword -
LDRT Rt, [Rn, #offset] Load Register with word -

LSL, LSLS Rd, Rm, <Rs|#n> Logical Shift Left N,Z,C
LSR, LSRS Rd, Rm, <Rs|#n> Logical Shift Right N,Z,C
MLA Rd, Rn, Rm, Ra Multiply with Accumulate, 32-bit result -
MLS Rd, Rn, Rm, Ra Multiply and Subtract, 32-bit result -
MOV, MOVS Rd, Op2 Move N,Z,C
MOVT Rd, #imm16 Move Top -
MOVW, MOV Rd, #imm16 Move 16-bit constant N,Z,C
MRS Rd, spec_reg Move from special register to general register -
MSR spec_reg, Rm Move from general register to special register N,Z,C\V
MUL, MULS {Rd,} Rn, Rm Multiply, 32-bit result N,Z
MVN, MVNS Rd, Op2 Move NOT N,zZ,C
NOP - No Operation -
ORN, ORNS {Rd,} Rn, Op2 Logical OR NOT N,Z,C
ORR, ORRS {Rd,} Rn, Op2 Logical OR N,Z,C
PKHTB, PKHBT {Rd,} Rn, Rm, Op2 Pack Halfword -
POP reglist Pop registers from stack -
PUSH reglist Push registers onto stack -
QADD {Rd,} Rn, Rm Saturating double and Add Q
QADD16 {Rd,} Rn, Rm Saturating Add 16 -
QADDS8 {Rd,} Rn, Rm Saturating Add 8 -
QASX {Rd,} Rn, Rm Saturating Add and Subtract with Exchange -
QDADD {Rd,} Rn, Rm Saturating Add Q

g2 SAMA4S Series [Preliminary] m—s——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

Table 11-13. Cortex-M4 Instructions (Continued)

Mnemonic Operands Description Flags
QDSuUB {Rd,} Rn, Rm Saturating double and Subtract Q
QSAX {Rd,} Rn, Rm Saturating Subtract and Add with Exchange -
QSuUB {Rd,} Rn, Rm Saturating Subtract Q
QSuUB16 {Rd,} Rn, Rm Saturating Subtract 16 -
QsSuBS8 {Rd,} Rn, Rm Saturating Subtract 8 -
RBIT Rd, Rn Reverse Bits -
REV Rd, Rn Reverse byte order in a word -
REV16 Rd, Rn Reverse byte order in each halfword -
REVSH Rd, Rn Reverse byte order in bottom halfword and sign extend -
ROR, RORS Rd, Rm, <Rs|#n> Rotate Right N,Z,C
RRX, RRXS Rd, Rm Rotate Right with Extend N,Z,C
RSB, RSBS {Rd,} Rn, Op2 Reverse Subtract N,Z,C,V
SADD16 {Rd,} Rn, Rm Signed Add 16 GE
SADDS8 {Rd,} Rn, Rm Signed Add 8 and Subtract with Exchange GE
SASX {Rd,} Rn, Rm Signed Add GE
SBC, SBCS {Rd,} Rn, Op2 Subtract with Carry N,Z,C\V
SBFX Rd, Rn, #Isb, #width Signed Bit Field Extract -
SDIV {Rd,} Rn, Rm Signed Divide -
SEL {Rd,} Rn, Rm Select bytes -
SEV - Send Event -
SHADD16 {Rd,} Rn, Rm Signed Halving Add 16 -
SHADDS {Rd,} Rn, Rm Signed Halving Add 8 -
SHASX {Rd,} Rn, Rm Signed Halving Add and Subtract with Exchange -
SHSAX {Rd,} Rn, Rm Signed Halving Subtract and Add with Exchange -
SHSUB16 {Rd,} Rn, Rm Signed Halving Subtract 16 -
SHSUBS8 {Rd,} Rn, Rm Signed Halving Subtract 8 -
SMLABB, SMLABT, Rd, Rn, Rm, Ra Signed Multiply Accumulate Long (halfwords) Q
SMLATB, SMLATT

SMLAD, SMLADX Rd, Rn, Rm, Ra Signed Multiply Accumulate Dual Q
SMLAL RdLo, RdHi, Rn, Rm Signed Multiply with Accumulate (32 x 32 + 64), 64-bit result -
SMLALBB, SMLALBT, | RdLo, RdHi, Rn, Rm Signed Multiply Accumulate Long, halfwords -
SMLALTB, SMLALTT

SMLALD, SMLALDX RdLo, RdHi, Rn, Rm Signed Multiply Accumulate Long Dual -
SMLAWB, SMLAWT Rd, Rn, Rm, Ra Signed Multiply Accumulate, word by halfword Q
SMLSD Rd, Rn, Rm, Ra Signed Multiply Subtract Dual Q
SMLSLD RdLo, RdHi, Rn, Rm Signed Multiply Subtract Long Dual

SMMLA Rd, Rn, Rm, Ra Signed Most significant word Multiply Accumulate -
SMMLS, SMMLR Rd, Rn, Rm, Ra Signed Most significant word Multiply Subtract -
SMMUL, SMMULR {Rd,} Rn, Rm Signed Most significant word Multiply -
SMUAD {Rd.,} Rn, Rm Signed dual Multiply Add Q

11100B-ATARM-31-Jul-12

ATMEL

83

ATMEL

Table 11-13. Cortex-M4 Instructions (Continued)

Mnemonic Operands Description Flags
SMULBB, SMULBT {Rd,} Rn, Rm Signed Multiply (halfwords) -
SMULTB, SMULTT

SMULL RdLo, RdHi, Rn, Rm Signed Multiply (32 x 32), 64-bit result -
SMULWB, SMULWT {Rd,} Rn, Rm Signed Multiply word by halfword -
SMUSD, SMUSDX {Rd,} Rn, Rm Signed dual Multiply Subtract -
SSAT Rd, #n, Rm {,shift #s} Signed Saturate Q
SSAT16 Rd, #n, Rm Signed Saturate 16 Q
SSAX {Rd,} Rn, Rm Signed Subtract and Add with Exchange GE
SSUB16 {Rd.,} Rn, Rm Signed Subtract 16 -
SSUBS8 {Rd,} Rn, Rm Signed Subtract 8 -
ST™M Rn{!}, reglist Store Multiple registers, increment after -
STMDB, STMEA Rn{}, reglist Store Multiple registers, decrement before -
STMFD, STMIA Rn{'}, reglist Store Multiple registers, increment after -
STR Rt, [Rn, #offset] Store Register word -
STRB, STRBT Rt, [Rn, #offset] Store Register byte -
STRD Rt, Rt2, [Rn, #offset] Store Register two words -
STREX Rd, Rt, [Rn, #offset] Store Register Exclusive -
STREXB Rd, Rt, [Rn] Store Register Exclusive byte -
STREXH Rd, Rt, [Rn] Store Register Exclusive halfword -
STRH, STRHT Rt, [Rn, #offset] Store Register halfword -
STRT Rt, [Rn, #offset] Store Register word -
SUB, SUBS {Rd,} Rn, Op2 Subtract N,Z,C.V
SUB, SUBW {Rd,} Rn, #imm12 Subtract N,Z,CV
SvC #imm Supervisor Call -
SXTAB {Rd,} Rn, Rm,{,ROR #} | Extend 8 bits to 32 and add -
SXTAB16 {Rd,} Rn, Rm,{,ROR #} | Dual extend 8 bits to 16 and add -
SXTAH {Rd,} Rn, Rm,{,ROR #} | Extend 16 bits to 32 and add -
SXTB16 {Rd,} Rm {,ROR #n} Signed Extend Byte 16 -
SXTB {Rd,} Rm {,ROR #n} Sign extend a byte -
SXTH {Rd,} Rm {,ROR #n} Sign extend a halfword -

TBB [Rn, Rm] Table Branch Byte -
TBH [Rn, Rm, LSL #1] Table Branch Halfword -
TEQ Rn, Op2 Test Equivalence N,Z,C
TST Rn, Op2 Test N,Z,C
UADD16 {Rd.,} Rn, Rm Unsigned Add 16 GE
UADDS8 {Rd,} Rn, Rm Unsigned Add 8 GE
USAX {Rd.,} Rn, Rm Unsigned Subtract and Add with Exchange GE
UHADD16 {Rd,} Rn, Rm Unsigned Halving Add 16 -
UHADDS {Rd,} Rn, Rm Unsigned Halving Add 8 -
UHASX {Rd,} Rn, Rm Unsigned Halving Add and Subtract with Exchange -
UHSAX {Rd,} Rn, Rm Unsigned Halving Subtract and Add with Exchange -

s« SAMAS Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

Table 11-13. Cortex-M4 Instructions (Continued)

Mnemonic Operands Description Flags
UHSUB16 {Rd,} Rn, Rm Unsigned Halving Subtract 16 -
UHSUBS8 {Rd,} Rn, Rm Unsigned Halving Subtract 8 -
UBFX Rd, Rn, #lsb, #width Unsigned Bit Field Extract -
ubIV {Rd.,} Rn, Rm Unsigned Divide -
UMAAL RdLo, RdHi, Rn, Rm Unsigned Multiply Accumulate Accumulate Long (32 x 32 + 32 +32), | -
64-bit result
UMLAL RdLo, RdHi, Rn, Rm g;s)'(ggg‘i'\g:;t"rgz_‘k’)"i'tﬂseéﬁﬁum”'ate -
UMULL RdLo, RdHi, Rn, Rm Unsigned Multiply (32 x 32), 64-bit result -
UQADD16 {Rd.,} Rn, Rm Unsigned Saturating Add 16 -
UQADDS8 {Rd,} Rn, Rm Unsigned Saturating Add 8 -
UQASX {Rd,} Rn, Rm Unsigned Saturating Add and Subtract with Exchange -
UQSAX {Rd,} Rn, Rm Unsigned Saturating Subtract and Add with Exchange -
UQSUB16 {Rd,} Rn, Rm Unsigned Saturating Subtract 16 -
UQSUBS {Rd,} Rn, Rm Unsigned Saturating Subtract 8 -
USADS8 {Rd,} Rn, Rm Unsigned Sum of Absolute Differences -
USADAS {Rd,} Rn, Rm, Ra Unsigned Sum of Absolute Differences and Accumulate -
USAT Rd, #n, Rm {,shift #s} Unsigned Saturate Q
USAT16 Rd, #n, Rm Unsigned Saturate 16 Q
UASX {Rd,} Rn, Rm Unsigned Add and Subtract with Exchange GE
USUB16 {Rd,} Rn, Rm Unsigned Subtract 16 GE
USuUBS8 {Rd,} Rn, Rm Unsigned Subtract 8 GE
UXTAB {Rd,} Rn, Rm,{,ROR #} | Rotate, extend 8 bits to 32 and Add -
UXTAB16 {Rd,} Rn, Rm,{,ROR #} | Rotate, dual extend 8 bits to 16 and Add -
UXTAH {Rd,} Rn, Rm,{,ROR #} | Rotate, unsigned extend and Add Halfword -
UXTB {Rd,} Rm {,ROR #n} Zero extend a byte -
UXTB16 {Rd,} Rm {,ROR #n} Unsigned Extend Byte 16 -
UXTH {Rd,} Rm {,ROR #n} Zero extend a halfword -
WFE - Wait For Event -
WFI - Wait For Interrupt -

11.6.2 CMSIS Functions
ISO/IEC cannot directly access some Cortex-M4 instructions. This section describes intrinsic
functions that can generate these instructions, provided by the CMIS and that might be provided
by a C compiler. If a C compiler does not support an appropriate intrinsic function, the user might
have to use inline assembler to access some instructions.

ATMEL L

11100B-ATARM-31-Jul-12

ATMEL

The CMSIS provides the following intrinsic functions to generate instructions that ISO/IEC C
code cannot directly access:

Table 11-14. CMSIS Functions to Generate some Cortex-M4 Instructions

Instruction CMSIS Function

CPSIE | void __enable_irg(void)

CPSID | void __disable_irq(void)

CPSIE F void __enable_fault_irg(void)

CPSID F void __disable_fault_irq(void)

ISB void __ISB(void)

DSB void __DSB(void)

DMB void __DMB(void)

REV uint32_t _ REV(uint32_t int value)
REV16 uint32_t _ REV16(uint32_t int value)
REVSH uint32_t __ REVSH(uint32_t int value)
RBIT uint32_t __ RBIT(uint32_t int value)
SEV void __SEV(void)

WFE void __ WFE(void)

WFI void __ WFI(void)

The CMSIS also provides a number of functions for accessing the special registers using MRS
and MSR instructions:

Table 11-15. CMSIS Intrinsic Functions to Access the Special Registers

Special Register Access CMSIS Function
Read uint32_t __get PRIMASK (void)
PRIMASK
Write void __set PRIMASK (uint32_t value)
Read uint32_t __get FAULTMASK (void)
FAULTMASK : : -
Write void __set FAULTMASK (uint32_t value)
Read uint32_t __get BASEPRI (void)
BASEPRI : -)
Write void __set BASEPRI (uint32_t value)
Read uint32_t __get. CONTROL (void)
CONTROL : : :
Write void __set CONTROL (uint32_t value)
Read uint32_t __get MSP (void)
MSP
Write void __set_MSP (uint32_t TopOfMainStack)
Read uint32_t __get_ PSP (void)
PSP
Write void __set PSP (uint32_t TopOfProcStack)

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

11.6.3 Instruction Descriptions

11.6.3.1 Operands

An instruction operand can be an ARM register, a constant, or another instruction-specific
parameter. Instructions act on the operands and often store the result in a destination register.
When there is a destination register in the instruction, it is usually specified before the operands.

Operands in some instructions are flexible, can either be a register or a constant. See “Flexible
Second Operand” .

11.6.3.2 Restrictions when Using PC or SP

Many instructions have restrictions on whether the Program Counter (PC) or Stack Pointer (SP)
for the operands or destination register can be used. See instruction descriptions for more
information.

Note: Bit[0] of any address written to the PC with a BX, BLX, LDM, LDR, or POP instruction must be 1
for correct execution, because this bit indicates the required instruction set, and the Cortex-M4
processor only supports Thumb instructions.

11.6.3.3 Flexible Second Operand

Constant

Instruction Substitution

11100B-ATARM-31-Jul-12

Many general data processing instructions have a flexible second operand. This is shown as
Operand? in the descriptions of the syntax of each instruction.

Operand?2 can be a:

* “Constant”
* “Register with Optional Shift”

Specify an Operand2 constant in the form:

#const ant
where constant can be:
 any constant that can be produced by shifting an 8-bit value left by any number of bits within
a 32-bit word
« any constant of the form 0x00XY00XY
« any constant of the form OxXY00XY00
« any constant of the form OxXYXYXYXY.

Note: In the constants shown above, X and Y are hexadecimal digits.

In addition, in a small number of instructions, constant can take a wider range of values.
These are described in the individual instruction descriptions.

When an Operand2 constant is used with the instructions MOVS, MVNS, ANDS, ORRS, ORNS,
EORS, BICS, TEQ or TST, the carry flag is updated to bit[31] of the constant, if the constant is
greater than 255 and can be produced by shifting an 8-bit value. These instructions do not affect
the carry flag if Operand2 is any other constant.

The assembler might be able to produce an equivalent instruction in cases where the user spec-
ifies a constant that is not permitted. For example, an assembler might assemble the instruction
CMP Rd, #OxFFFFFFFE as the equivalent instruction CMN Rd, #0x2.

ATMEL o

Register with Optional Shift

11.6.34

ASR

88

Specify an Operand? register in the form:

Rm{, shift}
where:
Rm is the register holding the data for the second operand.
shift is an optional shift to be applied to Rm. It can be one of:
ASR #n arithmetic shift right n bits, 1 <n <32.
LSL #n logical shift left n bits, 1 <n <31.
LSR #n logical shift right n bits, 1 <n <32.
ROR #n rotate right n bits, 1 <n <31.
RRX rotate right one bit, with extend.

- if omitted, no shift occurs, equivalent to LSL #0.
If the user omits the shift, or specifies LSL #0, the instruction uses the value in Rm.

If the user specifies a shift, the shift is applied to the value in Rm, and the resulting 32-bit value
is used by the instruction. However, the contents in the register Rm remains unchanged. Speci-
fying a register with shift also updates the carry flag when used with certain instructions. For
information on the shift operations and how they affect the carry flag, see “Flexible Second
Operand” .

Shift Operations

Register shift operations move the bits in a register left or right by a specified number of bits, the
shift length. Register shift can be performed:

« Directly by the instructions ASR, LSR, LSL, ROR, and RRX, and the result is written to a
destination register

« During the calculation of Operand?2 by the instructions that specify the second operand as a
register with shift. See “Flexible Second Operand” . The result is used by the instruction.

The permitted shift lengths depend on the shift type and the instruction. If the shift length is 0, no
shift occurs. Register shift operations update the carry flag except when the specified shift length
is 0. The following sub-sections describe the various shift operations and how they affect the
carry flag. In these descriptions, Rm is the register containing the value to be shifted, and n is
the shift length.

Arithmetic shift right by n bits moves the left-hand 32-n bits of the register, Rm, to the right by n
places, into the right-hand 32-n bits of the result. And it copies the original bit[31] of the register
into the left-hand n bits of the result. See Figure 11-7.

The ASR #n operation can be used to divide the value in the register Rm by 2", with the result
being rounded towards negative-infinity.

When the instruction is ASRS or when ASR #n is used in Operand2 with the instructions MOVS,
MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit
shifted out, bit[n-1], of the register Rm.

« If nis 32 or more, then all the bits in the result are set to the value of bit[31] of Rm.

« If nis 32 or more and the carry flag is updated, it is updated to the value of bit[31] of Rm.

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

SAMA4S Series [Preliminary]

Figure 11-7. ASR #3
Carry

31 51413]|2(1(0 |—:|

AEEE [LEFT

LSR
Logical shift right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n
places, into the right-hand 32-n bits of the result. And it sets the left-hand n bits of the result to 0.
See Figure 11-8.
The LSR #n operation can be used to divide the value in the register Rm by 2", if the value is
regarded as an unsigned integer.
When the instruction is LSRS or when LSR #n is used in Operand2 with the instructions MOVS,
MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit
shifted out, bit[n-1], of the register Rm.
« If nis 32 or more, then all the bits in the result are cleared to 0.
« If nis 33 or more and the carry flag is updated, it is updated to 0.
Figure 11-8. LSR #3
Carry
000 Flag
Y vy
31 5|4(3[2f1]0 D
CF 17 EHEE
LSL

Logical shift left by n bits moves the right-hand 32-n bits of the register Rm, to the left by n
places, into the left-hand 32-n bits of the result. And it sets the right-hand n bits of the result to 0.
See Figure 11-9.

The LSL #n operation can be used to multiply the value in the register Rm by 2", if the value is
regarded as an unsigned integer or a two’s complement signed integer. Overflow can occur
without warning.

When the instruction is LSLS or when LSL #n, with non-zero n, is used in Operand2 with the
instructions MOVS, MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is
updated to the last bit shifted out, bit[32-n], of the register Rm. These instructions do not affect
the carry flag when used with LSL #0.

« If nis 32 or more, then all the bits in the result are cleared to 0.
« If nis 33 or more and the carry flag is updated, it is updated to O.

ATMEL 5

11100B-ATARM-31-Jul-12

ROR

RRX

90

ATMEL

Figure 11-9. LSL #3

« o —

31 5(4(3

o L TTT]

[
N leo—
o leo—

Rotate right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n places,
into the right-hand 32-n bits of the result. And it moves the right-hand n bits of the register into
the left-hand n bits of the result. See Figure 11-10.

When the instruction is RORS or when ROR #n is used in Operand2 with the instructions MOVS,
MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit
rotation, bit[n-1], of the register Rm.

« If nis 32, then the value of the result is same as the value in Rm, and if the carry flag is
updated, it is updated to bit[31] of Rm.

* ROR with shift length, n, more than 32 is the same as ROR with shift length n-32.

Figure 11-10. ROR #3

AEEE [T

Rotate right with extend moves the bits of the register Rm to the right by one bit. And it copies
the carry flag into bit[31] of the result. See Figure 11-11.

When the instruction is RRXS or when RRX is used in Operand2 with the instructions MOVS,
MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to bit[0] of
the register Rm.

Figure 11-11. RRX

Carry
Flag

31|30 1{0

AT .

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

11.6.3.5 Address Alignment
An aligned access is an operation where a word-aligned address is used for a word, dual word,
or multiple word access, or where a halfword-aligned address is used for a halfword access.
Byte accesses are always aligned.

The Cortex-M4 processor supports unaligned access only for the following instructions:

* LDR, LDRT

* LDRH, LDRHT

* LDRSH, LDRSHT
* STR, STRT

* STRH, STRHT

All other load and store instructions generate a usage fault exception if they perform an
unaligned access, and therefore their accesses must be address-aligned. For more information
about usage faults, see “Fault Handling” .

Unaligned accesses are usually slower than aligned accesses. In addition, some memory
regions might not support unaligned accesses. Therefore, ARM recommends that programmers
ensure that accesses are aligned. To avoid accidental generation of unaligned accesses, use
the UNALIGN_TRP bit in the Configuration and Control Register to trap all unaligned accesses,
see “Configuration and Control Register” .

11.6.3.6 PC-relative Expressions
A PC-relative expression or label is a symbol that represents the address of an instruction or lit-
eral data. It is represented in the instruction as the PC value plus or minus a numeric offset. The
assembler calculates the required offset from the label and the address of the current instruc-
tion. If the offset is too big, the assembler produces an error.

 For B, BL, CBNZ, and CBZ instructions, the value of the PC is the address of the current
instruction plus 4 bytes.

« For all other instructions that use labels, the value of the PC is the address of the current
instruction plus 4 bytes, with bit[1] of the result cleared to 0 to make it word-aligned.

 Your assembler might permit other syntaxes for PC-relative expressions, such as a label plus
or minus a number, or an expression of the form [PC, #numberl].

11.6.3.7 Conditional Execution
Most data processing instructions can optionally update the condition flags in the Application
Program Status Register (APSR) according to the result of the operation, see “Application Pro-
gram Status Register” . Some instructions update all flags, and some only update a subset. If a
flag is not updated, the original value is preserved. See the instruction descriptions for the flags
they affect.

An instruction can be executed conditionally, based on the condition flags set in another instruc-
tion, either:

» immediately after the instruction that updated the flags

« after any number of intervening instructions that have not updated the flags.

Conditional execution is available by using conditional branches or by adding condition code
suffixes to instructions. See Table 11-16 for a list of the suffixes to add to instructions to make
them conditional instructions. The condition code suffix enables the processor to test a condition
based on the flags. If the condition test of a conditional instruction fails, the instruction:

ATMEL o

11100B-ATARM-31-Jul-12

ATMEL

« does not execute

« does not write any value to its destination register
« does not affect any of the flags

« does not generate any exception.

Conditional instructions, except for conditional branches, must be inside an If-Then instruction
block. See *” for more information and restrictions when using the IT instruction. Depending on
the vendor, the assembler might automatically insert an IT instruction if there are conditional
instructions outside the IT block.

The CBZ and CBNZ instructions are used to compare the value of a register against zero and
branch on the result.

This section describes:

« “Condition Flags”
« “Condition Code Suffixes” .
Condition Flags

The APSR contains the following condition flags:

N Set to 1 when the result of the operation was negative, cleared to 0 otherwise.
4 Set to 1 when the result of the operation was zero, cleared to 0 otherwise.

C Set to 1 when the operation resulted in a carry, cleared to 0 otherwise.

\% Set to 1 when the operation caused overflow, cleared to 0 otherwise.

For more information about the APSR, see “Program Status Register” .
A carry occurs:

« if the result of an addition is greater than or equal to 232

« if the result of a subtraction is positive or zero

« as the result of an inline barrel shifter operation in a move or logical instruction.
An overflow occurs when the sign of the result, in bit[31], does not match the sign of the result,
had the operation been performed at infinite precision, for example:

« if adding two negative values results in a positive value

« if adding two positive values results in a negative value

« if subtracting a positive value from a negative value generates a positive value

« if subtracting a negative value from a positive value generates a negative value.
The Compare operations are identical to subtracting, for CMP, or adding, for CMN, except that
the result is discarded. See the instruction descriptions for more information.

Note: Most instructions update the status flags only if the S suffix is specified. See the instruction
descriptions for more information.

Condition Code Suffixes

The instructions that can be conditional have an optional condition code, shown in syntax
descriptions as {cond}. Conditional execution requires a preceding IT instruction. An instruction
with a condition code is only executed if the condition code flags in the APSR meet the specified
condition. Table 11-16 shows the condition codes to use.

92 SAMA4S Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

A conditional execution can be used with the IT instruction to reduce the number of branch
instructions in code.

Table 11-16 also shows the relationship between condition code suffixes and the N, Z, C, and V

flags.
Table 11-16. Condition Code Suffixes
Suffix Flags Meaning
EQ z=1 Equal
NE Z=0 Not equal
(H:g or c=1 Higher or same, unsigned >
Eg or Cc=0 Lower, unsigned <
Ml N=1 Negative
PL N=0 Positive or zero
VS V=1 Overflow
vC V=0 No overflow
HI C=1landZ=0 Higher, unsigned >
LS C=0or zZz=1 Lower or same, unsigned <
GE N=V Greater than or equal, signed >
LT N!=V Less than, signed <
GT Z=0and N=V Greater than, signed >
LE Z=1landN'! =V | Lessthan or equal, signed <
AL Can have any Alwa_y§ This is the default when no suffix is
value specified.

Absolute Value

The example below shows the use of a conditional instruction to find the absolute value of a
number. RO = ABS(R1).

MOVS RO, R1 ; RO = Rl, setting flags
I T M ; I Tinstruction for the negative condition
RSBM RO, R1, #0 ; If negative, RO = -Rl

Compare and Update Value

The example below shows the use of conditional instructions to update the value of R4 if the
signed values RO is greater than R1 and R2 is greater than R3.

CWP RO, R1 ; Conmpare RO and R1, setting flags
ITT GT ; I Tinstruction for the two GI conditions
CMPGT R2, R3 ; If "greater than', conpare R2 and R3, setting fl ags
MOVGT R4, R5 ; If still '"greater than', do R4 = RS
11.6.3.8 Instruction Width Selection

There are many instructions that can generate either a 16-bit encoding or a 32-bit encoding
depending on the operands and destination register specified. For some of these instructions,

ATMEL o

11100B-ATARM-31-Jul-12

ATMEL

the user can force a specific instruction size by using an instruction width suffix. The .W suffix
forces a 32-bit instruction encoding. The .N suffix forces a 16-bit instruction encoding.

If the user specifies an instruction width suffix and the assembler cannot generate an instruction
encoding of the requested width, it generates an error.
Note: In some cases, it might be necessary to specify the .W sulffix, for example if the operand is the

label of an instruction or literal data, as in the case of branch instructions. This is because the
assembler might not automatically generate the right size encoding.

To use an instruction width suffix, place it immediately after the instruction mnemonic and condi-
tion code, if any. The example below shows instructions with the instruction width suffix.

BCS. W | abel ; creates a 32-bit instruction even for a short branch

ADDS. WR0O, RO, Rl ; creates a 32-bit instruction even though the sane
; operation can be done by a 16-bit instruction

11.6.4 Memory Access Instructions
The table below shows the memory access instructions:

Table 11-17. Memory Access Instructions

94

Mnemonic Description

ADR Load PC-relative address

CLREX Clear Exclusive

LDM{mode} Load Multiple registers

LDR{type} Load Register using immediate offset
LDR{type} Load Register using register offset
LDR{type}T Load Register with unprivileged access
LDR Load Register using PC-relative address
LDRD Load Register Dual

LDREX{type} Load Register Exclusive

POP Pop registers from stack

PUSH Push registers onto stack

STM{mode} Store Multiple registers

STR{type} Store Register using immediate offset
STR{type} Store Register using register offset
STR{type}T Store Register with unprivileged access
STREX{type} Store Register Exclusive

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

1164.1

11100B-ATARM-31-Jul-12

ADR

Load PC-relative address.

Syntax

ADR{ cond} Rd, | abel
where:
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
label is a PC-relative expression. See “PC-relative Expressions” .
Operation

ADR determines the address by adding an immediate value to the PC, and writes the result to
the destination register.

ADR produces position-independent code, because the address is PC-relative.

If ADR is used to generate a target address for a BX or BLX instruction, ensure that bit[0] of the
address generated is set to 1 for correct execution.

Values of label must be within the range of -4095 to +4095 from the address in the PC.

Note: The user might have to use the .W suffix to get the maximum offset range or to generate
addresses that are not word-aligned. See “Instruction Width Selection” .

Restrictions

Rd must not be SP and must not be PC.
Condition Flags

This instruction does not change the flags.
Examples

ADR R1, Text Message ; Wite address value of a location |abelled as
; Text Message to R1

ATMEL o

ATMEL

11.6.4.2 LDR and STR, Immediate Offset
Load and Store with immediate offset, pre-indexed immediate offset, or post-indexed immediate

offset.
Syntax
op{type}{cond} R, [Rn {, #offset}] ; inmmedi ate of fset
op{type}{cond} Rt, [Rn, #offset]! ; pre-indexed
op{type}{cond} R, [Rn], #offset ; post-indexed
opD{cond} R, Rt2, [Rn {, #offset}] ; imediate offset, two words
opD{cond} R, Rt2, [Rn, #offset]! ; pre-indexed, two words
opD{cond} Rt, Rt2, [Rn], #offset ; post-indexed, two words
where:
op is one of:
LDR Load Register.
STR Store Register.
type is one of:
B unsigned byte, zero extend to 32 bits on loads.
SB signed byte, sign extend to 32 bits (LDR only).
H unsigned halfword, zero extend to 32 bits on loads.
SH signed halfword, sign extend to 32 bits (LDR only).
- omit, for word.
cond is an optional condition code, see “Conditional Execution” .
Rt is the register to load or store.
Rn is the register on which the memory address is based.
offset is an offset from Rn. If offset is omitted, the address is the contents of Rn.
Rt2 is the additional register to load or store for two-word operations.
Operation

LDR instructions load one or two registers with a value from memory.

STR instructions store one or two register values to memory.

Load and store instructions with immediate offset can use the following addressing modes:

Offset Addressing

The offset value is added to or subtracted from the address obtained from the register Rn. The
result is used as the address for the memory access. The register Rn is unaltered. The assem-
bly language syntax for this mode is:

[Rn, #offset]

96 SAMAS Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

Pre-indexed Addressing

The offset value is added to or subtracted from the address obtained from the register Rn. The
result is used as the address for the memory access and written back into the register Rn. The
assembly language syntax for this mode is:

[Rn, #offset]!
Post-indexed Addressing

The address obtained from the register Rn is used as the address for the memory access. The
offset value is added to or subtracted from the address, and written back into the register Rn.
The assembly language syntax for this mode is:

[Rn], #offset
The value to load or store can be a byte, halfword, word, or two words. Bytes and halfwords can
either be signed or unsigned. See “Address Alignment” .

The table below shows the ranges of offset for immediate, pre-indexed and post-indexed forms.

Table 11-18. Offset Ranges

Instruction Type Immediate Offset Pre-indexed Post-indexed

Word, halfword, signed

halfword, byte, or signed byte -255 to 4095 -255 to 255 -255 to 255

multiple of 4 in the multiple of 4 in the
Two words range -1020 to range -1020 to
1020 1020

multiple of 4 in the
range -1020 to 1020

Restrictions
For load instructions:

« Rt can be SP or PC for word loads only

* Rt must be different from Rt2 for two-word loads

* Rn must be different from Rt and Rt2 in the pre-indexed or post-indexed forms.
When Rt is PC in a word load instruction:

« Bit[0] of the loaded value must be 1 for correct execution
« A branch occurs to the address created by changing bit[0] of the loaded value to O
« If the instruction is conditional, it must be the last instruction in the IT block.

For store instructions:

* Rt can be SP for word stores only

* Rt must not be PC

* Rn must not be PC

* Rn must be different from Rt and Rt2 in the pre-indexed or post-indexed forms.

ATMEL o

11100B-ATARM-31-Jul-12

Condition Flags

These instructions do not change the flags.

Examples

LDR R8, [R10] ; Loads R8 fromthe address in RI10.

LDRNE R2, [R5, #960]! ; Loads (conditionally) R2 froma word
; 960 bytes above the address in R5, and
; increnents R5 by 960.

STR R2, [R9, #const-struc] ; const-struc is an expression eval uating
; to a constant in the range 0-4095.

STRH R3, [R4], #4 ; Store R3 as halfword data into address in
; R4, then increnent R4 by 4

LDRD R8, R9, [R3, #0x20] ; Load R8 froma word 32 bytes above the

; address in R3, and load R9 froma word 36
; bytes above the address in R3

STRD RO, R1, [R8], #-16 ; Store RO to address in R8, and store Rl to
; a word 4 bytes above the address in RS,
; and then decrenent R8 by 16.

11.6.4.3 LDR and STR, Register Offset
Load and Store with register offset.

Syntax

op{type}{cond} R, [Rn, Rm{, LSL #n}]
where:
op is one of:

LDR Load Register.
STR Store Register.
type is one of:
B unsigned byte, zero extend to 32 bits on loads.
SB signed byte, sign extend to 32 bits (LDR only).
H unsigned halfword, zero extend to 32 bits on loads.
SH signed halfword, sign extend to 32 bits (LDR only).

- omit, for word.

cond is an optional condition code, see “Conditional Execution” .
Rt is the register to load or store.

Rn is the register on which the memory address is based.

Rm is a register containing a value to be used as the offset.
LSL #n is an optional shift, with n in the range 0 to 3.

Operation

LDR instructions load a register with a value from memory.

STR instructions store a register value into memory.

¢ SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

STR RO,

LDRSB RO,

STR RO,
11.6.4.4

11100B-ATARM-31-Jul-12

The memory address to load from or store to is at an offset from the register Rn. The offset is
specified by the register Rm and can be shifted left by up to 3 bits using LSL.

The value to load or store can be a byte, halfword, or word. For load instructions, bytes and half-
words can either be signed or unsigned. See “Address Alignment” .

Restrictions
In these instructions:

* Rn must not be PC

* Rm must not be SP and must not be PC

* Rt can be SP only for word loads and word stores

* Rt can be PC only for word loads.
When Rt is PC in a word load instruction:

« Bit[0] of the loaded value must be 1 for correct execution, and a branch occurs to this

halfword-aligned address

« If the instruction is conditional, it must be the last instruction in the IT block.

Condition Flags

These instructions do not change the flags.

Examples

[R5, R1] ; Store value of RO into an address equal to

; sumof R5 and R1

[R5, Rl, LSL #1] ; Read byte value froman address equal to

; sumof R5 and two tines Rl, sign extended it
; to a word value and put it in RO

[Rl, R2, LSL #2] ; Stores RO to an address equal to sumof Rl

; and four tinmes R2

LDR and STR, unprivileged

Load and Store with unprivileged access.

Syntax

op{type} T{cond} Rt, [Rn {, #offset}] ; imedi ate of fset
where:
op is one of:

LDR Load Register.
STR Store Register.
type is one of:
B unsigned byte, zero extend to 32 bits on loads.
SB signed byte, sign extend to 32 bits (LDR only).
H unsigned halfword, zero extend to 32 bits on loads.
SH signed halfword, sign extend to 32 bits (LDR only).

- omit, for word.

ATMEL o

11.6.4.5

100

STRBTEQ R4,

LDRHT

Rz,

ATMEL

cond is an optional condition code, see “Conditional Execution” .
Rt is the register to load or store.

Rn is the register on which the memory address is based.
offset is an offset from Rn and can be 0 to 255.

If offset is omitted, the address is the value in Rn.
Operation

These load and store instructions perform the same function as the memory access instructions
with immediate offset, see “LDR and STR, Immediate Offset” . The difference is that these
instructions have only unprivileged access even when used in privileged software.

When used in unprivileged software, these instructions behave in exactly the same way as nor-
mal memory access instructions with immediate offset.

Restrictions
In these instructions:

* Rn must not be PC
* Rt must not be SP and must not be PC.
Condition Flags

These instructions do not change the flags.

Examples
[R7] ; Conditionally store least significant byte in
; R4 to an address in R7, with unprivil eged access
[R2, #8] ; Load hal fword value froman address equal to

sumof R2 and 8 into R2, with unprivileged access

LDR, PC-relative

Load register from memory.

Syntax
LDR{type}{cond} Rt, | abel
LDRD{cond} Rt, Rt2, |abel : Load two words
where:
type is one of:
B unsigned byte, zero extend to 32 bits.

SB signed byte, sign extend to 32 bits.
H unsigned halfword, zero extend to 32 bits.
SH signed halfword, sign extend to 32 bits.
- omit, for word.
cond is an optional condition code, see “Conditional Execution” .

Rt is the register to load or store.

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

LDR

LDRSB

Rt2 is the second register to load or store.
label is a PC-relative expression. See “PC-relative Expressions” .
Operation

LDR loads a register with a value from a PC-relative memory address. The memory address is
specified by a label or by an offset from the PC.

The value to load or store can be a byte, halfword, or word. For load instructions, bytes and half-
words can either be signed or unsigned. See “Address Alignment” .

label must be within a limited range of the current instruction. The table below shows the possi-
ble offsets between label and the PC.

Table 11-19. Offset Ranges

Instruction Type Offset Range
Word, halfword, signed halfword, byte, signed byte -4095 to 4095
Two words -1020 to 1020

The user might have to use the .W suffix to get the maximum offset range. See “Instruction
Width Selection” .

Restrictions

In these instructions:
« Rt can be SP or PC only for word loads
* Rt2 must not be SP and must not be PC

* Rt must be different from Rt2.
When Rt is PC in a word load instruction:

« hit[0] of the loaded value must be 1 for correct execution, and a branch occurs to this
halfword-aligned address
« if the instruction is conditional, it must be the last instruction in the IT block.

Condition Flags

These instructions do not change the flags.

Examples
RO, LookUpTabl e ; Load RO with a word of data from an address
; labell ed as LookUpTabl e
R7, 1 ocal data ; Load a byte value froman address | abell ed

11100B-ATARM-31-Jul-12

; as localdata, sign extend it to a word
; value, and put it in R7

AImEl@ 101

ATMEL

11.6.4.6 LDM and STM
Load and Store Multiple registers.

Syntax

op{addr _node}{cond} Rn{!}, reglist
where:
op is one of:

LDM Load Multiple registers.
STM Store Multiple registers.

addr_mode is any one of the following:

1A Increment address After each access. This is the default.
DB Decrement address Before each access.
cond is an optional condition code, see “Conditional Execution” .
Rn is the register on which the memory addresses are based.

! is an optional writeback suffix.
If I is present, the final address, that is loaded from or stored to, is written back
into Rn.

reglist is a list of one or more registers to be loaded or stored, enclosed in braces. It
can contain register ranges. It must be comma separated if it contains more
than one register or register range, see “Examples” .

LDM and LDMFD are synonyms for LDMIA. LDMFD refers to its use for popping data from Full
Descending stacks.

LDMEA is a synonym for LDMDB, and refers to its use for popping data from Empty Ascending
stacks.

STM and STMEA are synonyms for STMIA. STMEA refers to its use for pushing data onto
Empty Ascending stacks.

STMFD is s synonym for STMDB, and refers to its use for pushing data onto Full Descending
stacks

Operation

LDM instructions load the registers in reglist with word values from memory addresses based on
Rn.

STM instructions store the word values in the registers in reglist to memory addresses based on
Rn.

For LDM, LDMIA, LDMFD, STM, STMIA, and STMEA the memory addresses used for the
accesses are at 4-byte intervals ranging from Rn to Rn + 4 * (n-1), where n is the number of reg-
isters in reglist. The accesses happens in order of increasing register numbers, with the lowest
numbered register using the lowest memory address and the highest number register using the
highest memory address. If the writeback suffix is specified, the value of Rn + 4 * (n-1) is written
back to Rn.

For LDMDB, LDMEA, STMDB, and STMFD the memory addresses used for the accesses are at
4-byte intervals ranging from Rn to Rn - 4 * (n-1), where n is the number of registers in reglist.

102 SAMAS Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

The accesses happen in order of decreasing register numbers, with the highest numbered regis-
ter using the highest memory address and the lowest humber register using the lowest memory
address. If the writeback suffix is specified, the value of Rn - 4 * (n-1) is written back to Rn.

The PUSH and POP instructions can be expressed in this form. See “PUSH and POP” for
details.

Restrictions
In these instructions:

* Rn must not be PC
« reglist must not contain SP
* in any STM instruction, reglist must not contain PC
« in any LDM instruction, reglist must not contain PC if it contains LR
« reglist must not contain Rn if the writeback suffix is specified.
When PC is in reglist in an LDM instruction:
« bit[0] of the value loaded to the PC must be 1 for correct execution, and a branch occurs to
this halfword-aligned address
« if the instruction is conditional, it must be the last instruction in the IT block.
Condition Flags

These instructions do not change the flags.
Examples

LDM R8, { RO, R2, R9}
STMDB R1!, {R3-R6, R11, R12}

Incorrect examples

; LDM A is a synonymfor LDM

STM R5!, {R5, R4, RO} ; Value stored for R5 is unpredictable
LDM R2, {} ; There nust be at |east one register in the Iist

AImEl@ 103

11100B-ATARM-31-Jul-12

11.6.4.7

104

ATMEL

PUSH and POP

Push registers onto, and pop registers off a full-descending stack.
Syntax

PUSH{ cond} regli st
POP{cond} regli st

where:
cond is an optional condition code, see “Conditional Execution” .
reglist is a non-empty list of registers, enclosed in braces. It can contain register

ranges. It must be comma separated if it contains more than one register or
register range.

PUSH and POP are synonyms for STMDB and LDM (or LDMIA) with the memory addresses for
the access based on SP, and with the final address for the access written back to the SP. PUSH
and POP are the preferred mnemonics in these cases.

Operation

PUSH stores registers on the stack in order of decreasing the register numbers, with the highest
numbered register using the highest memory address and the lowest numbered register using
the lowest memory address.

POP loads registers from the stack in order of increasing register numbers, with the lowest num-
bered register using the lowest memory address and the highest numbered register using the
highest memory address.

See “LDM and STM” for more information.
Restrictions
In these instructions:

« reglist must not contain SP
« for the PUSH instruction, reglist must not contain PC
« for the POP instruction, reglist must not contain PC if it contains LR.
When PC is in reglist in a POP instruction:
« bit[0] of the value loaded to the PC must be 1 for correct execution, and a branch occurs to
this halfword-aligned address
« if the instruction is conditional, it must be the last instruction in the IT block.
Condition Flags

These instructions do not change the flags.
Examples

PUSH {RO, R4- R7}
PUSH {R2, LR}
POP { RO, R10, PC}

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

11.6.4.8 LDREX and STREX

11100B-ATARM-31-Jul-12

Load and Store Register Exclusive.
Syntax

LDREX{ cond} Rt, [Rn {, #offset}]
STREX{cond} Rd, Rt, [Rn {, #offset}]
LDREXB{ cond} Rt, [Rn]

STREXB{cond} Rd, Rt, [Rn]

LDREXH{ cond} Rt, [Rn]

STREXH{cond} Rd, Rt, [Rn]

where:
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register for the returned status.
Rt is the register to load or store.
Rn is the register on which the memory address is based.
offset is an optional offset applied to the value in Rn.

If offset is omitted, the address is the value in Rn.
Operation

LDREX, LDREXB, and LDREXH load a word, byte, and halfword respectively from a memory
address.

STREX, STREXB, and STREXH attempt to store a word, byte, and halfword respectively to a
memory address. The address used in any Store-Exclusive instruction must be the same as the
address in the most recently executed Load-exclusive instruction. The value stored by the Store-
Exclusive instruction must also have the same data size as the value loaded by the preceding
Load-exclusive instruction. This means software must always use a Load-exclusive instruction
and a matching Store-Exclusive instruction to perform a synchronization operation, see “Syn-
chronization Primitives” .

If an Store-Exclusive instruction performs the store, it writes 0 to its destination register. If it does
not perform the store, it writes 1 to its destination register. If the Store-Exclusive instruction
writes 0 to the destination register, it is guaranteed that no other process in the system has
accessed the memory location between the Load-exclusive and Store-Exclusive instructions.

For reasons of performance, keep the number of instructions between corresponding Load-
Exclusive and Store-Exclusive instruction to a minimum.

The result of executing a Store-Exclusive instruction to an address that is different from that
used in the preceding Load-Exclusive instruction is unpredictable.

Restrictions

In these instructions:

» do not use PC

* do not use SP for Rd and Rt

 for STREX, Rd must be different from both Rt and Rn

« the value of offset must be a multiple of four in the range 0-1020.

AImEl@ 105

Condition Flags

These instructions do not change the flags.

Examples
MoV R1, #Ox1 ; Initialize the ‘lock taken val ue
try
LDREX RO, [LockAddr] ; Load the |ock val ue
CWP RO, #0 : Is the |lock free?
ITT EQ ; I Tinstruction for STREXEQ and CMPEQ
STREXEQ RO, R1, [LockAddr] ; Try and claimthe |ock
CWPEQ RO, #0 ; Did this succeed?

BNE try ; No — try again
; Yes — we have the | ock

11.6.4.9 CLREX
Clear Exclusive.

Syntax
CLREX{ cond}
where:
cond is an optional condition code, see “Conditional Execution” .
Operation

Use CLREX to make the next STREX, STREXB, or STREXH instruction write 1 to its destination
register and fail to perform the store. It is useful in exception handler code to force the failure of
the store exclusive if the exception occurs between a load exclusive instruction and the match-
ing store exclusive instruction in a synchronization operation.

See “Synchronization Primitives” for more information.
Condition Flags

These instructions do not change the flags.

Examples

CLREX

106 SAMAS Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

11.6.5 General Data Processing Instructions
The table below shows the data processing instructions:

11100B-ATARM-31-Jul-12

Table 11-20. Data Processing Instructions

Mnemonic | Description

ADC Add with Carry

ADD Add

ADDW Add

AND Logical AND

ASR Arithmetic Shift Right

BIC Bit Clear

CLz Count leading zeros

CMN Compare Negative

CMP Compare

EOR Exclusive OR

LSL Logical Shift Left

LSR Logical Shift Right

MOV Move

MOVT Move Top

MOVW Move 16-bit constant

MVN Move NOT

ORN Logical OR NOT

ORR Logical OR

RBIT Reverse Bits

REV Reverse byte order in a word

REV16 Reverse byte order in each halfword
REVSH Reverse byte order in bottom halfword and sign extend
ROR Rotate Right

RRX Rotate Right with Extend

RSB Reverse Subtract

SADD16 Signed Add 16

SADDS8 Signed Add 8

SASX Signed Add and Subtract with Exchange
SSAX Signed Subtract and Add with Exchange
SBC Subtract with Carry

SHADD16 | Signed Halving Add 16

SHADDS8 Signed Halving Add 8

SHASX Signed Halving Add and Subtract with Exchange
SHSAX Signed Halving Subtract and Add with Exchange

ATMEL

107

108

ATMEL

Table 11-20. Data Processing Instructions (Continued)
Mnemonic | Description
SHSUB16 Signed Halving Subtract 16
SHSUBS8 Signed Halving Subtract 8
SSUB16 Signed Subtract 16
SSUBS8 Signed Subtract 8
SuUB Subtract
SUBW Subtract
TEQ Test Equivalence
TST Test
UADD16 Unsigned Add 16
UADDS8 Unsigned Add 8
UASX Unsigned Add and Subtract with Exchange
USAX Unsigned Subtract and Add with Exchange
UHADD16 | Unsigned Halving Add 16
UHADDS8 Unsigned Halving Add 8
UHASX Unsigned Halving Add and Subtract with Exchange
UHSAX Unsigned Halving Subtract and Add with Exchange
UHSUB16 | Unsigned Halving Subtract 16
UHSUBS Unsigned Halving Subtract 8
USADS8 Unsigned Sum of Absolute Differences
USADAS8 Unsigned Sum of Absolute Differences and Accumulate
USUB16 Unsigned Subtract 16
USuB8 Unsigned Subtract 8

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

11.6.5.1 ADD, ADC, SUB, SBC, and RSB
Add, Add with carry, Subtract, Subtract with carry, and Reverse Subtract.

Syntax
op{S}{cond} {Rd,} Rn, Operand2
op{cond} {Rd,} Rn, #i nml2 ; ADD and SUB only
where:
op is one of:
ADD Add.
ADC Add with Carry.
SUB Subtract.

SBC Subtract with Carry.
RSB Reverse Subtract.
is an optional suffix. If S is specified, the condition code flags are updated on the result

S of the operation, see “Conditional Execution” .

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register. If Rd is omitted, the destination register is Rn.

Rn is the register holding the first operand.

Operand2 is a flexible second operand. See “Flexible Second Operand” for details of the options.
imm212 is any value in the range 0-4095.

Operation

The ADD instruction adds the value of Operand2 or imm12 to the value in Rn.
The ADC instruction adds the values in Rn and Operand2, together with the carry flag.
The SUB instruction subtracts the value of Operand2 or imm12 from the value in Rn.

The SBC instruction subtracts the value of Operand2 from the value in Rn. If the carry flag is clear,
the result is reduced by one.

The RSB instruction subtracts the value in Rn from the value of Operand2. This is useful because of
the wide range of options for Operand2.

Use ADC and SBC to synthesize multiword arithmetic, see Multiword arithmetic examples on.
See also “ADR” .

Note: ADDW is equivalent to the ADD syntax that uses the imm12 operand. SUBW is equivalent to the SUB
syntax that uses the imm12 operand.

Restrictions
In these instructions:

* Operand2 must not be SP and must not be PC
* Rd can be SP only in ADD and suB, and only with the additional restrictions:
— Rn must also be SP
— any shift in Operand2 must be limited to a maximum of 3 bits using LSL
* Rn can be SP only in ADD and SuUB
* Rd can be PC only in the ADD{cond} PC, PC, Rm instruction where:
— the user must not specify the S suffix
— Rm must not be PC and must not be SP

AImEl@ 109

11100B-ATARM-31-Jul-12

ATMEL

— if the instruction is conditional, it must be the last instruction in the IT block

« with the exception of the ADD{cond} PC, PC, Rm instruction, Rn can be PC only in ADD and suB, and
only with the additional restrictions:

— the user must not specify the S suffix
— the second operand must be a constant in the range 0 to 4095.

— Note: When using the PC for an addition or a subtraction, bits[1:0] of the PC are
rounded to 0boo before performing the calculation, making the base address for the
calculation word-aligned.

— Note: To generate the address of an instruction, the constant based on the value of
the PC must be adjusted. ARM recommends to use the ADR instruction instead of
ADD or SuB with Rn equal to the PC, because the assembler automatically calculates
the correct constant for the ADR instruction.

When Rd is PC in the ADD{cond} PC, PC, Rm instruction:

« bit[0] of the value written to the PC is ignored
« a branch occurs to the address created by forcing bit[0] of that value to 0.
Condition Flags

If s is specified, these instructions update the N, Z, C and V flags according to the result.

Examples
ADD R2, Rl, R3
SUBS R8, R6, #240 ; Sets the flags on the result
RSB R4, R4, #1280 ; Subtracts contents of R4 from 1280
ADCHI R11, RO, R3 ; Only executed if Cflag set and Z

; flag clear.

Multiword arithmetic examples

The example below shows two instructions that add a 64-bit integer contained in R2 and R3 to
another 64-bit integer contained in R0 and R1, and place the result in R4 and R5.

64-bit addition example:

ADDS R4, RO, R2 ; add the least significant words
ADC R5, R1, R3 ; add the nost significant words with carry

Multiword values do not have to use consecutive registers. The example below shows instruc-
tions that subtract a 96-bit integer contained in R9, R1, and R11 from another contained in R6,
R2, and R8. The example stores the result in R6, R9, and R2.

96-bit subtraction example:

SUBS R6, R6, R9 ; subtract the least significant words
SBCS RO, R2, R1 ; subtract the nmiddle words with carry
SBC R2, R8, Rl11 ; subtract the nost significant words with carry

110 SAMAS Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

11.6.5.2 AND, ORR, EOR, BIC, and ORN
Logical AND, OR, Exclusive OR, Bit Clear, and OR NOT.

Syntax
op{S}{cond} {Rd,} Rn, Operand2
where:
op is one of:
AND logical AND.
ORR logical OR, or bit set.
EOR logical Exclusive OR.
BIC logical AND NOT, or bit clear.
ORN logical OR NOT.
is an optional suffix. If S is specified, the condition code flags are updated on the
S result of the operation, see “Conditional Execution” .
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the register holding the first operand.
is a flexible second operand. See “Flexible Second Operand” for details of the
Operand2 .
options.
Operation

The AND, EOR, and ORR instructions perform bitwise AND, Exclusive OR, and OR operations on
the values in Rn and Operand?.

The BIC instruction performs an AND operation on the bits in Rn with the complements of the cor-
responding bits in the value of Operand2.

The ORN instruction performs an OR operation on the bits in Rn with the complements of the cor-
responding bits in the value of Operand2.

Restrictions

Do not use SP and do not use PC.
Condition Flags

If s is specified, these instructions:

 update the N and Z flags according to the result
 can update the C flag during the calculation of Operand2, see “Flexible Second Operand”
« do not affect the V flag.

Examples
AND R9, R2, #OxFFOO
ORREQ R2, RO, R5
ANDS R9, R8, #0x19
ECRS R7, R11, #0x18181818
BI C RO, R1, #Oxab
ORN R7, Rl11l, Rl14, ROR #4
ORNS R7, Rl11, Rl14, ASR #32

AImEl@ 111

11100B-ATARM-31-Jul-12

11.6.5.3

112

ATMEL

ASR, LSL, LSR, ROR, and RRX

Arithmetic Shift Right, Logical Shift Left, Logical Shift Right, Rotate Right, and Rotate Right with
Extend.

Syntax

op{S}{cond} Rd, Rm Rs
op{S}{cond} Rd, Rm #n
RRX{ S} {cond} Rd, Rm

where:
op is one of:
ASR Arithmetic Shift Right.
LSL Logical Shift Left.
LSR Logical Shift Right.
ROR Rotate Right.
S is an optional suffix. If S is specified, the condition code flags are updated on the result
of the operation, see “Conditional Execution” .
Rd is the destination register.
Rm is the register holding the value to be shifted.
Rs is the register holding the shift length to apply to the value in Rm. Only the least

significant byte is used and can be in the range 0 to 255.
n is the shift length. The range of shift length depends on the instruction:
ASR shift length from 1 to 32
LSL shift length from 0 to 31
LSR shift length from 1 to 32
ROR shift length from 1 to 31.

MOVS Rd, Rm is the preferred syntax for LSLS Rd, Rm, #0.

Operation

ASR, LSL, LSR, and ROR move the bits in the register Rm to the left or right by the number of places
specified by constant n or register Rs.

RRX moves the bits in register Rm to the right by 1.

In all these instructions, the result is written to Rd, but the value in register Rm remains
unchanged. For details on what result is generated by the different instructions, see “Shift Oper-
ations” .

Restrictions

Do not use SP and do not use PC.
Condition Flags

If S is specified:

« these instructions update the N and Z flags according to the result

« the C flag is updated to the last bit shifted out, except when the shift length is 0, see “Shift
Operations” .

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

Examples
ASR R7, R8, #9 ; Arithmetic shift right by 9 bits
LSLS R1l, R2, #3 ; Logical shift left by 3 bits with flag update
LSR R4, R5, #6 ; Logical shift right by 6 bits
ROR R4, R5, R6 ; Rotate right by the value in the bottombyte of R6
RRX R4, R5 Rotate right wth extend.

11.6.5.4 CLzZ
Count Leading Zeros.
Syntax
CLZ{cond} Rd, Rm

where:

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rm is the operand register.

Operation

The cLz instruction counts the number of leading zeros in the value in Rm and returns the result in
Rd. The result value is 32 if no bits are set and zero if bit[31] is set.

Restrictions

Do not use SP and do not use PC.
Condition Flags

This instruction does not change the flags.
Examples

CL.z R4, RO
CLZNE R2,R3

AImEl@ 113

11100B-ATARM-31-Jul-12

11.6.55

114

CMP and CMN

Compare and Compare Negative.
Syntax

CWP{cond} Rn, Operand2
CWMN{ cond} Rn, Operand2

where:
cond is an optional condition code, see “Conditional Execution” .
Rn is the register holding the first operand.
is a flexible second operand. See “Flexible Second Operand” for details of the
Operand2 .
options.
Operation

These instructions compare the value in a register with Operand2. They update the condition flags
on the result, but do not write the result to a register.

The CMP instruction subtracts the value of Operand2 from the value in Rn. This is the same as a SUBS
instruction, except that the result is discarded.

The CMN instruction adds the value of Operand2 to the value in Rn. This is the same as an ADDS
instruction, except that the result is discarded.

Restrictions

In these instructions:
* do not use PC

* Operand2 must not be SP.
Condition Flags

These instructions update the N, Z, C and V flags according to the result.

Examples
CwP R2, RO
CWN RO, #6400

CWGr SP, R7, LSL #2

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

11.6.5.6 MOV and MVN
Move and Move NOT.

Syntax

MWV{S}{cond} Rd, Operand2
MOV{cond} Rd, #i mil6
MN{ S} {cond} Rd, Operand2

where:
s is an optional suffix. If S is specified, the condition code flags are updated on the
result of the operation, see “Conditional Execution” .
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
is a flexible second operand. See “Flexible Second Operand” for details of the
Operand2 .
options.
imm16 is any value in the range 0-65535.
Operation

The Mov instruction copies the value of Operand2 into Rd.

When Operand2 in a MOV instruction is a register with a shift other than LSL #0, the preferred syntax
is the corresponding shift instruction:
* ASR{S}Hcond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, ASR #n
* LSL{S}cond} Rd, Rm, #n is the preferred syntax for MOV{S}cond} Rd, Rm, LSL #n if n != 0
* LSR{SKcond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, LSR #n
* ROR{S}cond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, ROR #n
* RRX{SHcond} Rd, Rm is the preferred syntax for MOV{S}cond} Rd, Rm, RRX.
Also, the MoV instruction permits additional forms of Operand2 as synonyms for shift instructions:
* MOV{S}cond} Rd, Rm, ASR Rs iS a synonym for ASR{S}cond} Rd, Rm, Rs
* MOV{S}cond} Rd, Rm, LSL Rs is @ synonym for LSL{S{cond} Rd, Rm, Rs
* MOV{S}cond} Rd, Rm, LSR Rs is @ synonym for LSR{S}cond} Rd, Rm, Rs
* MOV{S}cond} Rd, Rm, ROR Rs is @ synonym for ROR{S}cond} Rd, Rm, Rs
See “ASR, LSL, LSR, ROR, and RRX" .

The MVN instruction takes the value of Operand2, performs a bitwise logical NOT operation on the
value, and places the result into Rd.

The Movw instruction provides the same function as Mov, but is restricted to using the imm16
operand.

Restrictions
SP and PC only can be used in the MOV instruction, with the following restrictions:

« the second operand must be a register without shift
« the S suffix must not be specified.
When Rd is PC in a MOV instruction:

« bit[0] of the value written to the PC is ignhored
 a branch occurs to the address created by forcing bit[0] of that value to 0.

AImEl@ 115

11100B-ATARM-31-Jul-12

11.6.5.7

116

MOVT

ATMEL

Though it is possible to use MoV as a branch instruction, ARM strongly recommends the use of a
BX or BLX instruction to branch for software portability to the ARM instruction set.

Condition Flags

If s is specified, these instructions:

« update the N and Z flags according to the result
 can update the C flag during the calculation of Operand2, see “Flexible Second Operand”
« do not affect the V flag.

Example
MOVS R11, #0x000B ; Wite value of 0x000B to R11, flags get updated
MOV R1, #O0xFA05 ; Wite value of OXFAO5 to R1, flags are not updated
MOVS R10, R12 ; Wite value in R12 to R10, flags get updated
MOV R3, #23 ; Wite value of 23 to R3
MV R8, SP ; Wite value of stack pointer to R8
M/NS R2, #OxF ; Wite value of OxFFFFFFFO (bitwi se inverse of OxF)
; to the R2 and update fl ags.
Move Top.
Syntax
MOVT{cond} Rd, #i mil6
where:
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
imm16 is a 16-bit immediate constant.
Operation

MOVT writes a 16-bit immediate value, imm16, to the top halfword, Rd[31:16], of its destination reg-
ister. The write does not affect Rd[15:0].

The MOV, MOVT instruction pair enables to generate any 32-bit constant.
Restrictions

Rd must not be SP and must not be PC.

Condition Flags

This instruction does not change the flags.

Examples

MOVT R3, #0xF123 ; Wite OxF123 to upper hal fword of R3, |ower halfword
and APSR are unchanged.

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

11.6.5.8 REV, REV16, REVSH, and RBIT
Reverse bytes and Reverse bits.

Syntax
op{cond} Rd, Rn

where:

op is any of:
REV Reverse byte order in a word.
REV16 Reverse byte order in each halfword independently.
REVSH Reverse byte order in the bottom halfword, and sign extend to 32 hits.
RBIT Reverse the bit order in a 32-bit word.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn is the register holding the operand.

Operation

Use these instructions to change endianness of data:
REV converts either:

« 32-bit big-endian data into little-endian data

 32-bit little-endian data into big-endian data.
REV16 converts either:

* 16-bit big-endian data into little-endian data

« 16-bit little-endian data into big-endian data.

REVSH converts either:

 16-bit signed big-endian data into 32-bit signed little-endian data
« 16-bit signed little-endian data into 32-bit signed big-endian data.
Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not change the flags.

Examples
REV R3, R7 ; Reverse byte order of value in R7 and wite it to R3
REV16 RO, RO ; Reverse byte order of each 16-bit halfword in RO
REVSH RO, R5 ; Reverse Signed Hal fword
REVHS R3, R7 ; Reverse with Higher or Same condition
RBI T R7, R8 ; Reverse bit order of value in R8 and wite the result

; to RY.

AImEl@ 117

11100B-ATARM-31-Jul-12

11.6.5.9

118

SADD16 and SADDS8

Signed Add 16 and Signed Add 8

Syntax
op{cond}{Rd,} Rn, Rm
where:
op is any of:
SADD16 Performs two 16-bit signed integer additions.
SADD8 Performs four 8-bit signed integer additions.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the first register holding the operand.
Rm is the second register holding the operand.
Operation

Use these instructions to perform a halfword or byte add in parallel:
The SADD16 instruction:

1. Adds each halfword from the first operand to the corresponding halfword of the second
operand.

2. Writes the result in the corresponding halfwords of the destination register.
The SADDS instruction:

1. Adds each byte of the first operand to the corresponding byte of the second operand.
Writes the result in the corresponding bytes of the destination register.

Restrictions
Do not use SP and do not use PC.
Condition Flags

These instructions do not change the flags.

Examples
SADD16 R1, RO ; Adds the halfwords in RO to the corresponding
; hal fwords of RL and wites to correspondi ng hal fword
;o of RI.
SADD8 R4, RO, R5 ; Adds bytes of RO to the corresponding byte in R5 and

;wites to the corresponding byte in R4.

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

11.6.5.10 SHADD16 and SHADDS8
Signed Halving Add 16 and Signed Halving Add 8

Syntax
op{cond}{Rd,} Rn, Rm
where:
op is any of:
SHADD16 Signed Halving Add 16
SHADDS Signed Halving Add 8
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the first operand register.
Rm is the second operand register.
Operation

Use these instructions to add 16-bit and 8-bit data and then to halve the result before writing the
result to the destination register:

The SHADD16 instruction:
1. Adds each halfword from the first operand to the corresponding halfword of the second
operand.
2. Shuffles the result by one bit to the right, halving the data.
3. Writes the halfword results in the destination register.
The SHADDBS instruction:

1. Adds each byte of the first operand to the corresponding byte of the second operand.
2. Shuffles the result by one bit to the right, halving the data.
3. Writes the byte results in the destination register.

Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not change the flags.
Examples

SHADD16 R1, RO ; Adds hal fwords in RO to correspondi ng hal fword of RL and
; wites halved result to corresponding hal fword in Rl
SHADD8 R4, RO, R5; Adds bytes of RO to corresponding byte in R5 and
wites halved result to corresponding byte in R4.

AImEl@ 119

11100B-ATARM-31-Jul-12

ATMEL

11.6.5.11 SHASX and SHSAX

120

Signed Halving Add and Subtract with Exchange and Sighed Halving Subtract and Add with

Exchange.
Syntax
op{cond} {Rd}, Rn, Rm
where:
op is any of:
SHASX Add and Subtract with Exchange and Halving.
SHSAX Subtract and Add with Exchange and Halving.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

The SHASX instruction:
1. Adds the top halfword of the first operand with the bottom halfword of the second
operand.

2. Writes the halfword result of the addition to the top halfword of the destination register,
shifted by one bit to the right causing a divide by two, or halving.

3. Subtracts the top halfword of the second operand from the bottom highword of the first
operand.

4. Writes the halfword result of the division in the bottom halfword of the destination regis-
ter, shifted by one bit to the right causing a divide by two, or halving.

The SHSAX instruction:
1. Subtracts the bottom halfword of the second operand from the top highword of the first
operand.

2. Writes the halfword result of the addition to the bottom halfword of the destination regis-
ter, shifted by one bit to the right causing a divide by two, or halving.

3. Adds the bottom halfword of the first operand with the top halfword of the second
operand.

4. Writes the halfword result of the division in the top halfword of the destination register,
shifted by one bit to the right causing a divide by two, or halving.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.
Examples

SHASX R7, R4, R2 ; Adds top halfword of R4 to bottom hal fword of R2
; and wites halved result to top hal fword of R7
Subtracts top hal fword of R2 frombottom hal fword of
: R4 and wites halved result to bottom hal fword of R7
SHSAX RO, R3, R5 ; Subtracts bottom hal fword of R5 fromtop hal fword
of R3 and wites halved result to top hal fword of RO

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

; Adds top hal fword of R5 to bottom hal fword of R3 and
; wites halved result to bottom hal fword of RO.

11.6.5.12 SHSUB16 and SHSUBS
Signed Halving Subtract 16 and Signed Halving Subtract 8

Syntax
op{cond}{Rd,} Rn, Rm
where:
op is any of:
SHSUBL16 Signed Halving Subtract 16
SHSUBS Signed Halving Subtract 8
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the first operand register.
Rm is the second operand register
Operation

Use these instructions to add 16-bit and 8-bit data and then to halve the result before writing the
result to the destination register:

The SHSUBL6 instruction:
1. Subtracts each halfword of the second operand from the corresponding halfwords of
the first operand.
2. Shuffles the result by one bit to the right, halving the data.
3. Writes the halved halfword results in the destination register.
The SHSUBBS instruction:
1. Subtracts each byte of the second operand from the corresponding byte of the first
operand,
2. Shuffles the result by one bit to the right, halving the data,
3. Writes the corresponding signed byte results in the destination register.
Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not change the flags.
Examples

SHSUB16 R1, RO ; Subtracts hal fwords in RO from correspondi ng hal fword
; of RL and wites to correspondi ng hal fword of Rl

SHSUB8 R4, RO, R5 ; Subtracts bytes of RO from corresponding byte in R5,
; and wites to corresponding byte in R4.

AImEl@ 121

11100B-ATARM-31-Jul-12

11.6.5.13 SSUB16 and SSUBS8
Signed Subtract 16 and Signed Subtract 8

Syntax
op{cond}{Rd,} Rn, Rm

where:

op is any of:
SSUB16 Performs two 16-bit signed integer subtractions.
SSUB8 Performs four 8-bit signed integer subtractions.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn is the first operand register.

Rm is the second operand register.

Operation

Use these instructions to change endianness of data:
The ssuB16 instruction:
1. Subtracts each halfword from the second operand from the corresponding halfword of

the first operand

2. Writes the difference result of two signed halfwords in the corresponding halfword of
the destination register.

The ssuBs instruction:
1. Subtracts each byte of the second operand from the corresponding byte of the first
operand

2. Writes the difference result of four signed bytes in the corresponding byte of the desti-
nation register.

Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not change the flags.
Examples

SSUB16 R1, RO ; Subtracts hal fwords in RO from correspondi ng hal fword
; of RL and wites to corresponding hal fword of Rl

SSUB8 R4, RO, R5 ; Subtracts bytes of R5 from corresponding byte in
; RO, and wites to corresponding byte of R4.

122 SAMAS Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

11.6.5.14 SASX and SSAX
Signed Add and Subtract with Exchange and Signed Subtract and Add with Exchange.

Syntax
op{cond} {Rd}, Rm Rn
where:
op is any of:
SASX Signed Add and Subtract with Exchange.
SSAX Signed Subtract and Add with Exchange.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

The SASX instruction:

1. Adds the signed top halfword of the first operand with the signed bottom halfword of the
second operand.

2. Writes the signed result of the addition to the top halfword of the destination register.

3. Subtracts the signed bottom halfword of the second operand from the top signed high-
word of the first operand.

4. Writes the signed result of the subtraction to the bottom halfword of the destination
register.

The SSAX instruction:

1. Subtracts the signed bottom halfword of the second operand from the top signed high-
word of the first operand.

2. Writes the signed result of the addition to the bottom halfword of the destination
register.

3. Adds the signed top halfword of the first operand with the signed bottom halfword of the
second operand.

4. Writes the signed result of the subtraction to the top halfword of the destination register.
Restrictions

Do not use SP and do not use PC.
Condition Flags
These instructions do not affect the condition code flags.
Examples
SASX RO, R4, RS ; Adds top hal fword of R4 to bottom hal fword of R5 and

; wites to top hal fword of RO

; Subtracts bottom hal fword of RS fromtop hal fword of
; R4 and wites to bottom hal fword of RO

SSAX R7, R3, R2 ; Subtracts top hal fword of R2 from bottom hal fword of
: R3 and wites to bottom hal fword of R7

; Adds top hal fword of R3 with bottomhal fword of R2 and
wites to top hal fword of R7.

AImEl@ 123

11100B-ATARM-31-Jul-12

11.6.5.15 TST and TEQ
Test bits and Test Equivalence.

Syntax

TST{cond} Rn, Operand2
TEQ cond} Rn, Operand2

where:

cond is an optional condition code, see “Conditional Execution” .

Rn is the register holding the first operand.

Operand2 is a flexible second operand. See “Flexible Second Operand” for details of the options.
Operation

These instructions test the value in a register against Operand2. They update the condition flags
based on the result, but do not write the result to a register.

The TST instruction performs a bitwise AND operation on the value in Rn and the value of Operand2.
This is the same as the ANDS instruction, except that it discards the result.

To test whether a bit of Rn is 0 or 1, use the TST instruction with an Operand2 constant that has that
bit set to 1 and all other bits cleared to 0.

The TEQ instruction performs a bitwise Exclusive OR operation on the value in Rn and the value
of Operand2. This is the same as the EORS instruction, except that it discards the result.

Use the TEQ instruction to test if two values are equal without affecting the V or C flags.

TEQ is also useful for testing the sign of a value. After the comparison, the N flag is the logical
Exclusive OR of the sign bits of the two operands.

Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions:

« update the N and Z flags according to the result
« can update the C flag during the calculation of Operand2, see “Flexible Second Operand”
« do not affect the V flag.

Examples
TST RO, #0x3F8 ; Perform bitwi se AND of RO val ue to Ox3FS8,
; APSR is updated but result is discarded
TEQEQ R10, RO ; Conditionally test if value in R1O is equal to
; value in RO, APSR is updated but result is
; discarded.

124 SAMAS Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

11.6.5.16 UADD16 and UADD8
Unsigned Add 16 and Unsigned Add 8

Syntax
op{cond}{Rd,} Rn, Rm

where:

op is any of:
UADD16 Performs two 16-bit unsigned integer additions.
UADDS Performs four 8-bit unsigned integer additions.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn is the first register holding the operand.

Rm is the second register holding the operand.

Operation

Use these instructions to add 16- and 8-bit unsigned data:
The UADD16 instruction:

1. adds each halfword from the first operand to the corresponding halfword of the second
operand.
2. writes the unsigned result in the corresponding halfwords of the destination register.

The UADD16 instruction:

1. adds each byte of the first operand to the corresponding byte of the second operand.
2. writes the unsigned result in the corresponding byte of the destination register.
Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not change the flags.
Examples

UADD16 R1, RO ; Adds halfwords in RO to correspondi ng hal fword of R1,
; Wwites to correspondi ng hal fword of R1

UADD8 R4, RO, R5 ; Adds bytes of RO to corresponding byte in R5 and wites
; to corresponding byte in R4.

AImEl@ 125

11100B-ATARM-31-Jul-12

ATMEL

UASX and USAX

Add and Subtract with Exchange and Subtract and Add with Exchange.

Syntax
op{cond} {Rd}, Rn, Rm
where:
op is one of:
UASX Add and Subtract with Exchange.
USAX Subtract and Add with Exchange.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

The UASX instruction:

1. Subtracts the top halfword of the second operand from the bottom halfword of the first
operand.

2. Writes the unsigned result from the subtraction to the bottom halfword of the destina-
tion register.

3. Adds the top halfword of the first operand with the bottom halfword of the second
operand.

4. Writes the unsigned result of the addition to the top halfword of the destination register.
The UsAX instruction:
1. Adds the bottom halfword of the first operand with the top halfword of the second
operand.

2. Writes the unsigned result of the addition to the bottom halfword of the destination
register.

3. Subtracts the bottom halfword of the second operand from the top halfword of the first
operand.

4. Writes the unsigned result from the subtraction to the top halfword of the destination
register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.
Examples

UASX RO, R4, RS ; Adds top halfword of R4 to bottom hal fword of R5 and
; wites to top halfword of RO
; Subtracts bottomhal fword of R5 fromtop hal fword of RO
; and wites to bottom hal fword of RO
USAX R7, R3, R2 ; Subtracts top hal fword of R2 frombottomhal fword of R3
; and wites to bottom hal fword of R7
Adds top hal fword of R3 to bottom hal fword of R2 and
; Wwites to top hal fword of R7.

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

11.6.5.18 UHADD16 and UHADDS
Unsigned Halving Add 16 and Unsigned Halving Add 8

Syntax
op{cond}{Rd,} Rn, Rm
where:
op is any of:
UHADD16 Unsigned Halving Add 16.
UHADDS8 Unsigned Halving Add 8.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the register holding the first operand.
Rm is the register holding the second operand.
Operation

Use these instructions to add 16- and 8-bit data and then to halve the result before writing the
result to the destination register:

The UHADD16 instruction:
1. Adds each halfword from the first operand to the corresponding halfword of the second
operand.
2. Shuffles the halfword result by one bit to the right, halving the data.

3. Writes the unsigned results to the corresponding halfword in the destination register.
The UHADDS instruction:

1. Adds each byte of the first operand to the corresponding byte of the second operand.

2. Shuffles the byte result by one bit to the right, halving the data.

3. Writes the unsigned results in the corresponding byte in the destination register.
Restrictions

Do not use SP and do not use PC.
Condition Flags
These instructions do not change the flags.

Exanpl es

UHADD16 R7, R3 ; Adds halfwords in R7 to correspondi ng hal fword of R3
; and wites halved result to corresponding hal fword in R7

UHADD8 R4, RO, R5 ; Adds bytes of RO to corresponding byte in R5 and wites
; halved result to corresponding byte in R4.

11.6.5.19 UHASX and UHSAX

Unsigned Halving Add and Subtract with Exchange and Unsigned Halving Subtract and Add
with Exchange.

Syntax
op{cond} {Rd}, Rn, Rm

AImEl@ 127

11100B-ATARM-31-Jul-12

ATMEL

where:
op is one of:
UHASX Add and Subtract with Exchange and Halving.
UHSAX Subtract and Add with Exchange and Halving.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

The UHASX instruction:

1. Adds the top halfword of the first operand with the bottom halfword of the second
operand.

2. Shifts the result by one bit to the right causing a divide by two, or halving.
3. Writes the halfword result of the addition to the top halfword of the destination register.

4. Subtracts the top halfword of the second operand from the bottom highword of the first
operand.

5. Shifts the result by one bit to the right causing a divide by two, or halving.

6. Writes the halfword result of the division in the bottom halfword of the destination
register.

The UHSAX instruction:

1. Subtracts the bottom halfword of the second operand from the top highword of the first
operand.

2. Shifts the result by one bit to the right causing a divide by two, or halving.

3. Writes the halfword result of the subtraction in the top halfword of the destination
register.

4. Adds the bottom halfword of the first operand with the top halfword of the second
operand.

5. Shifts the result by one bit to the right causing a divide by two, or halving.

6. Writes the halfword result of the addition to the bottom halfword of the destination
register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.
Examples

UHASX R7, R4, R2 ; Adds top halfword of R4 with bottom hal fword of R2
; and wites halved result to top hal fword of R7
; Subtracts top hal fword of R2 frombottom hal fword of
; R7 and wites halved result to bottom hal fword of R7
UHSAX RO, R3, R5 ; Subtracts bottomhal fword of R5 fromtop hal fword of
; R3 and wites halved result to top halfword of RO
Adds top hal fword of R5 to bottom hal fword of R3 and
; wites halved result to bottom hal fword of RO.

122 SAMAS Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

11.6.5.20 UHSUB16 and UHSUBS
Unsigned Halving Subtract 16 and Unsigned Halving Subtract 8

Syntax
op{cond}{Rd,} Rn, Rm

where:

op is any of:
UHSUB16 Performs two unsigned 16-bit integer additions, halves the results, and writes
the results to the destination register.
UHSUB8 Performs four unsigned 8-bit integer additions, halves the results, and writes
the results to the destination register.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn is the first register holding the operand.

Rm is the second register holding the operand.

Operation

Use these instructions to add 16-bit and 8-bit data and then to halve the result before writing the
result to the destination register:

The UHSUB16 instruction:
1. Subtracts each halfword of the second operand from the corresponding halfword of the
first operand.
2. Shuffles each halfword result to the right by one bit, halving the data.

3. Writes each unsigned halfword result to the corresponding halfwords in the destination
register.

The UHSUBS instruction:
1. Subtracts each byte of second operand from the corresponding byte of the first
operand.
2. Shuffles each byte result by one bit to the right, halving the data.
3. Writes the unsigned byte results to the corresponding byte of the destination register.
Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not change the flags.
Examples

UHSUB16 R1, RO ; Subtracts hal fwords in RO fromcorrespondi ng hal fword
; of RL and wites halved result to correspondi ng
: halfword in RL

UHSUB8 R4, RO, R5 ; Subtracts bytes of R5 from corresponding byte in RO
; and wites halved result to corresponding byte in R4.

AImEl@ 129

11100B-ATARM-31-Jul-12

11.6.5.21

130

SEL

ATMEL

Select Bytes. Selects each byte of its result from either its first operand or its second operand,
according to the values of the GE flags.

Syntax

SEL{<c>}{<g>} {<Rd>} <Rn> <Rmp
where:
<c>, <q> is a standard assembler syntax fields.
<Rd> is the destination register.
<Rn> is the first operand register.
<Rm> is the second operand register.
Operation

The SEL instruction:

1. Reads the value of each bit of APSR.GE.

2. Depending on the value of APSR.GE, assigns the destination register the value of
either the first or second operand register.

Restrictions
None.
Condition Flags

These instructions do not change the flags.

Examples
SADD16 RO, R1, R2 ; Set CE bits based on result
SEL RO, RO, R3 ; Select bytes fromRO or R3, based on GE

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

11.6.5.22 USADS8
Unsigned Sum of Absolute Differences

Syntax
USAD8{ cond}{Rd,} Rn, Rm
where:
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the first operand register.
Rm is the second operand register.
Operation

The USADS instruction:

1. Subtracts each byte of the second operand register from the corresponding byte of the
first operand register.

2. Adds the absolute values of the differences together.
3. Writes the result to the destination register.
Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not change the flags.

Examples
USAD8 R1, R4, RO ; Subtracts each byte in RO fromcorrespondi ng byte of R4
; adds the differences and wites to Rl
USAD8 RO, R5 ; Subtracts bytes of R5 from corresponding byte in RO,

; adds the differences and wites to RO.

AImEl@ 131

11100B-ATARM-31-Jul-12

ATMEL

11.6.5.23 USADAS8
Unsigned Sum of Absolute Differences and Accumulate

Syntax
USADA8{cond}{Rd,} Rn, Rm Ra
where:
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the first operand register.
Rm is the second operand register.
Ra is the register that contains the accumulation value.
Operation

The USADAS instruction:
1. Subtracts each byte of the second operand register from the corresponding byte of the
first operand register.
2. Adds the unsigned absolute differences together.
3. Adds the accumulation value to the sum of the absolute differences.
4. Writes the result to the destination register.
Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not change the flags.
Examples

USADA8 R1, RO, R6 ; Subtracts bytes in RO fromcorrespondi ng hal fword of
. R1, adds differences, adds value of R6, wites to Rl
USADA8 R4, RO, R5, R2 ; Subtracts bytes of R5 fromcorresponding byte in RO

; adds differences, adds value of R2, wites to R4.

132 SAMAS Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

11.6.5.24 USUB16 and USUBS
Unsigned Subtract 16 and Unsigned Subtract 8

Syntax
op{cond}{Rd,} Rn, Rm
where:
op is any of:
USUB16 Unsigned Subtract 16.
USUB8 Unsigned Subtract 8.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the first operand register.
Rm is the second operand register.
Operation

Use these instructions to subtract 16-bit and 8-bit data before writing the result to the destination
register:

The USUB16 instruction:

1. Subtracts each halfword from the second operand register from the corresponding half-
word of the first operand register.
2. Writes the unsigned result in the corresponding halfwords of the destination register.
The USUBS instruction:
1. Subtracts each byte of the second operand register from the corresponding byte of the
first operand register.
2. Writes the unsigned byte result in the corresponding byte of the destination register.
Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not change the flags.
Examples

USUB16 R1, RO ; Subtracts hal fwords in RO from correspondi ng hal fword of Rl
; Wwites to corresponding halfword in RIUSUB8 R4, RO, R5
; Subtracts bytes of R5 from corresponding byte in RO and
; wites to the corresponding byte in R4.

AImEl@ 133

11100B-ATARM-31-Jul-12

ATMEL

11.6.6 Multiply and Divide Instructions
The table below shows the multiply and divide instructions:

Table 11-21. Multiply and Divide Instructions

Mnemonic Description

MLA Multiply with Accumulate, 32-bit result

MLS Multiply and Subtract, 32-bit result

MUL Multiply, 32-bit result

SDIV Signed Divide

SMLA[B,T] Signed Multiply Accumulate (halfwords)

SMLAD, SMLADX Signed Multiply Accumulate Dual

SMLAL Signed Multiply with Accumulate (32x32+64), 64-bit result

SMLAL[B,T] Signed Multiply Accumulate Long (halfwords)

SMLALD, SMLALDX Signed Multiply Accumulate Long Dual

SMLAWIB|T] Signed Multiply Accumulate (word by halfword)

SMLSD Signed Multiply Subtract Dual

SMLSLD Signed Multiply Subtract Long Dual

SMMLA Signed Most Significant Word Multiply Accumulate

SMMLS, SMMLSR Signed Most Significant Word Multiply Subtract

SMUAD, SMUADX Signed Dual Multiply Add

SMUL[B,T] Signed Multiply (word by halfword)

SMMUL, SMMULR Signed Most Significant Word Multiply

SMULL Signed Multiply (32x32), 64-bit result

SMULWB, SMULWT Signed Multiply (word by halfword)

SMUSD, SMUSDX Signed Dual Multiply Subtract

uDIV Unsigned Divide

UMAAL Unsigned Multiply Ac_cumulate Accumulate Long
(32x32+32+32), 64-bit result

UMLAL Unsigned Multiply with Accumulate (32x32+64), 64-bit result

UMULL Unsigned Multiply (32x32), 64-bit result

134 SAMAS Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

11.6.6.1 MUL, MLA, and MLS

11100B-ATARM-31-Jul-12

Multiply, Multiply with Accumulate, and Multiply with Subtract, using 32-bit operands, and pro-
ducing a 32-bit result.

Syntax

MUL{S}{cond} {Rd,} Rn, Rm; Miltiply
M.A{cond} Rd, Rn, Rm Ra ; Miltiply with accunul ate
M.S{cond} Rd, Rn, Rm Ra ; Miltiply with subtract

where:

cond is an optional condition code, see “Conditional Execution” .

s is an optional suffix. If S is specified, the condition code flags are updated on the result
of the operation, see “Conditional Execution” .

Rd is the destination register. If Rd is omitted, the destination register is Rn.

Rn, Rm are registers holding the values to be multiplied.

Ra is a register holding the value to be added or subtracted from.

Operation

The MUL instruction multiplies the values from Rn and Rm, and places the least significant 32 bits
of the result in Rd.

The MLA instruction multiplies the values from Rn and Rm, adds the value from Ra, and places the
least significant 32 bits of the result in Rd.

The MLS instruction multiplies the values from Rn and Rm, subtracts the product from the value
from Ra, and places the least significant 32 bits of the result in Rd.

The results of these instructions do not depend on whether the operands are signed or
unsigned.

Restrictions
In these instructions, do not use SP and do not use PC.
If the S suffix is used with the MUL instruction:

* Rd, Rn, and Rm must all be in the range R0 to R7
* Rd must be the same as Rm
* the cond suffix must not be used.

Condition Flags

If S is specified, the MUL instruction:

« updates the N and Z flags according to the result
« does not affect the C and V flags.

Examples
MUL R10, R2, R5 ; Multiply, RIO = R2 x RS
M_A R10, R2, Rl, R5 ; Multiply with accumulate, RI0 = (R2 x Rl) + RS
MULS RO, R2, R2 ; Multiply with flag update, RO = R2 x R2
MULLT R2, R3, R2 ; Conditionally multiply, R2 = R3 x R2
M.S R4, R5, R6, R7 ; Miultiply with subtract, R4 = R7 - (R5 x R6)

AImEl@ 135

11.6.6.2

136

ATMEL

UMULL, UMAAL, UMLAL

Unsigned Long Multiply, with optional Accumulate, using 32-bit operands and producing a 64-bit
result.

Syntax

op{cond} RdLo, RdH , Rn, Rm
where:
op is one of:

UMULL Unsigned Long Multiply.
UMAAL Unsigned Long Multiply with Accumulate Accumulate.
UMLAL Unsigned Long Multiply, with Accumulate.
cond is an optional condition code, see “Conditional Execution” .
are the destination registers. For UMAAL, UMLAL and UMLAL they also hold the

RdHi, RdLo)

accumulating value.
Rn, Rm are registers holding the first and second operands.
Operation

These instructions interpret the values from Rn and Rm as unsigned 32-bit integers.
The UMULL instruction:

« Multiplies the two unsigned integers in the first and second operands.

 Writes the least significant 32 bits of the result in RdLo.

» Writes the most significant 32 bits of the result in RdHi.
The UMAAL instruction:

» Multiplies the two unsigned 32-bit integers in the first and second operands.
« Adds the unsigned 32-bit integer in RdHi to the 64-bit result of the multiplication.
« Adds the unsigned 32-bit integer in RdLo to the 64-bit result of the addition.
« Writes the top 32-bits of the result to RdHi.
» Writes the lower 32-bits of the result to RdLo.
The UMLAL instruction:
« multiplies the two unsigned integers in the first and second operands.
» Adds the 64-bit result to the 64-bit unsigned integer contained in RdHi and RdLo.
 Writes the result back to RdHi and RdLo.
Restrictions

In these instructions:

« do not use SP and do not use PC.
* RdHi and RdLo must be different registers.
Condition Flags

These instructions do not affect the condition code flags.
Examples

UMULL RO, R4, R5, R6 ; Multiplies R5 and R6, wites the top 32 bits to R4
; and the bottom 32 bits to RO

UMAAL R3, R6, R2, R7 ; Miltiplies R2 and R7, adds R6, adds R3, wites the
; top 32 bits to R6, and the bottom 32 bits to R3

UMLAL R2, Rl, R3, R5 ; Miltiplies R5 and R3, adds RL: R2, wites to Rl: R2.

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

11.6.6.3 SMLA and SMLAW
Signed Multiply Accumulate (halfwords).

Syntax
op{ XY}{cond} Rd, Rn, Rm
op{Y}{cond} Rd, Rn, Rm Ra
where
op is one of:

SMLA Signed Multiply Accumulate Long (halfwords)

X and Y specifies which half of the source registers Rn and Rm are used as the first and
second multiply operand.

If X is B, then the bottom halfword, bits [15:0], of Rn is used.
If X is T, then the top halfword, bits [31:16], of Rn is used.

If Y is B, then the bottom halfword, bits [15:0], of Rm is used.
If Y is T, then the top halfword, bits [31:16], of Rm is used

SMLAW Signed Multiply Accumulate (word by halfword)
Y specifies which half of the source register Rm is used as the second multiply operand.
If Y is T, then the top halfword, bits [31:16] of Rm is used.
If Y is B, then the bottom halfword, bits [15:0] of Rm is used.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register. If Rd is omitted, the destination register is Rn.
Rn, Rm are registers holding the values to be multiplied.
Ra is a register holding the value to be added or subtracted from.

Operation
The SMALBB, SMLABT, SMLATB, SMLATT instructions:

« Multiplies the specified signed halfword, top or bottom, values from Rn and Rm.
» Adds the value in Ra to the resulting 32-bit product.
 Writes the result of the multiplication and addition in Rd.
The non-specified halfwords of the source registers are ignored.
The sMLAWB and SMLAWT instructions:
« Multiply the 32-bit signed values in Rn with:
— The top signed halfword of Rm, T instruction suffix.
— The bottom signed halfword of Rm, B instruction suffix.
* Add the 32-bit signed value in Ra to the top 32 bits of the 48-bit product
 Writes the result of the multiplication and addition in Rd.
The bottom 16 bits of the 48-bit product are ignored.

If overflow occurs during the addition of the accumulate value, the instruction sets the Q flag in
the APSR. No overflow can occur during the multiplication.

Restrictions
In these instructions, do not use SP and do not use PC.
Condition Flags

If an overflow is detected, the Q flag is set.

AImEl@ 137

11100B-ATARM-31-Jul-12

ATMEL

Examples

SMLABB R5, R6, R4, RL ; Miltiplies bottomhal fwords of R6 and R4, adds
Rl and wites to R5
SMLATB R5, R6, R4, RL ; Miultiplies top hal fword of R6 with bottom hal fword
; of R4, adds Rl and wites to RS
SMLATT R5, R6, R4, RL ; Miltiplies top halfwords of R6 and R4, adds
: R1L and wites the sumto R5
SMLABT R5, R6, R4, RL ; Miltiplies bottomhal fword of R6 with top hal fword
of R4, adds Rl and wites to R5

SMLABT R4, R3, R2 ; Multiplies bottomhal fword of R4 with top hal fword
of R3, adds R2 and wites to R4

SMLAWB R10, R2, R5, R3 ; Miltiplies R2 with bottom hal fword of R5, adds
R3 to the result and wites top 32-bits to R10
SMLAWI R10, R2, RL, R5 ; Miultiplies R2 with top hal fword of Rl, adds R5
and wites top 32-bits to RI10.

133 SAMAS Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

11.6.6.4

SMLAD

11100B-ATARM-31-Jul-12

Signed Multiply Accumulate Long Dual

Syntax
op{X}{cond} Rd, Rn, Rm Ra

where:

op is one of:
SMLAD Signed Multiply Accumulate Dual
SMLADX Signed Multiply Accumulate Dual Reverse
X specifies which halfword of the source register Rn is used as the multiply operand.
If X is omitted, the multiplications are bottom x bottom and top x top.
If X is present, the multiplications are bottom x top and top x bottom.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn is the first operand register holding the values to be multiplied.

Rm the second operand register.

Ra is the accumulate value.

Operation

The SMLAD and SMLADX instructions regard the two operands as four halfword 16-bit values. The
SMLAD and SMLADX instructions:

« If X is not present, multiply the top signed halfword value in Rn with the top signed halfword of
Rm and the bottom signed halfword values in Rn with the bottom signed halfword of Rm.

« Or if X is present, multiply the top signed halfword value in Rn with the bottom signed halfword
of Rm and the bottom signed halfword values in Rn with the top signed halfword of Rm.

» Add both multiplication results to the signed 32-bit value in Ra.
» Writes the 32-bit signed result of the multiplication and addition to Rd.
Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not change the flags.
Examples

SMLAD R10, R2, RL, R5 ; Miltiplies two halfword values in R2 with

correspondi ng hal fwords in Rl, adds R5 and wites
. to R10

SMLALDX RO, R2, R4, R6 ; Miltiplies top hal fword of R2 with bottom hal fword
; of R4, multiplies bottomhal fword of R2 with top
: halfword of R4, adds R6 and wites to RO.

AImEl@ 139

ATMEL

11.6.6.5 SMLAL and SMLALD

Signed Multiply Accumulate Long, Signed Multiply Accumulate Long (halfwords) and Signed
Multiply Accumulate Long Dual.

Syntax

op{cond} RdLo, RdH, Rn, Rm

op{ XY}{cond} RdLo, RdHi, Rn, Rm

op{X}{cond} RdLo, RdH, Rn, Rm
where:

op is one of:
SMLAL Signed Multiply Accumulate Long
SMLAL Signed Multiply Accumulate Long (halfwords, X and Y)

X and Y specify which halfword of the source registers Rn and Rm are used as the first
and second multiply operand:

If X is B, then the bottom halfword, bits [15:0], of Rn is used.
If X is T, then the top halfword, bits [31:16], of Rn is used.

If Y is B, then the bottom halfword, bits [15:0], of Rm is used.
If Y is T, then the top halfword, bits [31:16], of Rm is used.

SMLALD Signed Multiply Accumulate Long Dual

SMLALDX Signed Multiply Accumulate Long Dual Reversed

If the X is omitted, the multiplications are bottom x bottom and top x top.

If X is present, the multiplications are bottom x top and top x bottom.
cond is an optional condition code, see “Conditional Execution” .

are the destination registers.
RdLo is the lower 32 bits and RdHi is the upper 32 bits of the 64-bit integer.

RdHi, RdLo For SMLAL, SMLALBB, SMLALBT, SMLALTB, SMLALTT, SMLALD and SMLALDX, they also hold
the accumulating value.

Rn, Rm are registers holding the first and second operands.

Operation

The SMLAL instruction:

« Multiplies the two’s complement signed word values from Rn and Rm.

« Adds the 64-bit value in RdLo and RdHi to the resulting 64-bit product.

* Writes the 64-bit result of the multiplication and addition in RdLo and RdHi.
The SMLALBB, SMLALBT, SMLALTB and SMLALTT instructions:

« Multiplies the specified signed halfword, Top or Bottom, values from Rn and Rm.
« Adds the resulting sign-extended 32-bit product to the 64-bit value in RdLo and RdHi.
» Writes the 64-bit result of the multiplication and addition in RdLo and RdHi.

The non-specified halfwords of the source registers are ignored.

The SMLALD and SMLALDX instructions interpret the values from Rn and Rm as four halfword two’s
complement signed 16-bit integers. These instructions:

« if X is not present, multiply the top signed halfword value of Rn with the top signed halfword of
Rm and the bottom signed halfword values of Rn with the bottom signed halfword of Rm.

« Orif X is present, multiply the top signed halfword value of Rn with the bottom signed halfword
of Rm and the bottom signed halfword values of Rn with the top signed halfword of Rm.

140 SAMAS Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

« Add the two multiplication results to the signed 64-bit value in RdLo and RdHi to create the
resulting 64-bit product.

 Write the 64-bit product in RdLo and RdHi.

Restrictions

In these instructions:

» do not use SP and do not use PC.

* RdHi and RdLo must be different registers.

Condition Flags

These instructions do not affect the condition code flags.

Examples

SMLAL

SMLALBT

SMLALTB

SMLALD

SMLALDX

11.6.6.6 SMLSD and SMLSLD

R4, R5, R3, RS ;

R2, Rl, R6, R7 ;

R6, R8, R5, R1 ;

R6, R8, R5, RIL ;

1

Mul tiplies R3 and R8, adds R5: R4 and wites to
R5: R4

Mul tiplies bottomhal fword of R6 with top

hal fword of R7, sign extends to 32-bit, adds
R1: R2 and wites to RL: R2

Multiplies top halfword of R6 with bottom

hal fword of R7,sign extends to 32-bit, adds
R1:R2 and wites to RL: R2

Mul tiplies top halfwords in R5 and Rl and
bottom hal fwords of R5 and R1, adds R8:R6 and
wites to R8:R6

Multiplies top halfword in RS with bottom

hal fword of R1, and bottomhal fword of R5 with
top halfword of Rl, adds R8:R6 and wites to

R8: R6.

Signed Multiply Subtract Dual and Signed Multiply Subtract Long Dual

Syntax

op{X}{cond} Rd, Rn, Rm Ra

where:

op

cond
Rd

Rn, Rm
Ra

11100B-ATARM-31-Jul-12

is one of:

SMLSD Signed Multiply Subtract Dual.

SMLSDX Signed Multiply Subtract Dual Reversed
SMLSLD Signed Multiply Subtract Long Dual.

SMLSLDX Signed Multiply Subtract Long Dual Reversed.

If X is present, the multiplications are bottom x top and top x bottom.
If the X is omitted, the multiplications are bottom x bottom and top x top.

is an optional condition code, see “Conditional Execution” .

is the destination register.

are registers holding the first and second operands.
is the register holding the accumulate value.

ATMEL

141

ATMEL

Operation

The SMLSD instruction interprets the values from the first and second operands as four signed
halfwords. This instruction:

« Optionally rotates the halfwords of the second operand.

 Performs two signed 16 x 16-bit halfword multiplications.

« Subtracts the result of the upper halfword multiplication from the result of the lower halfword
multiplication.

« Adds the signed accumulate value to the result of the subtraction.

» Writes the result of the addition to the destination register.

The SMLSLD instruction interprets the values from Rn and Rm as four signed halfwords.
This instruction:

» Optionally rotates the halfwords of the second operand.
» Performs two signed 16 x 16-bit halfword multiplications.
« Subtracts the result of the upper halfword multiplication from the result of the lower halfword
multiplication.
» Adds the 64-bit value in RdHi and RdLo to the result of the subtraction.
» Writes the 64-bit result of the addition to the RdHi and RdLo.
Restrictions

In these instructions:

* Do not use SP and do not use PC.
Condition Flags

This instruction sets the Q flag if the accumulate operation overflows. Overflow cannot occur
during the multiplications or subtraction.

For the Thumb instruction set, these instructions do not affect the condition code flags.
Examples

SMLSD RO, R4, R5, R6 ; Multiplies bottom hal fword of R4 with bottom
; halfword of R5, nultiplies top halfword of R4
; with top hal fword of R5, subtracts second from
o first, adds R6, wites to RO

SMLSDX Rl, R3, R2, RO ; Miltiplies bottomhal fword of R3 with top
; halfword of R2, nultiplies top hal fwrd of R3
; with bottom hal fword of R2, subtracts second
o fromfirst, adds RO, wites to Rl

SMLSLD R3, R6, R2, R7 ; Miltiplies bottomhal fword of R6 with bottom
; halfword of R2, multiplies top hal fword of R6
; wWith top halfword of R2, subtracts second from
; first, adds R6:R3, wites to R6:R3

SMLSLDX R3, R6, R2, R7 ; Miltiplies bottomhal fword of R6 with top
; halfword of R2, nultiplies top hal fwrd of R6

with bottom hal fword of R2, subtracts second

o fromfirst, adds R6:R3, wites to R6: R3.

142 SAMAS Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

11.6.6.7 SMMLA and SMMLS
Signed Most Significant Word Multiply Accumulate and Signed Most Significant Word Multiply

Subtract
Syntax
op{R}{cond} Rd, Rn, Rm Ra
where:
op is one of:
SMMLA Signed Most Significant Word Multiply Accumulate.
SMMLS Signed Most Significant Word Multiply Subtract.
is a rounding error flag. If R is specified, the result is rounded instead of being truncated.
R In this case the constant 0x80000000 is added to the product before the high word is
extracted.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn, Rm are registers holding the first and second multiply operands.
Ra is the register holding the accumulate value.
Operation

The SMMLA instruction interprets the values from Rn and Rm as signed 32-bit words.
The SMMLA instruction:

« Multiplies the values in Rn and Rm.
 Optionally rounds the result by adding 0x80000000.
 Extracts the most significant 32 bits of the result.
« Adds the value of Ra to the signed extracted value.
 Writes the result of the addition in Rd.
The SMMLS instruction interprets the values from Rn and Rm as signed 32-bit words.

The SMMLS instruction:

« Multiplies the values in Rn and Rm.
» Optionally rounds the result by adding 0x80000000.
« Extracts the most significant 32 bits of the result.
* Subtracts the extracted value of the result from the value in Ra.
 Writes the result of the subtraction in Rd.
Restrictions

In these instructions:

* Do not use SP and do not use PC.
Condition Flags

These instructions do not affect the condition code flags.

AImEl@ 143

11100B-ATARM-31-Jul-12

ATMEL

Examples

SMMLA RO, R4, R5, R6 ; Miltiplies R4 and R5, extracts top 32 bits,
; adds R6, truncates and wites to RO

SMMLAR R6, R2, Rl, R4 ; Miltiplies R2 and Rl, extracts top 32 bits,
; adds R4, rounds and wites to R6

SMMLSR R3, R6, R2, R7 ; Miltiplies R6 and R2, extracts top 32 hits,
: subtracts R7, rounds and wites to R3

SMMLS R4, R5, R3, R8 ; Miltiplies R5 and R3, extracts top 32 bits,
; subtracts R8, truncates and wites to R4.

11.6.6.8 SMMUL
Signed Most Significant Word Multiply

Syntax
op{R}{cond} Rd, Rn, Rm

where:

op is one of:
SMMUL Signed Most Significant Word Multiply
is a rounding error flag. If R is specified, the result is rounded instead of being

R truncated. In this case the constant 0x80000000 is added to the product before the high
word is extracted.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn, Rm are registers holding the first and second operands.

Operation

The SMMUL instruction interprets the values from Rn and Rm as two’s complement 32-bit signed
integers. The SMMUL instruction:

« Multiplies the values from Rn and Rm.

« Optionally rounds the result, otherwise truncates the result.

* Writes the most significant signed 32 bits of the result in Rd.
Restrictions

In this instruction:

* do not use SP and do not use PC.
Condition Flags

This instruction does not affect the condition code flags.

Examples
SMULL RO, R4, R5 ; Miultiplies R4 and R5, truncates top 32 bits
; and wites to RO
SMULLR R6, R2 ; Multiplies R6 and R2, rounds the top 32 bits

; and wites to R6.

144 SAMAS Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

11.6.6.9 SMUAD and SMUSD
Signed Dual Multiply Add and Signed Dual Multiply Subtract

Syntax
op{X}{cond} Rd, Rn, Rm
where:
op is one of:
SMUAD Signed Dual Multiply Add.
SMUADX Signed Dual Multiply Add Reversed.
SMUSD Signed Dual Multiply Subtract.
SMUSDX Signed Dual Multiply Subtract Reversed.
If X is present, the multiplications are bottom x top and top x bottom.
If the X is omitted, the multiplications are bottom x bottom and top x top.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn, Rm are registers holding the first and the second operands.
Operation

The SMUAD instruction interprets the values from the first and second operands as two signed
halfwords in each operand. This instruction:

« Optionally rotates the halfwords of the second operand.

« Performs two signed 16 x 16-bit multiplications.

» Adds the two multiplication results together.

« Writes the result of the addition to the destination register.
The sSMusD instruction interprets the values from the first and second operands as two’'s comple-
ment signed integers. This instruction:

« Optionally rotates the halfwords of the second operand.

« Performs two signed 16 x 16-bit multiplications.

 Subtracts the result of the top halfword multiplication from the result of the bottom halfword
multiplication.

» Writes the result of the subtraction to the destination register.
Restrictions

In these instructions:

* Do not use SP and do not use PC.
Condition Flags

Sets the Q flag if the addition overflows. The multiplications cannot overflow.

AImEl@ 145

11100B-ATARM-31-Jul-12

ATMEL

Examples

SMUAD RO, R4, R5 ; Miltiplies bottomhal fword of R4 with the bottom
; halfword of R5, adds multiplication of top hal fword
; of RA with top halfword of R5, wites to RO

SMUADX R3, R7, R4 ; Miltiplies bottomhal fword of R7 with top hal fword
; of R4, adds nmultiplication of top halfword of R7
; with bottomhal fword of R4, wites to R3

SMUSD R3, R6, R2 ; Miultiplies bottomhal fword of R4 with bottom hal fword
; of R6, subtracts multiplication of top hal fword of
; R with top halfword of R3, wites to R3

SMUSDX R4, R5, R3 ; Miltiplies bottomhal fword of R5 with top hal fword

of R3, subtracts nultiplication of top hal fword of

: RS with bottomhal fword of R3, wites to R4.

11.6.6.10 SMUL and SMULW
Signed Multiply (halfwords) and Signed Multiply (word by halfword)

Syntax

op{ XY}{cond} Rd, Rn, Rm
op{VY}{cond} Rd. Rn, Rm
For sMuLXxY only:

op is one of:
SMUL{XY?} Signed Multiply (halfwords)

X and Y specify which halfword of the source registers Rn and Rm is used as the first and
second multiply operand.

If X is B, then the bottom halfword, bits [15:0] of Rn is used.

If X is T, then the top halfword, bits [31:16] of Rn is used.If Y is B, then the bottom
halfword, bits [15:0], of Rm is used.

If Y is T, then the top halfword, bits [31:16], of Rm is used.

SMULW{Y} Signed Multiply (word by halfword)

Y specifies which halfword of the source register Rm is used as the second multiply
operand.

If Y is B, then the bottom halfword (bits [15:0]) of Rm is used.

If Y is T, then the top halfword (bits [31:16]) of Rm is used.

cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.

Rn, Rm are registers holding the first and second operands.
Operation

The SMULBB, SMULTB, SMULBT and SMULTT instructions interprets the values from Rn and Rm as four
signed 16-bit integers. These instructions:

« Multiplies the specified signed halfword, Top or Bottom, values from Rn and Rm.

* Writes the 32-bit result of the multiplication in Rd.

The SMULWT and SMULWB instructions interprets the values from Rn as a 32-bit signed integer and
Rm as two halfword 16-bit signed integers. These instructions:

146 SAMAS Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

« Multiplies the first operand and the top, T suffix, or the bottom, B suffix, halfword of the

second operand.

« Writes the signed most significant 32 bits of the 48-bit result in the destination register.

Restrictions

In these instructions:

* Do not use SP and do not use PC.

* RaHi and RdLo must be different registers.

Examples

SMULBT

SMULBB

SMULTT

SMULTB

SMULWI

SMULVB

11100B-ATARM-31-Jul-12

RO,

R4,

R4,

R4,

R4,

R4,

R4,

R5

R5

R5

R5

)

Mul tiplies the bottom hal fword of R4 with the
top hal fword of R5, nultiplies results and
wites to RO

Mil tiplies the bottom hal fword of R4 with the
bottom hal fword of R5, multiplies results and
wites to RO

Miltiplies the top halfword of RA with the top
hal fword of R5, nultiplies results and wites

to RO
Miltiplies the top hal fword of RA with the

bottom hal fword of R5, multiplies results and
and wites to RO

Miltiplies R5 with the top hal fword of RS,
extracts top 32 bits and wites to R4
Multiplies R5 with the bottom hal fword of R3,
extracts top 32 bits and wites to R4.

AImEl@ 147

11.6.6.11

148

ATMEL

UMULL, UMLAL, SMULL, and SMLAL

Signed and Unsigned Long Multiply, with optional Accumulate, using 32-bit operands and pro-
ducing a 64-bit result.

Syntax
op{cond} RdLo, RdH, Rn, Rm
where:
op is one of:
UMULL Unsigned Long Multiply.
UMLAL Unsigned Long Multiply, with Accumulate.
SMULL Signed Long Multiply.
SMLAL Signed Long Multiply, with Accumulate.
cond is an optional condition code, see “Conditional Execution” .
RdHi, RdLo are the destination registers. For UMLAL and SMLAL they also hold the accumulating
value.
Rn, Rm are registers holding the operands.
Operation

The UMULL instruction interprets the values from Rn and Rm as unsigned integers. It multiplies
these integers and places the least significant 32 bits of the result in RdLo, and the most signifi-
cant 32 bits of the result in RdHi.

The UMLAL instruction interprets the values from Rn and Rm as unsigned integers. It multiplies
these integers, adds the 64-bit result to the 64-bit unsigned integer contained in RdHi and RdLo,
and writes the result back to RdHi and RdLo.

The SMULL instruction interprets the values from Rn and Rm as two’s complement signed integers.
It multiplies these integers and places the least significant 32 bits of the result in RdLo, and the
most significant 32 bits of the result in RdHi.

The SMLAL instruction interprets the values from Rn and Rm as two’s complement signed integers.
It multiplies these integers, adds the 64-bit result to the 64-bit signed integer contained in RdHi
and RdLo, and writes the result back to RdHi and RdLo.

Restrictions
In these instructions:

 do not use SP and do not use PC
* RdHi and RdLo must be different registers.
Condition Flags

These instructions do not affect the condition code flags.

Examples
UMULL RO, R4, R5, R6 ; Unsigned (R4,R0) = R5 x R6
SMLAL R4, R5, R3, R8 ; Signed (R5,R4) = (R5,R4) + R3 x R8

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

11.6.6.12 SDIV and UDIV
Signed Divide and Unsigned Divide.

Syntax

SDI V{cond} {Rd,} Rn, Rm
uDl V{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register. If Rd is omitted, the destination register is Rn.
Rn is the register holding the value to be divided.

Rm is a register holding the divisor.

Operation

sbiv performs a signed integer division of the value in Rn by the value in Rm.
uplv performs an unsigned integer division of the value in Rn by the value in Rm.

For both instructions, if the value in Rn is not divisible by the value in Rm, the result is rounded
towards zero.

Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not change the flags.
Examples

SDIV RO, R, R4 ; Signed divide, RO = R2/R4
UDIV R8, R3, Rl ; Unsigned divide, R8 = R8/RL

AImEl@ 149

11100B-ATARM-31-Jul-12

ATMEL

11.6.7 Saturating Instructions

The table below shows the saturating instructions:

Table 11-22. Saturating Instructions

Mnemonic Description

SSAT Signed Saturate

SSAT16 Signed Saturate Halfword

USAT Unsigned Saturate

USAT16 Unsigned Saturate Halfword

QADD Saturating Add

QsuB Saturating Subtract

QSUB16 Saturating Subtract 16

QASX Saturating Add and Subtract with Exchange

QSAX Saturating Subtract and Add with Exchange

QDADD Saturating Double and Add

QDSsuUB Saturating Double and Subtract

UQADD16 Unsigned Saturating Add 16

UQADDS Unsigned Saturating Add 8

UQASX Unsigned Saturating Add and Subtract with Exchange
UQSAX Unsigned Saturating Subtract and Add with Exchange
UQSUB16 Unsigned Saturating Subtract 16

UQSuUB8 Unsigned Saturating Subtract 8

For signed n-bit saturation, this means that:

« if the value to be saturated is less than -2™2, the result returned is -2
« if the value to be saturated is greater than 2"*-1, the result returned is 2"*-1
« otherwise, the result returned is the same as the value to be saturated.

For unsigned n-bit saturation, this means that:

« if the value to be saturated is less than 0, the result returned is O
« if the value to be saturated is greater than 2"-1, the result returned is 2"-1
 otherwise, the result returned is the same as the value to be saturated.

If the returned result is different from the value to be saturated, it is called saturation. If satura-
tion occurs, the instruction sets the Q flag to 1 in the APSR. Otherwise, it leaves the Q flag
unchanged. To clear the Q flag to 0, the MSR instruction must be used; see “MSR" .

To read the state of the Q flag, the MRS instruction must be used; see “MRS” .

150 SAMAS Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

11.6.7.1 SSAT and USAT
Signed Saturate and Unsigned Saturate to any bit position, with optional shift before saturating.

Syntax
op{cond} Rd, #n, Rm{, shift #s}
where:
op is one of:
SSAT Saturates a signed value to a signed range.
USAT Saturates a signed value to an unsigned range.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
n specifies the bit position to saturate to:

n ranges from 1

t0 32 for SSAT " ranges from O to 31 for USAT.

Rm is the register containing the value to saturate.

shift #s is an optional shift applied to Rm before saturating. It must be one of the following:
ASR #s where s is in the range 1 to 31

LSL #s where s is in the range 0 to 31.

Operation

These instructions saturate to a signed or unsigned n-bit value.

The SSAT instruction applies the specified shift, then saturates to the signed range -2 £ x £ 2"
1
-1.

The USAT instruction applies the specified shift, then saturates to the unsigned range 0 £ x £ 2"-
1.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.
If saturation occurs, these instructions set the Q flag to 1.
Examples

SSAT R7, #16, R7, LSL #4 ; Logical shift left value in R7 by 4, then
; saturate it as a signed 16-bit val ue and

wite it back to R7
USATNE RO, #7, RS ; Conditionally saturate value in R5 as an
; unsigned 7 bit value and wite it to RO.

AImEl@ 151

11100B-ATARM-31-Jul-12

11.6.7.2

152

ATMEL

SSAT16 and USAT16

Signed Saturate and Unsigned Saturate to any bit position for two halfwords.

Syntax
op{cond} Rd, #n, Rm

where:

op is one of:
SSAT16 Saturates a signed halfword value to a signed range.
USAT16 Saturates a signed halfword value to an unsigned range.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

n specifies the bit position to saturate to:

n ranges from 1
to 16 for SSAT.

Rm is the register containing the value to saturate.

n ranges from 0 to 15 for USAT.

Operation
The SSAT16 instruction:

Saturates two signed 16-bit halfword values of the register with the value to saturate from
selected by the bit position in n.

Writes the results as two signed 16-bit halfwords to the destination register.
The USAT16 instruction:

Saturates two unsigned 16-bit halfword values of the register with the value to saturate from
selected by the bit position in n.

Writes the results as two unsigned halfwords in the destination register.
Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

If saturation occurs, these instructions set the Q flag to 1.

Examples
SSAT16 R7, #9, R2 ; Saturates the top and bottom hi ghwords of R2
; as 9-bit values, wites to correspondi ng hal fword
of R7

USAT16NE RO, #13, R5 ; Conditionally saturates the top and bottom
; hal fwords of R5 as 13-bit values, wites to
correspondi ng hal fword of RO.

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

11.6.7.3 QADD and QSUB
Saturating Add and Saturating Subtract, signed.

Syntax

op{cond} {Rd}, Rn, Rm
op{cond} {Rd}, Rn, Rm

where:
op is one of:
QADD Saturating 32-bit add.
QADDS8 Saturating four 8-bit integer additions.
QADD16 Saturating two 16-bit integer additions.
QSUB Saturating 32-bit subtraction.
QSUB8 Saturating four 8-bit integer subtraction.
QSUB16 Saturating two 16-bit integer subtraction.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

These instructions add or subtract two, four or eight values from the first and second operands
and then writes a signed saturated value in the destination register.

The QADD and QSUB instructions apply the specified add or subtract, and then saturate the result
to the signed range -2" £ x £ 2"1-1, where x is given by the number of bits applied in the
instruction, 32, 16 or 8.

If the returned result is different from the value to be saturated, it is called saturation. If satura-
tion occurs, the QADD and QSUB instructions set the Q flag to 1 in the APSR. Otherwise, it leaves
the Q flag unchanged. The 8-bit and 16-bit QADD and QSUB instructions always leave the Q flag
unchanged.

To clear the Q flag to 0, the MSR instruction must be used; see “MSR” .

To read the state of the Q flag, the MRS instruction must be used; see “MRS” .
Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

If saturation occurs, these instructions set the Q flag to 1.

Examples

QADD16 R7, R4, R2 ; Adds hal fwords of R4 with corresponding hal fword of
; R2, saturates to 16 bits and wites to corresponding
: hal fword of R7

QADD8 R3, Rl, R6 ; Adds bytes of Rl to the correspondi ng bytes of R6,
; saturates to 8 bits and wites to correspondi ng byte
o of R3

AImEl@ 153

11100B-ATARM-31-Jul-12

ATMEL

QsuBLl6 R4, R2, R3 ; Subtracts hal fwords of R3 fromcorrespondi ng hal fword
; of R2, saturates to 16 bits, wites to correspondi ng

; hal fword of R4

QsuB8 R4, R2, R5 ; Subtracts bytes of R5 fromthe corresponding byte in
; R2, saturates to 8 bits, wites to correspondi ng byte
. of R4.

11.6.7.4 QASX and QSAX
Saturating Add and Subtract with Exchange and Saturating Subtract and Add with Exchange,

signed.
Syntax
op{cond} {Rd}, Rm Rn
where:
op is one of:
QASX Add and Subtract with Exchange and Saturate.
QSAX Subtract and Add with Exchange and Saturate.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

The QASX instruction:
1. Adds the top halfword of the source operand with the bottom halfword of the second
operand.

2. Subtracts the top halfword of the second operand from the bottom highword of the first
operand.

3. Saturates the result of the subtraction and writes a 16-bit signed integer in the range —
215 «x <215 — 1, where x equals 16, to the bottom halfword of the destination register.

4. Saturates the results of the sum and writes a 16-bit signed integer in the range
-2 «x <21% — 1, where x equals 16, to the top halfword of the destination register.

The QSAX instruction:
1. Subtracts the bottom halfword of the second operand from the top highword of the first
operand.

2. Adds the bottom halfword of the source operand with the top halfword of the second
operand.

3. Saturates the results of the sum and writes a 16-bit signed integer in the range
—215 «x <21° _ 1, where x equals 16, to the bottom halfword of the destination register.

4. Saturates the result of the subtraction and writes a 16-bit signed integer in the range —
215 «x <21° — 1, where x equals 16, to the top halfword of the destination register.

Restrictions
Do not use SP and do not use PC.
Condition Flags

These instructions do not affect the condition code flags.

154 SAMAS Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

Examples

QASX R7, R4, R2 ; Adds top hal fword of R4 to bottom hal fword of R2,
; saturates to 16 bits, wites to top hal fword of R7
; Subtracts top highword of R2 from bottom hal fword of
. R4, saturates to 16 bits and wites to bottom hal fword
; of R7

SAX RO, R3, R5 ; Subtracts bottomhalfword of R5 fromtop hal fword of
; R3, saturates to 16 bits, wites to top hal fword of RO

Adds bottom hal fword of R3 to top hal fword of R5,

; saturates to 16 bits, wites to bottomhal fword of RO.

11.6.7.5 QDADD and QDSUB
Saturating Double and Add and Saturating Double and Subtract, signed.

Syntax
op{cond} {Rd}, Rm Rn
where:
op is one of:
QDADD Saturating Double and Add.
QDSUB Saturating Double and Subtract.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rm, Rn are registers holding the first and second operands.
Operation

The QDADD instruction:

« Doubles the second operand value.
< Adds the result of the doubling to the signed saturated value in the first operand.
» Writes the result to the destination register.

The QDSUB instruction:

* Doubles the second operand value.
« Subtracts the doubled value from the signed saturated value in the first operand.
 Writes the result to the destination register.

Both the doubling and the addition or subtraction have their results saturated to the 32-bit signed
integer range —23 <x <231— 1. If saturation occurs in either operation, it sets the Q flag in the
APSR.

Restrictions
Do not use SP and do not use PC.
Condition Flags

If saturation occurs, these instructions set the Q flag to 1.

AImEl@ 155

11100B-ATARM-31-Jul-12

ATMEL

Examples
QDADD R7, R4, R2 ; Doubl es and saturates R4 to 32 bits, adds R2,
; saturates to 32 bits, wites to R7
QDbsuB RO, R3, R5 ; Subtracts R3 doubled and saturated to 32 bits

; fromR5, saturates to 32 bits, wites to RO.

UQASX and UQSAX

Saturating Add and Subtract with Exchange and Saturating Subtract and Add with Exchange,
unsigned.

Syntax
op{cond} {Rd}, Rm Rn
where:
type is one of:
UQASX Add and Subtract with Exchange and Saturate.
UQSAX Subtract and Add with Exchange and Saturate.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

The UQASX instruction:
1. Adds the bottom halfword of the source operand with the top halfword of the second
operand.

2. Subtracts the bottom halfword of the second operand from the top highword of the first
operand.

3. Saturates the results of the sum and writes a 16-bit unsigned integer in the range
0 <x <28 — 1, where x equals 16, to the top halfword of the destination register.

4. Saturates the result of the subtraction and writes a 16-bit unsigned integer in the range
0 <x <2 — 1, where x equals 16, to the bottom halfword of the destination register.

The UQSAX instruction:
1. Subtracts the bottom halfword of the second operand from the top highword of the first
operand.

2. Adds the bottom halfword of the first operand with the top halfword of the second
operand.

3. Saturates the result of the subtraction and writes a 16-bit unsigned integer in the range
0 <x <28 — 1, where x equals 16, to the top halfword of the destination register.

4. Saturates the results of the addition and writes a 16-bit unsigned integer in the range 0
<x <218 — 1, where x equals 16, to the bottom halfword of the destination register.

Restrictions
Do not use SP and do not use PC.
Condition Flags

These instructions do not affect the condition code flags.

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

Examples

UQASX R7, R4, R2 ; Adds top hal fword of R4 with bottom hal fword of R2,
; saturates to 16 bits, wites to top hal fword of R7
; Subtracts top hal fword of R2 frombottomhal fword of R4
; saturates to 16 bits, wites to bottom hal fword of R7
UXBAX RO, R3, R5 ; Subtracts bottomhal fword of R5 fromtop hal fword of R3
; saturates to 16 bits, wites to top hal fwrd of RO
; Adds bottom hal fword of R4 to top hal fword of R5
saturates to 16 bits, wites to bottom hal fword of RO.

11.6.7.7 UQADD and UQSUB
Saturating Add and Saturating Subtract Unsigned.

Syntax

op{cond} {Rd}, Rn, Rm
op{cond} {Rd}, Rn, Rm

where:
op is one of:
UQADDS Saturating four unsigned 8-bit integer additions.
UQADD16 Saturating two unsigned 16-bit integer additions.
UDSUB8 Saturating four unsigned 8-bit integer subtractions.
UQSUB16 Saturating two unsigned 16-bit integer subtractions.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

These instructions add or subtract two or four values and then writes an unsigned saturated
value in the destination register.

The UQADD16 instruction:

« Adds the respective top and bottom halfwords of the first and second operands.

 Saturates the result of the additions for each halfword in the destination register to the
unsigned range 0 £ x £ 2'6-1, where x is 16.

The UQADDS instruction:

» Adds each respective byte of the first and second operands.

» Saturates the result of the addition for each byte in the destination register to the unsigned
range O £ x £ 28-1, where x is 8.

The UQSUB16 instruction:
 Subtracts both halfwords of the second operand from the respective halfwords of the first
operand.

« Saturates the result of the differences in the destination register to the unsigned range
0 £ x £ 2%-1, where x is 16.

The UQSUBS instructions:

AImEl@ 157

11100B-ATARM-31-Jul-12

ATMEL

» Subtracts the respective bytes of the second operand from the respective bytes of the first
operand.

« Saturates the results of the differences for each byte in the destination register to the
unsigned range 0 £ x £ 28-1, where x is 8.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.
Examples

UQADD16 R7, R4, R2 ; Adds halfwords in R4 to correspondi ng hal fword in R2,
; saturates to 16 bits, wites to corresponding
; hal fword of R7Y

UQADD8 R4, R2, R5 ; Adds bytes of R2 to correspondi ng byte of R5,
; saturates to 8 bits, wites to correspondi ng bytes of
. R4

UQSUB16 R6, R3, RO ; Subtracts halfwords in RO fromcorrespondi ng hal f word
; In R3, saturates to 16 bits, wites to correspondi ng
: halfword in R6

uQsuBs Rl, R5, R6 ; Subtracts bytes in R6 fromcorresponding byte of R5,

; saturates to 8 bits, wites to corresponding byte of
i RL.

11.6.8 Packing and Unpacking Instructions

The table below shows the instructions that operate on packing and unpacking data:

Table 11-23. Packing and Unpacking Instructions

Mnemonic Description

PKH Pack Halfword

SXTAB Extend 8 bits to 32 and add
SXTAB16 Dual extend 8 bits to 16 and add
SXTAH Extend 16 bits to 32 and add
SXTB Sign extend a byte

SXTB16 Dual extend 8 bits to 16 and add
SXTH Sign extend a halfword

UXTAB Extend 8 bits to 32 and add
UXTAB16 Dual extend 8 bits to 16 and add
UXTAH Extend 16 bits to 32 and add
UXTB Zero extend a byte

UXTB16 Dual zero extend 8 bits to 16 and add
UXTH Zero extend a halfword

158 SAMAS Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

11.6.8.1 PKHBT and PKHTB
Pack Halfword

Syntax

op{cond} {Rd}, Rn, Rm{, LSL # m}
op{cond} {Rd}, Rn, Rm{, ASR #i mi

where:
op is one of:
PKHBT Pack Halfword, bottom and top with shift.
PKHTB Pack Halfword, top and bottom with shift.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the first operand register.
Rm is the second operand register holding the value to be optionally shifted.
is the shift length. The type of shift length depends on the instruction:
For PKHBT
imm LSL a left shift with a shift length from 1 to 31, 0 means no shift.
For PKHTB
ASR an arithmetic shift right with a shift length from 1 to 32,
a shift of 32-bits is encoded as 0b00000.
Operation

The PKHBT instruction:
1. Writes the value of the bottom halfword of the first operand to the bottom halfword of
the destination register.

2. If shifted, the shifted value of the second operand is written to the top halfword of the
destination register.

The PKHTB instruction:
1. Writes the value of the top halfword of the first operand to the top halfword of the desti-
nation register.

2. If shifted, the shifted value of the second operand is written to the bottom halfword of
the destination register.

Restrictions

Rd must not be SP and must not be PC.
Condition Flags

This instruction does not change the flags.
Examples

PKHBT R3, R4, R5 LSL #0 ; Wites bottomhal fword of R4 to bottomhal fword

; of R3, wites top hal fword of R5, unshifted, to
; top halfword of R3

PKHTB R4, RO, R2 ASR #1 ; Wites R2 shifted right by 1 bit to bottom
; halfword of R4, and wites top hal fword of RO
to top hal fword of R4.

AImEl@ 159

11100B-ATARM-31-Jul-12

11.6.8.2

160

SXT and UXT

Sign extend and Zero extend.
Syntax

op{cond} {Rd,} Rm{, ROR #n}
op{cond} {Rd}, Rm{, ROR #n}

where:
op is one of:
SXTB Sign extends an 8-bit value to a 32-bit value.
SXTH Sign extends a 16-bit value to a 32-bit value.
SXTB16 Sign extends two 8-bit values to two 16-bit values.
UXTB Zero extends an 8-bit value to a 32-bit value.
UXTH Zero extends a 16-bit value to a 32-bit value.
UXTB16 Zero extends two 8-bit values to two 16-bit values.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rm is the register holding the value to extend.
ROR #n is one of:
ROR #8 Value from Rm is rotated right 8 bits.
ROR #16 Value from Rm is rotated right 16 bits.
ROR #24 Value from Rm is rotated right 24 bits.
If ROR #n is omitted, no rotation is performed.
Operation

These instructions do the following:

1. Rotate the value from Rm right by 0, 8, 16 or 24 bits.
2. Extract bits from the resulting value:
— SXTB extracts bits[7:0] and sign extends to 32 bits.
— UXTB extracts bits[7:0] and zero extends to 32 bits.
— SXTH extracts bits[15:0] and sign extends to 32 bits.
— UXTH extracts bits[15:0] and zero extends to 32 bits.

— SXTB16 extracts bits[7:0] and sign extends to 16 bits,
and extracts bits [23:16] and sign extends to 16 bits.

— UXTB16 extracts bits[7:0] and zero extends to 16 bits,
and extracts bits [23:16] and zero extends to 16 bits.

Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not affect the flags.
Examples

SXTH R4, R6, ROR #16 ; Rotates R6 right by 16 bits, obtains bottom
; hal fword of result, sign extends to 32 bits and
; wites to R4

UXTB R3, R10 ; Extracts | owest byte of value in RLO, zero extends,
;and wites to R3.

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

11.6.8.3 SXTA and UXTA
Signed and Unsigned Extend and Add

Syntax

op{cond} {Rd,} Rn, Rm{, ROR #n}
op{cond} {Rd,} Rn, Rm{, ROR #n}

where:
op is one of:
SXTAB Sign extends an 8-bit value to a 32-bit value and add.
SXTAH Sign extends a 16-bit value to a 32-bit value and add.
SXTAB16 Sign extends two 8-bit values to two 16-bit values and add.
UXTAB Zero extends an 8-bit value to a 32-bit value and add.
UXTAH Zero extends a 16-bit value to a 32-bit value and add.
UXTAB16 Zero extends two 8-bit values to two 16-bit values and add.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the first operand register.
Rm is the register holding the value to rotate and extend.
ROR #n is one of:
ROR #8 Value from Rm is rotated right 8 bits.
ROR #16 Value from Rm is rotated right 16 bits.
ROR #24 Value from Rm is rotated right 24 bits.
If ROR #n is omitted, no rotation is performed.
Operation

These instructions do the following:

1. Rotate the value from Rm right by 0, 8, 16 or 24 bits.

2. Extract bits from the resulting value:
— SXTAB extracts bits[7:0] from Rm and sign extends to 32 bits.
— UXTAB extracts bits[7:0] from Rm and zero extends to 32 bits.
— SXTAH extracts bits[15:0] from Rm and sign extends to 32 bits.
— UXTAH extracts bits[15:0] from Rm and zero extends to 32 bits.

— SXTAB16 extracts bits[7:0] from Rm and sign extends to 16 bits,
and extracts bits [23:16] from Rm and sign extends to 16 bits.

— UXTAB16 extracts bits[7:0] from Rm and zero extends to 16 bits,
and extracts bits [23:16] from Rm and zero extends to 16 bits.

3. Adds the signed or zero extended value to the word or corresponding halfword of Rn
and writes the result in Rd.

Restrictions
Do not use SP and do not use PC.
Condition Flags

These instructions do not affect the flags.

AImEl@ 161

11100B-ATARM-31-Jul-12

ATMEL

Examples

SXTAH R4, R8, R6, ROR #16 ; Rotates R6 right by 16 bits, obtains bottom
; hal fword, sign extends to 32 bits, adds R8, and
; wites to R4
UXTAB R3, R4, R10 ; Extracts bottombyte of R1O and zero extends to
32 bits, adds R4, and wites to R3.

11.6.9 Bitfield Instructions

The table below shows the instructions that operate on adjacent sets of bits in registers or
bitfields:

Table 11-24. Packing and Unpacking Instructions

Mnemonic | Description

BFC Bit Field Clear

BFI Bit Field Insert

SBFX Signed Bit Field Extract
SXTB Sign extend a byte

SXTH Sign extend a halfword
UBFX Unsigned Bit Field Extract
UXTB Zero extend a byte

UXTH Zero extend a halfword

11.6.9.1 BFC and BFI
Bit Field Clear and Bit Field Insert.

Syntax

BFC{cond} Rd, #lsb, #wi dth
BFI {cond} Rd, Rn, #lsb, #width

where:

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn is the source register.

Isb is the position of the least significant bit of the bitfield. Isb must be in the range 0 to 31.
width is the width of the bitfield and must be in the range 1 to 32-Ish.

Operation

BFC clears a bitfield in a register. It clears width bits in Rd, starting at the low bit position Isb. Other
bits in Rd are unchanged.

BFI copies a bitfield into one register from another register. It replaces width bits in Rd starting at
the low bit position Isb, with width bits from Rn starting at bit[0]. Other bits in Rd are unchanged.

Restrictions

Do not use SP and do not use PC.

12 SAMAS Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

Condition Flags

These instructions do not affect the flags.

Examples
BFC R4, #8, #12 ; Clear bit 8 to bit 19 (12 bits) of R4 to 0O
BFI R9, R2, #8, #12 ; Replace bit 8 to bit 19 (12 bits) of RO with

: bit Oto bit 11 from R2.

11.6.9.2 SBFX and UBFX
Signed Bit Field Extract and Unsigned Bit Field Extract.

Syntax

SBFX{ cond} Rd, Rn, #lsh, #wdth
UBFX{cond} Rd, Rn, #lsb, #w dth

where:

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn is the source register.

Isb is the position of the least significant bit of the bitfield. Isb must be in the range 0 to 31.
width is the width of the bitfield and must be in the range 1 to 32-Ish.

Operation

SBFX extracts a bitfield from one register, sign extends it to 32 bits, and writes the result to the
destination register.

UBFX extracts a bitfield from one register, zero extends it to 32 bits, and writes the result to the
destination register.

Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not affect the flags.
Examples

SBFX RO, R1, #20, #4 ; Extract bit 20 to bit 23 (4 bits) fromRl and sign

; extend to 32 bits and then wite the result to RO.

UBFX R8, R11, #9, #10 ; Extract bit 9 to bit 18 (10 bits) from Rl1l and
; zero, extend to 32 bits and then wite the result
; to R8.

AImEl@ 163

11100B-ATARM-31-Jul-12

11.6.9.3

164

ATMEL

SXT and UXT

Sign extend and Zero extend.
Syntax

SXTextend{cond} {Rd,} Rm{, ROR #n}
UXText end{ cond} {Rd}, Rm {, ROR #n}

where:
extend is one of:
B Extends an 8-bit value to a 32-bit value.
H Extends a 16-bit value to a 32-bit value.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rm is the register holding the value to extend.
ROR #n is one of:
ROR #8 Value from Rm is rotated right 8 bits.
ROR #16 Value from Rm is rotated right 16 bits.
ROR #24 Value from Rm is rotated right 24 bits.
If ROR #n is omitted, no rotation is performed
Operation

These instructions do the following:

1. Rotate the value from Rm right by 0, 8, 16 or 24 bits.
2. Extract bits from the resulting value:
— SXTB extracts bits[7:0] and sign extends to 32 bits.
— UXTB extracts bits[7:0] and zero extends to 32 bits.
— SXTH extracts bits[15:0] and sign extends to 32 bits.
— UXTH extracts bits[15:0] and zero extends to 32 bits.
Restrictions

Do not use SP and do not use PC.
Condition Flags
These instructions do not affect the flags.

Examples

SXTH R4, R6, ROR #16 ; Rotate R6 right by 16 bits,

then obtain the | ower

; hal fword of the result and then sign extend to
; 32 bits and wite the result to R4.

UXTB R3, R10 ; Extract |owest byte of the value in R10 and zero
; extend it, and wite the result to R3.

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

11.6.10 Branch and Control Instructions

The table below shows the branch and control instructions:

Table 11-25. Branch and Control Instructions
Mnemonic | Description
B Branch
BL Branch with Link
BLX Branch indirect with Link
BX Branch indirect
CBNzZ Compare and Branch if Non Zero
CBz Compare and Branch if Zero
IT If-Then
TBB Table Branch Byte
TBH Table Branch Halfword

11.6.10.1 B, BL, BX, and BLX

Branch instructions.

Syntax
B{ cond} | abel
BL{cond} | abel
BX{ cond} Rm
BLX{ cond} Rm
where:
B is branch (immediate).
BL is branch with link (immediate).
BX is branch indirect (register).
BLX is branch indirect with link (register).
cond
label
Rm
Operation

All these instructions cause a branch to label, or to the address indicated in Rm. In addition:

is an optional condition code, see “Conditional Execution” .
is a PC-relative expression. See “PC-relative Expressions” .

is a register that indicates an address to branch to. Bit[0] of the value in Rm must be 1,
but the address to branch to is created by changing bit[0] to 0.

« The BL and BLX instructions write the address of the next instruction to LR (the link register,

R14).

« The BX and BLX instructions result in a UsageFault exception if bit[0] of Rm is 0.

Bcond label is the only conditional instruction that can be either inside or outside an IT block. All
other branch instructions must be conditional inside an IT block, and must be unconditional out-
side the IT block, see “IT” .

11100B-ATARM-31-Jul-12

ATMEL

165

ATMEL

The table below shows the ranges for the various branch instructions.

Table 11-26. Branch Ranges

Instruction Branch Range

B label -16 MB to +16 MB
Bcond label (outside IT block) 4 MB to +1 MB
Bcond label (inside IT block) -16 MB to +16 MB

BL{cond} label 416 MB to +16 MB
BX{cond} Rm Any value in register
BLX{cond} Rm Any value in register

The .w suffix might be used to get the maximum branch range. See “Instruction Width Selection”

Restrictions
The restrictions are:

* do not use PC in the BLX instruction

« for BX and BLX, bit[0] of Rm must be 1 for correct execution but a branch occurs to the target
address created by changing bit[0] to 0

» when any of these instructions is inside an IT block, it must be the last instruction of the IT
block.

Bcond is the only conditional instruction that is not required to be inside an IT block. However, it
has a longer branch range when it is inside an IT block.

Condition Flags

These instructions do not change the flags.

Examples
B | oopA ; Branch to | oopA
BLE ng ; Conditionally branch to | abel ng
B. W tar get ; Branch to target within 16MB range
BEQ tar get ; Conditionally branch to target
BEQ W target ; Conditionally branch to target within 1MB
BL funC ; Branch with link (Call) to function funC, return
: address stored in LR
BX LR : Return fromfunction call
BXNE RO ; Conditionally branch to address stored in RO
BLX RO ; Branch with link and exchange (Call) to a address

; stored in RO.

166 SAMAS Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

11.6.10.2 CBZ and CBNZ
Compare and Branch on Zero, Compare and Branch on Non-Zero.

Syntax

CBZ Rn, | abel

CBNZ Rn, | abel
where:
Rn is the register holding the operand.
label is the branch destination.
Operation

Use the CBz or CBNz instructions to avoid changing the condition code flags and to reduce the
number of instructions.

CBZRn, label does not change condition flags but is otherwise equivalent to:

CwWP Rn, #0
BEQ | abel
CBNZ Rn, label does not change condition flags but is otherwise equivalent to:
CwP Rn, #0
BNE | abel

Restrictions
The restrictions are:

* Rn must be in the range of RO to R7
« the branch destination must be within 4 to 130 bytes after the instruction
« these instructions must not be used inside an IT block.

Condition Flags

These instructions do not change the flags.

Examples

CcBz R5, target
CBNZ RO, target

;. Forward branch if R5 is zero
;. Forward branch if RO is not zero

AImEl@ 167

11100B-ATARM-31-Jul-12

11.6.10.3

168

IT

If-Then condition instruction.

Syntax

I T{x{y{z}}} cond
where:
X specifies the condition switch for the second instruction in the IT block.
y specifies the condition switch for the third instruction in the IT block.
z specifies the condition switch for the fourth instruction in the IT block.
cond specifies the condition for the first instruction in the IT block.

The condition switch for the second, third and fourth instruction in the IT block can be either:

T Then. Applies the condition cond to the instruction.
E Else. Applies the inverse condition of cond to the instruction.

It is possible to use AL (the always condition) for cond in an IT instruction. If this is done, all of the
instructions in the IT block must be unconditional, and each of x, y, and z must be T or omitted
but not E.

Operation

The IT instruction makes up to four following instructions conditional. The conditions can be all
the same, or some of them can be the logical inverse of the others. The conditional instructions
following the IT instruction form the IT block.

The instructions in the IT block, including any branches, must specify the condition in the {cond}
part of their syntax.

The assembler might be able to generate the required IT instructions for conditional instructions
automatically, so that the user does not have to write them. See the assembler documentation
for details.

A BKPT instruction in an IT block is always executed, even if its condition fails.

Exceptions can be taken between an IT instruction and the corresponding IT block, or within an
IT block. Such an exception results in entry to the appropriate exception handler, with suitable
return information in LR and stacked PSR.

Instructions designed for use for exception returns can be used as normal to return from the
exception, and execution of the IT block resumes correctly. This is the only way that a PC-modi-
fying instruction is permitted to branch to an instruction in an IT block.

Restrictions
The following instructions are not permitted in an IT block:

o IT
e CBZ and CBNZ
 CPSID and CPSIE.
Other restrictions when using an IT block are:
« a branch or any instruction that modifies the PC must either be outside an IT block or must be
the last instruction inside the IT block. These are:
— ADD PC, PC, Rm

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

— MOV PC, Rm
— B, BL, BX, BLX

— any LDM, LDR, or POP instruction that writes to the PC
— TBB and TBH

« do not branch to any instruction inside an IT block, except when returning from an exception

handler

« all conditional instructions except Bcond must be inside an IT block. Beond can be either outside
or inside an IT block but has a larger branch range if it is inside one

« each instruction inside the IT block must specify a condition code suffix that is either the
same or logical inverse as for the other instructions in the block.

Your assembler might place extra restrictions on the use of IT blocks, such as prohibiting the
use of assembler directives within them.

Condition Flags

This instruction does not change the flags.

Example

| TTE
ANDNE
ADDSNE
MOVEQ

I TE

ADDLE

1T

| TTEE
MOVEQ
ADDEQ
ANDNE
BNE. W

1T

S838F

383

#9

RRg 3
83

R 9

EQ

RO, R1
R2, R2,
R3, R3,
dl oop

11100B-ATARM-31-Jul-12

#55
#48

#1

#10
#1

1

Next 3 instructions are conditional
ANDNE does not update condition flags
ADDSNE updates condition flags

Condi ti onal nove

Convert RO hex value (0 to 15) into ASClI
(‘ro'-'9, "A-'F)

Next 2 instructions are conditional
Convert OxA -> "A

Convert 0x0 -> '0'

IT block with only one conditional instruction
Increment Rl conditionally

Next 4 instructions are conditional

Condi ti onal nove

Condi tional add

Condi ti onal AND

Branch instruction can only be used in the |ast
instruction of an IT bl ock

Next instruction is conditional
Syntax error: no condition code used in I T bl ock

AImEl@ 169

ATMEL

11.6.10.4 TBB and TBH
Table Branch Byte and Table Branch Halfword.

Syntax
TBB [Rn, Rnj
TBH [Rn, Rm LSL #1]
where:
Rn is the register containing the address of the table of branch lengths.
If Rn is PC, then the address of the table is the address of the byte immediately
following the TBB or TBH instruction.
Rm is the index register. This contains an index into the table. For halfword tables, LSL #1
doubles the value in Rm to form the right offset into the table.
Operation

These instructions cause a PC-relative forward branch using a table of single byte offsets for
TBB, or halfword offsets for TBH. Rn provides a pointer to the table, and Rm supplies an index into
the table. For TBB the branch offset is twice the unsigned value of the byte returned from the
table. and for TBH the branch offset is twice the unsigned value of the halfword returned from the
table. The branch occurs to the address at that offset from the address of the byte immediately
after the TBB or TBH instruction.

Restrictions
The restrictions are:

* Rn must not be SP
* Rm must not be SP and must not be PC

» when any of these instructions is used inside an IT block, it must be the last instruction of the
IT block.

Condition Flags
These instructions do not change the flags.
Examples

ADR. W RO, BranchTabl e_Byte
TBB [RO, R1] ;. Rl is the index, RO is the base address of the
branch table

Casel
; an instruction sequence follows
Case?2
; an instruction sequence follows
Case3

an instruction sequence follows
BranchTabl e_Byte
DCB 0 ; Casel offset calculation
DCB ((Case2-Casel)/2) ; Case2 offset calculation
DCB ((Case3-Casel)/2) ; Case3 offset calculation
TBH [PC, R1, LSL #1] : Rl is the index, PCis used as base of the
; branch table

BranchTabl e_H
DCl ((CaseA - BranchTable_H)/2) ; CaseA offset calculation
DCl ((CaseB - BranchTable_H)/2) ; CaseB offset calculation

170 SAMAS Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

DCl
CaseA

((CaseC - BranchTable_H)/2) ; CaseC offset

; an instruction sequence follows

CaseB

; an instruction sequence follows

CaseC

11.6.11 Miscellaneous Instructions

an instruction sequence follows

The table below shows the remaining Cortex-M4 instructions:

Table 11-27. Miscellaneous Instructions
Mnemonic | Description
BKPT Breakpoint
CPSID Change Processor State, Disable Interrupts
CPSIE Change Processor State, Enable Interrupts
DMB Data Memory Barrier
DSB Data Synchronization Barrier
ISB Instruction Synchronization Barrier
MRS Move from special register to register
MSR Move from register to special register
NOP No Operation
SEV Send Event
svC Supervisor Call
WFE Wait For Event
WEFI Wait For Interrupt

11100B-ATARM-31-Jul-12

ATMEL

cal cul ati on

171

11.6.11.1 BKPT

BKPT OxAB
11.6.11.2 CPS
172

Breakpoint.
Syntax
BKPT #i nm
where:
imm is an expression evaluating to an integer in the range 0-255 (8-bit value).
Operation

The BKPT instruction causes the processor to enter Debug state. Debug tools can use this to
investigate system state when the instruction at a particular address is reached.

imm is ignored by the processor. If required, a debugger can use it to store additional informa-
tion about the breakpoint.

The BKPT instruction can be placed inside an IT block, but it executes unconditionally, unaf-
fected by the condition specified by the IT instruction.

Condition Flags
This instruction does not change the flags.
Examples

Breakpoint with i medi ate value set to OxAB (debugger can
extract the immediate value by locating it using the PC

Note: ARM does not recommend the use of the BKPT instruction with an immediate value set to 0XAB
for any purpose other than Semi-hosting.

Change Processor State.

Syntax
CPSeffect iflags
where:
effect is one of:
IE Clears the special purpose register.
ID Sets the special purpose register.
iflags is a sequence of one or more flags:
i Set or clear PRIMASK.
f Set or clear FAULTMASK.
Operation

CPS changes the PRIMASK and FAULTMASK special register values. See “Exception Mask Reg-
isters” for more information about these registers.

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

CPSIDi
CPSID f
CPSIE i
CPSIE f

11.6.11.3 DMB

11100B-ATARM-31-Jul-12

Restrictions
The restrictions are:

» use CPS only from privileged software, it has no effect if used in unprivileged software
» CPS cannot be conditional and so must not be used inside an IT block.
Condition Flags

This instruction does not change the condition flags.

Examples

Di sabl e interrupts and configurable fault handl ers (set PRI MASK)
Di sable interrupts and all fault handlers (set FAULTMASK)

Enabl e interrupts and configurable fault handlers (clear PRI MASK)
Enabl e interrupts and fault handl ers (clear FAULTMASK)

Data Memory Barrier.
Syntax
DVB{ cond}

where:
cond is an optional condition code, see “Conditional Execution” .
Operation

DMB acts as a data memory barrier. It ensures that all explicit memory accesses that appear, in
program order, before the DMB instruction are completed before any explicit memory accesses
that appear, in program order, after the DMB instruction. DMB does not affect the ordering or
execution of instructions that do not access memory.

Condition Flags
This instruction does not change the flags.
Examples

DMB ; Data Menory Barrier

AImEl@ 173

11.6.11.4

11.6.11.5

174

DSB

ISB

Data Synchronization Barrier.
Syntax

DSB{ cond}
where:

cond is an optional condition code, see “Conditional Execution” .
Operation

DSB acts as a special data synchronization memory barrier. Instructions that come after the
DSB, in program order, do not execute until the DSB instruction completes. The DSB instruction
completes when all explicit memory accesses before it complete.

Condition Flags
This instruction does not change the flags.
Examples

DSB ; Data Synchronisation Barrier

Instruction Synchronization Barrier.
Syntax

| SB{ cond}
where:

cond is an optional condition code, see “Conditional Execution” .
Operation

ISB acts as an instruction synchronization barrier. It flushes the pipeline of the processor, so that
all instructions following the ISB are fetched from memory again, after the ISB instruction has
been completed.

Condition Flags
This instruction does not change the flags.
Examples

ISB ; Instruction Synchronisation Barrier

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

11.6.11.6 MRS
Move the contents of a special register to a general-purpose register.

Syntax
MRS{cond} Rd, spec_reg
where:
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.

spec_reg can be any of: APSR, IPSR, EPSR, IEPSR, IAPSR, EAPSR, PSR, MSP, PSP,
PRIMASK, BASEPRI, BASEPRI_MAX, FAULTMASK, or CONTROL.

Operation

Use MRS in combination with MSR as part of a read-modify-write sequence for updating a PSR,
for example to clear the Q flag.

In process swap code, the programmers model state of the process being swapped out must be
saved, including relevant PSR contents. Similarly, the state of the process being swapped in
must also be restored. These operations use MRS in the state-saving instruction sequence and
MSR in the state-restoring instruction sequence.

Note: BASEPRI_MAX is an alias of BASEPRI when used with the MRS instruction.
See “‘MSR” .

Restrictions

Rd must not be SP and must not be PC.
Condition Flags

This instruction does not change the flags.
Examples

MRS RO, PRI MASK ; Read PRI MASK value and wite it to RO

AImEl@ 175

11100B-ATARM-31-Jul-12

11.6.11.7

176

MSR

ATMEL

Move the contents of a general-purpose register into the specified special register.

Syntax
MSR{ cond} spec_reg, Rn
where:
cond is an optional condition code, see “Conditional Execution” .
Rn is the source register.

spec_reg can be any of: APSR, IPSR, EPSR, IEPSR, IAPSR, EAPSR, PSR, MSP, PSP,
PRIMASK, BASEPRI, BASEPRI_MAX, FAULTMASK, or CONTROL.

Operation

The register access operation in MSR depends on the privilege level. Unprivileged software can
only access the APSR. See “Application Program Status Register” . Privileged software can
access all special registers.

In unprivileged software writes to unallocated or execution state bits in the PSR are ignored.

Note: When the user writes to BASEPRI_MAX, the instruction writes to BASEPRI only if either:
Rn is non-zero and the current BASEPRI value is 0
Rn is non-zero and less than the current BASEPRI value.

See “MRS”.

Restrictions

Rn must not be SP and must not be PC.

Condition Flags

This instruction updates the flags explicitly based on the value in Rn.
Examples

MSR CONTROL, Rl ; Read Rl value and wite it to the CONTRCL register

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

11.6.11.8

11.6.11.9

11100B-ATARM-31-Jul-12

NOP

SEV

No Operation.
Syntax

NOP{ cond}
where:

cond is an optional condition code, see “Conditional Execution” .
Operation

NOP does nothing. NOP is not necessarily a time-consuming NOP. The processor might
remove it from the pipeline before it reaches the execution stage.

Use NOP for padding, for example to place the following instruction on a 64-bit boundary.
Condition Flags

This instruction does not change the flags.

Examples

NOP ; No operation

Send Event.
Syntax

SEV{ cond}
where:

cond is an optional condition code, see “Conditional Execution” .
Operation

SEV is a hint instruction that causes an event to be signaled to all processors within a multipro-
cessor system. It also sets the local event register to 1, see “Power Management” .

Condition Flags
This instruction does not change the flags.
Examples

SEV ; Send Event

AImEl@ 177

11.6.11.10 SVC

Supervisor Call.

Syntax
SVC{cond} #imm
where:
cond is an optional condition code, see “Conditional Execution” .
imm is an expression evaluating to an integer in the range 0-255 (8-bit value).
Operation

The SVC instruction causes the SVC exception.

imm is ignored by the processor. If required, it can be retrieved by the exception handler to
determine what service is being requested.

Condition Flags
This instruction does not change the flags.
Examples

SVC 0x32 ; Supervisor Call (SVC handler can extract the imedi ate val ue
by locating it via the stacked PC)

176 SAMAS Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

11.6.11.11 WFE

11.6.11.12 WFI

11100B-ATARM-31-Jul-12

Wait For Event.
Syntax

WFE{ cond}
where:

cond is an optional condition code, see “Conditional Execution” .

Operation

WEFE is a hint instruction.

If the event register is 0, WFE suspends execution until one of the following events occurs:

 an exception, unless masked by the exception mask registers or the current priority level
* an exception enters the Pending state, if SEVONPEND in the System Control Register is set
« a Debug Entry request, if Debug is enabled

« an event signaled by a peripheral or another processor in a multiprocessor system using the
SEV instruction.

If the event register is 1, WFE clears it to 0 and returns immediately.
For more information, see “Power Management” .

Condition Flags

This instruction does not change the flags.

Examples

WFE ; Wait for event

Wait for Interrupt.
Syntax

WFI { cond}
where:

cond is an optional condition code, see “Conditional Execution” .
Operation
WFl is a hint instruction that suspends execution until one of the following events occurs:

« an exception
« a Debug Entry request, regardless of whether Debug is enabled.
Condition Flags

This instruction does not change the flags.
Examples

WFl ; Wit for interrupt

AImEl@ 179

ATMEL

11.7 Cortex-M4 Core Peripherals

11.71 Peripherals

« Nested Vectored Interrupt Controller (NVIC)
The Nested Vectored Interrupt Controller (NVIC) is an embedded interrupt controller that

supports low latency interrupt processing. See Section 11.8 "Nested Vectored Interrupt
Controller (NVIC)”

» System Control Block (SCB)
The System Control Block (SCB) is the programmers model interface to the processor. It
provides system implementation information and system control, including configuration,
control, and reporting of system exceptions. See Section 11.9 "System Control Block (SCB)”

» System Timer (SysTick)
The System Timer, SysTick, is a 24-bit count-down timer. Use this as a Real Time Operating
System (RTOS) tick timer or as a simple counter. See Section 11.10 "System Timer
(SysTick)”

« Memory Protection Unit (MPU)
The Memory Protection Unit (MPU) improves system reliability by defining the memory
attributes for different memory regions. It provides up to eight different regions, and an
optional predefined background region. See Section 11.11 "Memory Protection Unit (MPU)”

11.7.2 Address Map
The address map of the Private peripheral bus (PPB) is:

Core Peripheral Register Regions

Address Core Peripheral
0xEOOOEO008-0xEOOOEOOF System Control Block
OxEOOOE010-0XxEOOOEO1F System Timer
OXEOOOE100-OxEOOOE4EF Nested Vectored Interrupt Controller
0XEOOOEDO00-0XEOQOOED3F System control block
OXEOOOED90-0xEOOOEDBS Memory Protection Unit
OXEOOOEF00-0XxEOOOEF03 Nested Vectored Interrupt Controller

In register descriptions:

« the required privilege gives the privilege level required to access the register, as follows:
— Privileged: Only privileged software can access the register.
— Unprivileged: Both unprivileged and privileged software can access the register.

180 SAMAS Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

11.8 Nested Vectored Interrupt Controller (NVIC)
This section describes the NVIC and the registers it uses. The NVIC supports:

« 1to 35 interrupts.

» A programmable priority level of 0-15 for each interrupt. A higher level corresponds to a lower
priority, so level 0 is the highest interrupt priority.

« Level detection of interrupt signals.

» Dynamic reprioritization of interrupts.

« Grouping of priority values into group priority and subpriority fields.

* Interrupt tail-chaining.

* An external Non-maskable interrupt (NMI)

The processor automatically stacks its state on exception entry and unstacks this state on
exception exit, with no instruction overhead. This provides low latency exception handling.

11.8.1 Level-sensitive Interrupts
The processor supports level-sensitive interrupts. A level-sensitive interrupt is held asserted until
the peripheral deasserts the interrupt signal. Typically, this happens because the ISR accesses
the peripheral, causing it to clear the interrupt request.

When the processor enters the ISR, it automatically removes the pending state from the inter-
rupt (see “Hardware and Software Control of Interrupts”). For a level-sensitive interrupt, if the signal
is not deasserted before the processor returns from the ISR, the interrupt becomes pending
again, and the processor must execute its ISR again. This means that the peripheral can hold
the interrupt signal asserted until it no longer requires servicing.

11.8.1.1 Hardware and Software Control of Interrupts

The Cortex-M4 latches all interrupts. A peripheral interrupt becomes pending for one of the fol-
lowing reasons:

» The NVIC detects that the interrupt signal is HIGH and the interrupt is not active
« The NVIC detects a rising edge on the interrupt signal

« A software writes to the corresponding interrupt set-pending register bit, see “Interrupt Set-
pending Registers” , or to the NVIC_STIR register to make an interrupt pending, see “Software
Trigger Interrupt Register” .

A pending interrupt remains pending until one of the following:

» The processor enters the ISR for the interrupt. This changes the state of the interrupt from
pending to active. Then:

— For a level-sensitive interrupt, when the processor returns from the ISR, the NVIC
samples the interrupt signal. If the signal is asserted, the state of the interrupt
changes to pending, which might cause the processor to immediately re-enter the
ISR. Otherwise, the state of the interrupt changes to inactive.

« Software writes to the corresponding interrupt clear-pending register bit.
For a level-sensitive interrupt, if the interrupt signal is still asserted, the state of the interrupt
does not change. Otherwise, the state of the interrupt changes to inactive.

AImEl@ 181

11100B-ATARM-31-Jul-12

ATMEL

11.8.2 NVIC Design Hints and Tips
Ensure that the software uses correctly aligned register accesses. The processor does not sup-
port unaligned accesses to NVIC registers. See the individual register descriptions for the
supported access sizes.

A interrupt can enter a pending state even if it is disabled. Disabling an interrupt only prevents
the processor from taking that interrupt.

Before programming SCB_VTOR to relocate the vector table, ensure that the vector table
entries of the new vector table are set up for fault handlers, NMI and all enabled exception like
interrupts. For more information, see the “Vector Table Offset Register” .

11.8.2.1 NVIC Programming Hints

The software uses the CPSIE | and CPSID I instructions to enable and disable the interrupts.
The CMSIS provides the following intrinsic functions for these instructions:

void __disable_irg(void) // Disable Interrupts
void __enable_irg(void) // Enable Interrupts

In addition, the CMSIS provides a number of functions for NVIC control, including:

Table 11-28. CMSIS Functions for NVIC Control

CMSIS Interrupt Control Function Description

void NVIC_SetPriorityGrouping(uint32_t priority_grouping) Set the priority grouping

void NVIC_EnablelRQ(IRQn_t IRQnN) Enable IRQnN

void NVIC_DisablelRQ(IRQn_t IRQn) Disable IRQn

uint32_t NVIC_GetPendingIRQ (IRQn_t IRQnN) Return true (IRQ-Number) if IRQn is pending
void NVIC_SetPendingIRQ (IRQn_t IRQn) Set IRQn pending

void NVIC_ClearPendingIRQ (IRQn_t IRQnN) Clear IRQn pending status

uint32_t NVIC_GetActive (IRQn_t IRQnN) Return the IRQ number of the active interrupt
void NVIC_SetPriority (IRQn_t IRQn, uint32_t priority) Set priority for IRQn

uint32_t NVIC_GetPriority (IRQn_t IRQn) Read priority of IRQn

void NVIC_SystemReset (void) Reset the system

The input parameter IRQn is the IRQ number. For more information about these functions, see
the CMSIS documentation.

To improve software efficiency, the CMSIS simplifies the NVIC register presentation. In the
CMSIS:

« the Set-enable, Clear-enable, Set-pending, Clear-pending and Active Bit registers map to
arrays of 32-bit integers, so that:
— the array ISER][0] to ISER[1] corresponds to the registers ISERO-ISER1
— the array ICER][0] to ICER[1] corresponds to the registers ICERO-ICER1
— the array ISPR[0] to ISPR[1] corresponds to the registers ISPRO-ISPR1
— the array ICPR[0] to ICPR[1] corresponds to the registers ICPRO-ICPR1
— the array IABR[0]to IABR[1] corresponds to the registers IABRO-IABR1

122 SAMAS Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

11100B-ATARM-31-Jul-12

« the 4-bit fields of the Interrupt Priority Registers map to an array of 4-bit integers, so that the
array IP[0] to IP[34] corresponds to the registers IPRO-IPR8, and the array entry IP[n] holds
the interrupt priority for interrupt n.

The CMSIS provides thread-safe code that gives atomic access to the Interrupt Priority Regis-
ters. Table 11-29 shows how the interrupts, or IRQ numbers, map onto the interrupt registers
and corresponding CMSIS variables that have one bit per interrupt.

Table 11-29. Mapping of interrupts to the interrupt variables

CMSIS Array Elements®

Interrupts | Set-enable | Clear-enable | Set-pending | Clear-pending | Active Bit

0-34 ISER[0] ICER[0] ISPR[0] ICPR[0] IABR[0]

35-63 ISER[1] ICER[1] ISPR[1] ICPR[1] IABR[1]

Note: 1. Each array element corresponds to a single NVIC register, for example the element ICER[0O]
corresponds to the ICERO register.

AImEl@ 183

11.8.3

ATMEL

Nested Vectored Interrupt Controller (NVIC) User Interface

Table 11-30. Nested Vectored Interrupt Controller (NVIC) Register Mapping

Offset Register Name Access Reset

OxXEOOOE100 Interrupt Set-enable Register 0 NVIC_ISERO Read-write 0x00000000
OXEOOOE11C Interrupt Set-enable Register 7 NVIC_ISER7 Read-write 0x00000000
0XEOOOE180 Interrupt Clear-enable Register0 NVIC_ICERO Read-write 0x00000000
OxEOOOE19C Interrupt Clear-enable Register 7 NVIC_ICER7 Read-write 0x00000000
0XEOOOE200 Interrupt Set-pending Register 0 NVIC_ISPRO Read-write 0x00000000
OXEOOOE21C Interrupt Set-pending Register 7 NVIC_ISPR7 Read-write 0x00000000
0XEOOOE280 Interrupt Clear-pending Register 0 NVIC_ICPRO Read-write 0x00000000
OxXEOOOE29C Interrupt Clear-pending Register 7 NVIC_ICPR7 Read-write 0x00000000
OxXEOOOE300 Interrupt Active Bit Register 0 NVIC_IABRO Read-write 0x00000000
OXEOOOE31C Interrupt Active Bit Register 7 NVIC_IABR7 Read-write 0x00000000
OxEOOOE400 Interrupt Priority Register O NVIC_IPRO Read-write 0x00000000
OXEOOOE4EF Interrupt Priority Register 8 NVIC_IPR8 Read-write 0x00000000
OxXEOOOEF00 Software Trigger Interrupt Register NVIC_STIR Write-only 0x00000000

184 SAMAS Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

11.8.3.1 Interrupt Set-enable Registers

Name: NVIC_ISERXx [x=0..7]

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| SETENA |
23 22 21 20 19 18 17 16

| SETENA |
15 14 13 12 11 10 9 8

| SETENA |
7 6 5 4 3 2 1 0

| SETENA |

These registers enable interrupts, and show which interrupts are enabled.
e SETENA: Interrupt Set-enable

Write:

0: No effect.

1: Enables the interrupt.

Read:

0: Interrupt disabled.

1: Interrupt enabled.

Notes: 1. If a pending interrupt is enabled, the NVIC activates the interrupt based on its priority.

2. If aninterrupt is not enabled, asserting its interrupt signal changes the interrupt state to pending, the NVIC never activates
the interrupt, regardless of its priority.

AImEl@ 185

11100B-ATARM-31-Jul-12

11.8.3.2 Interrupt Clear-enable Registers

Name: NVIC_ICERXx [x=0..7]

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| CLRENA |
23 22 21 20 19 18 17 16

| CLRENA |
15 14 13 12 11 10 9 8

| CLRENA |
7 6 5 4 3 2 1 0

| CLRENA |

These registers disable interrupts, and show which interrupts are enabled.
e CLRENA: Interrupt Set-enable

Write:

0: No effect.

1: Disables the interrupt.

Read:

0: Interrupt disabled.

1: Interrupt enabled.

188 SAMAS Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

11.8.3.3 Interrupt Set-pending Registers

Name: NVIC_ISPRx [x=0..7]

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| SETPEND |
23 22 21 20 19 18 17 16

| SETPEND |
15 14 13 12 11 10 9 8

| SETPEND |
7 6 5 4 3 2 1 0

| SETPEND |

These registers force interrupts into the pending state, and show which interrupts are pending.
e SETPEND: Interrupt Set-pending

Write:

0: No effect.

1: Changes the interrupt state to pending.

Read:

0: Interrupt is not pending.

1: Interrupt is pending.

Notes: 1. Writing 1 to an ISPR bit corresponding to an interrupt that is pending has no effect.
2. Writing 1 to an ISPR bit corresponding to a disabled interrupt sets the state of that interrupt to pending.

AImEl@ 187

11100B-ATARM-31-Jul-12

11.8.34 Interrupt Clear-pending Registers

Name: NVIC_ICPRx [x=0..7]

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| CLRPEND |
23 22 21 20 19 18 17 16

| CLRPEND |
15 14 13 12 11 10 9 8

| CLRPEND |
7 6 5 4 3 2 1 0

| CLRPEND |

These registers remove the pending state from interrupts, and show which interrupts are pending.
e CLRPEND: Interrupt Clear-pending

Write:

0: No effect.

1: removes the pending state from an interrupt.

Read:

0: Interrupt is not pending.

1: Interrupt is pending.

Note: Writing 1 to an ICPR bit does not affect the active state of the corresponding interrupt.

188 SAMAS Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

11.8.3.5 Interrupt Active Bit Registers

Name: NVIC_IABRx [x=0..7]

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| ACTIVE |
23 22 21 20 19 18 17 16

| ACTIVE |
15 14 13 12 11 10 9 8

| ACTIVE |
7 6 5 4 3 2 1 0

| ACTIVE |

These registers indicate which interrupts are active.
e ACTIVE: Interrupt Active Flags

0: Interrupt is not active.

1: Interrupt is active.

Note: A bit reads as one if the status of the corresponding interrupt is active, or active and pending.

AImEl@ 189

11100B-ATARM-31-Jul-12

11.8.3.6 Interrupt Priority Registers

Name: NVIC_IPRx [x=0..8]

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| PRI3 |
23 22 21 20 19 18 17 16

| PRI2 |
15 14 13 12 11 10 9 8

| PRI1 |
7 6 5 4 3 2 1 0

| PRIO |

The NVIC_IPRO-NVIC_IPRS8 registers provide a 4-bit priority field for each interrupt. These registers are byte-accessible.
Each register holds four priority fields, that map up to four elements in the CMSIS interrupt priority array IP[0] to IP[34]

* PRI3: Priority (4m+3)
Priority, Byte Offset 3, refers to register bits [31:24].

* PRI2: Priority (4m+2)
Priority, Byte Offset 2, refers to register bits [23:16].

e PRIL1: Priority (4m+1)
Priority, Byte Offset 1, refers to register bits [15:8].

* PRIO: Priority (4m)
Priority, Byte Offset 0, refers to register bits [7:0].

Notes: 1.
2.
3.
4,
190

Each priority field holds a priority value, 0-15. The lower the value, the greater the priority of the corresponding interrupt. The
processor implements only bits[7:4] of each field; bits[3:0] read as zero and ignore writes.

for more information about the IP[0] to IP[34] interrupt priority array, that provides the software view of the interrupt priorities,
see Table 11-28, “CMSIS Functions for NVIC Control” .

The corresponding IPR number n is given by n = m DIV 4.
The byte offset of the required Priority field in this register is m MOD 4.

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

11.8.3.7 Software Trigger Interrupt Register

Name: NVIC_STIR

Access: Write-only

Reset: 0x000000000
31 30 29 28 27 26 25 24

. - - ¢ - { - [- [- | - [-]
23 22 21 20 19 18 17 16

. - r - ¢ - - [- [- /| - -]
15 14 13 12 11 10 9 8

. - - ¢ - { - [- [- | - [wmo |
7 6 5 4 3 2 1 0

| INTID |

Write to this register to generate an interrupt from software.

e INTID: Interrupt ID
Interrupt ID of the interrupt to trigger, in the range 0-239. For example, a value of 0x03 specifies interrupt IRQ3.

AImEl@ 191

11100B-ATARM-31-Jul-12

ATMEL

11.9 System Control Block (SCB)

192

The System Control Block (SCB) provides system implementation information, and system con-
trol. This includes configuration, control, and reporting of the system exceptions.

Ensure that the software uses aligned accesses of the correct size to access the system control
block registers:

« except for the SCB_CFSR and SCB_SHPR1-SCB_SHPR3 registers, it must use aligned
word accesses

« for the SCB_CFSR and SCB_SHPR1-SCB_SHPR3 registers, it can use byte or aligned
halfword or word accesses.

The processor does not support unaligned accesses to system control block registers.
In a fault handler, to determine the true faulting address:

1. Read and save the MMFAR or SCB_BFAR value.

2. Read the MMARVALID bit in the MMFSR subregister, or the BFARVALID bit in the
BFSR subregister. The SCB_MMFAR or SCB_BFAR address is valid only if this bit is 1.
The software must follow this sequence because another higher priority exception might change
the SCB_MMFAR or SCB_BFAR value. For example, if a higher priority handler preempts the
current fault handler, the other fault might change the SCB_ MMFAR or SCB_BFAR value.

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

1191

System Control Block (SCB) User Interface

Table 11-31. System Control Block (SCB) Register Mapping

Offset Register Name Access Reset
OxEOOOEO008 Auxiliary Control Register SCB_ACTLR Read-write 0x00000000
OxEOOOEDOO CPUID Base Register SCB_CPUID Read-only 0x410FC240
OXEOOOEDO04 Interrupt Control and State Register SCB_ICSR Read-write® 0x00000000
OxEOOOEDO08 Vector Table Offset Register SCB_VTOR Read-write 0x00000000
OxXEOOOEDOC Application Interrupt and Reset Control Register SCB_AIRCR Read-write 0xFA050000
OxEOOOED10 System Control Register SCB_SCR Read-write 0x00000000
OxEOOOED14 Configuration and Control Register SCB_CCR Read-write 0x00000200
OxEOOOED18 System Handler Priority Register 1 SCB_SHPR1 Read-write 0x00000000
OxEOOOED1C System Handler Priority Register 2 SCB_SHPR2 Read-write 0x00000000
O0XEOOOED20 System Handler Priority Register 3 SCB_SHPR3 Read-write 0x00000000
OxXEOOOED24 System Handler Control and State Register SCB_SHCSR Read-write 0x00000000
OxEOOOED28 Configurable Fault Status Register SCB_CFSR Read-write 0x00000000
OXEOOOED28 MemManage Fault Status Register MMFSR® Read-write 0x00
OXEOOOED29 BusFault Status Register BFSR® Read-write 0x00
OXEOOOED2A UsageFault Status Register UFSR® Read-write 0x0000
OXEOOOED2C HardFault Status Register SCB_HFSR Read-write 0x00000000
OxEOOOED34 MemManage Fault Address Register SCB_MMFAR Read-write Unknown
OxEOOOED38 BusFault Address Register SCB_BFAR Read-write Unknown
OxEOOOED3C Auxiliary Fault Status Register SCB_AFSR Read-write 0x00000000
Notes: 1. See the register description for more information.

2. A subregister of SCB_CFSR

11100B-ATARM-31-Jul-12

ATMEL

193

11.9.1.1 Auxiliary Control Register

Name: SCB_ACTLR
Access: Read-write
Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
| - | DISOOFP | DISFPCA |
7 6 5 4 3 2 1 0
| - | DISFOLD | DISDEFWBUF | DISMCYCINT |

The SCB_ACTLR register provides disable bits for the following processor functions:

« IT folding
« write buffer use for accesses to the default memory map
* interruption of multi-cycle instructions.

By default, this register is set to provide optimum performance from the Cortex-M4 processor, and does not normally
require modification.

» DISOOFP: Disable Out Of Order Floating Point
Disables floating point instructions that complete out of order with respect to integer instructions.

» DISFPCA: Disable FPCA
Disables an automatic update of CONTROL.FPCA.

» DISFOLD: Disable Folding
When set to 1, disables the IT folding.
Note: In some situations, the processor can start executing the first instruction in an IT block while it is still executing the IT instruction.

This behavior is called IT folding, and it improves the performance. However, IT folding can cause jitter in looping. If a task must
avoid jitter, set the DISFOLD bit to 1 before executing the task, to disable the IT folding.

» DISDEFWBUF: Disable Default Write Buffer

When set to 1, it disables the write buffer use during default memory map accesses. This causes BusFault to be precise
but decreases the performance, as any store to memory must complete before the processor can execute the next
instruction.

This bit only affects write buffers implemented in the Cortex-M4 processor.

* DISMCYCINT: Disable Multiple Cycle Interruption

When set to 1, it disables the interruption of load multiple and store multiple instructions. This increases the interrupt
latency of the processor, as any LDM or STM must complete before the processor can stack the current state and enter the
interrupt handler.

194 SAMAS Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

11.9.1.2 CPUID Base Register

Name: SCB_CPUID
Access: Read-write
Reset: 0x000000000

31 30 29 28 27 26 25 24
| Implementer

23 22 21 20 19 18 17 16
| Variant Constant

15 14 13 12 11 10 9 8
| PartNo

7 6 5 4 3 2 1 0
| PartNo | Revision |
The SCB_CPUID register contains the processor part number, version, and implementation information.
e Implementer: Implementer code
0x41: ARM.
» Variant: Variant number
It is the r value in the rnpn product revision identifier:
0x0: Revision 0.
* Constant
Reads as OxF.
» PartNo: Part Number of the processor
0xC24 = Cortex-M4.
» Revision: Revision number
It is the p value in the rnpn product revision identifier:
0x0: Patch O.

ATMEL 195
Y 5

11100B-ATARM-31-Jul-12

ATMEL

11.9.1.3 Interrupt Control and State Register

Name: SCB_ICSR

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| NMIPENDSET | - PENDSVSET | PENDSVCLR | PENDSTSET | PENDSTCLR - |
23 22 21 20 19 18 17 16

| - | ISRPENDING VECTPENDING |
15 14 13 12 11 10 9 8

| VECTPENDING RETTOBASE - VECTACTIVE |
7 6 5 4 3 2 1 0

| VECTACTIVE |

The SCB_ICSR register provides a set-pending bit for the Non-Maskable Interrupt (NMI) exception, and set-pending and
clear-pending bits for the PendSV and SysTick exceptions.

It indicates:

« the exception number of the exception being processed, and whether there are preempted active exceptions,
« the exception number of the highest priority pending exception, and whether any interrupts are pending.

« NMIPENDSET: NMI Set-pending

Write:

PendSV set-pending bit.

Write:

0: no effect.

1: changes NMI exception state to pending.
Read:

0: NMI exception is not pending.

1: NMI exception is pending.

As NMI is the highest-priority exception, the processor normally enters the NMI exception handler as soon as it registers a
write of 1 to this bit. Entering the handler clears this bit to 0. A read of this bit by the NMI exception handler returns 1 only if
the NMI signal is reasserted while the processor is executing that handler.

» PENDSVSET: PendSV Set-pending

Write:

0: no effect.

1. changes PendSV exception state to pending.
Read:

0: PendSV exception is not pending.

196 SAMAS Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

1. PendSV exception is pending.

Writing 1 to this bit is the only way to set the PendSV exception state to pending.
» PENDSVCLR: PendSV Clear-pending

Write:

0: no effect.

1: removes the pending state from the PendSV exception.

* PENDSTSET: SysTick Exception Set-pending

Write:

0: no effect.

1: changes SysTick exception state to pending.

Read:

0: SysTick exception is not pending.

1: SysTick exception is pending.

» PENDSTCLR: SysTick Exception Clear-pending

Write:

0: no effect.

1: removes the pending state from the SysTick exception.

This bit is Write-only. On a register read, its value is Unknown.

* ISRPENDING: Interrupt Pending flag (excluding NMI and Faults)

0: interrupt not pending.

1: interrupt pending.

* VECTPENDING: Exception number of the highest priority pending enabled exception
0: no pending exceptions.

Nonzero: the exception number of the highest priority pending enabled exception.
The value indicated by this field includes the effect of the BASEPRI and FAULTMASK registers, but not any effect of the
PRIMASK register.

» RETTOBASE: Preempted Active Exceptions present or not

0: there are preempted active exceptions to execute.

1. there are no active exceptions, or the currently-executing exception is the only active exception.
» VECTACTIVE: Active Exception Number contained

0: Thread mode.

Nonzero: The exception number of the currently active exception. The value is the same as IPSR bits [8:0]. See “Interrupt Pro-
gram Status Register” .

Subtract 16 from this value to obtain the IRQ number required to index into the Interrupt Clear-Enable, Set-Enable, Clear-
Pending, Set-Pending, or Priority Registers, see “Interrupt Program Status Register” .

AImEl@ 197

11100B-ATARM-31-Jul-12

ATMEL

Note: When the user writes to the SCB_ICSR register, the effect is unpredictable if:
- writing 1 to the PENDSVSET bit and writing 1 to the PENDSVCLR bit
- writing 1 to the PENDSTSET bit and writing 1 to the PENDSTCLR bit.

108 SAMAS Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

11.9.14 Vector Table Offset Register

Name: SCB_VTOR

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| TBLOFF |
23 22 21 20 19 18 17 16

| TBLOFF |
15 14 13 12 11 10 9 8

| TBLOFF |
7 6 5 4 3 2 1 0

| TBLOFF | - |

The SCB_VTOR register indicates the offset of the vector table base address from memory address 0x00000000.
* TBLOFF: Vector Table Base Offset

It contains bits [29:7] of the offset of the table base from the bottom of the memory map.

Bit [29] determines whether the vector table is in the code or SRAM memory region:

0: Code.

1: SRAM.

It is sometimes called the TBLBASE bit.

Note: When setting TBLOFF, the offset must be aligned to the number of exception entries in the vector table. Configure the next
statement to give the information required for your implementation; the statement reminds the user of how to determine the
alignment requirement. The minimum alignment is 32 words, enough for up to 16 interrupts. For more interrupts, adjust the
alignment by rounding up to the next power of two. For example, if 21 interrupts are required, the alignment must be on a 64-
word boundary because the required table size is 37 words, and the next power of two is 64.

Table alignment requirements mean that bits[6:0] of the table offset are always zero.

AImEl@ 199

11100B-ATARM-31-Jul-12

ATMEL

11.9.1.5 Application Interrupt and Reset Control Register

Name: SCB_AIRCR

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| VECTKEYSTAT/VECTKEY |
23 22 21 20 19 18 17 16

| VECTKEYSTAT/VECTKEY |
15 14 13 12 11 10 9 8

| ENDIANNESS - PRIGROUP |

7 6 5 4 3 2 1 0
- ISYSRESETREQ VECTS/ERACH VECTRESET

The SCB_AIRCR register provides priority grouping control for the exception model, endian status for data accesses, and
reset control of the system. To write to this register, write OX5FA to the VECTKEY field, otherwise the processor ignores the
write.

« VECTKEYSTAT: Register Key

Read:

Reads as OxFAO05.

 VECTKEY: Register Key

Write:

Writes Ox5FA to VECTKEY, otherwise the write is ignored.
* ENDIANNESS: Data Endianness

0: Little-endian.

1: Big-endian.

* PRIGROUP: Interrupt Priority Grouping

This field determines the split of group priority from subpriority. It shows the position of the binary point that splits the PRI_n

fields in the Interrupt Priority Registers into separate group priority and subpriority fields. The table below shows how the
PRIGROUP value controls this split:

Interrupt Priority Level Value, PRI_N[7:0] Number of
PRIGROUP | Binary Point® Group Priority bits Subpriority bits | Group Priorities Subpriorities
0b000 PXXXXXXX.Y [7:1] None 128 2
0b001 bXxXxXxxx.yy [7:2] [4:0] 64 4
0b010 bxxxxx.yyy [7:3] [4:0] 32 8
0b011 bxxxx.yyyy [7:4] [4:0] 16 16
0b100 bxxx.yyyyy [7:5] [4:0] 8 32

200 SAMAS Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

Interrupt Priority Level Value, PRI_N[7:0] Number of
PRIGROUP | Binary Point® Group Priority bits Subpriority bits Group Priorities Subpriorities
0b101 bxx.yyyyyy [7:6] [5:0] 4 64
0b110 bx.yyyyyyy [7] [6:0] 2 128
Ob111 b.yyyyyyy None [7:0] 1 256

Note: 1. Inthe PRI_n[7:0] field showing the binary point, x denotes a group priority field bit, and y denotes a subpriority field bit.
Determining preemption of an exception uses only the group priority field.

« SYSRESETREQ: System Reset Request

0: No system reset request.

1: Asserts a signal to the outer system that requests a reset.

This is intended to force a large system reset of all major components except for debug. This bit reads as 0.
* VECTCLRACTIVE

Reserved for Debug use. This bit reads as 0. When writing to the register, write 0 to this bit, otherwise the behavior is
unpredictable.

» VECTRESET
Reserved for Debug use. This bit reads as 0. When writing to the register, write 0 to this bit, otherwise the behavior is
unpredictable.

AImEl@ 201

11100B-ATARM-31-Jul-12

11.9.1.6 System Control Register

Name: SCB_SCR
Access: Read-write
Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

| - | SEVONPEND | - | SLEEPDEEP |SLEEPONEXIT - |

« SEVONPEND: Send Event on Pending bit
0: only enabled interrupts or events can wake up the processor; disabled interrupts are excluded.

1: enabled events and all interrupts, including disabled interrupts, can wake up the processor.

When an event or an interrupt enters the pending state, the event signal wakes up the processor from WFE. If the proces-
sor is not waiting for an event, the event is registered and affects the next WFE.

The processor also wakes up on execution of an SEV instruction or an external event.
 SLEEPDEEP: Sleep or Deep Sleep

Controls whether the processor uses sleep or deep sleep as its low power mode:

0: sleep.

1: deep sleep.

» SLEEPONEXIT: Sleep-on-exit

Indicates sleep-on-exit when returning from the Handler mode to the Thread mode:
0: do not sleep when returning to Thread mode.

1: enter sleep, or deep sleep, on return from an ISR.

Setting this bit to 1 enables an interrupt-driven application to avoid returning to an empty main application.

202 SAMAS Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

11.9.1.7 Configuration and Control Register

Name: SCB_CCR
Access: Read-write
Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
| - STKALIGN BFHFNMIGN |
7 6 5 4 3 2 1 0
USERSETMPE | NONBASETHR
- DIV_0_TRP |UNALIGN_TRP - ND DENA

The SCB_CCR register controls the entry to the Thread mode and enables the handlers for NMI, hard fault and faults esca-
lated by FAULTMASK to ignore BusFaults. It also enables the division by zero and unaligned access trapping, and the
access to the NVIC_STIR register by unprivileged software (see “Software Trigger Interrupt Register”).

» STKALIGN: Stack Alignment

Indicates the stack alignment on exception entry:

0: 4-byte aligned.

1: 8-byte aligned.

On exception entry, the processor uses bit [9] of the stacked PSR to indicate the stack alignment. On return from the

exception, it uses this stacked bit to restore the correct stack alignment.

 BFHFNMIGN: Bus Faults Ignored
Enables handlers with priority -1 or -2 to ignore data bus faults caused by load and store instructions. This applies to the
hard fault and FAULTMASK escalated handlers:

0: data bus faults caused by load and store instructions cause a lock-up.

1. handlers running at priority -1 and -2 ignore data bus faults caused by load and store instructions.

Set this bit to 1 only when the handler and its data are in absolutely safe memory. The normal use of this bit is to probe sys-
tem devices and bridges to detect control path problems and fix them.

* DIV_O_TRP: Division by Zero Trap

Enables faulting or halting when the processor executes an SDIV or UDIV instruction with a divisor of O:

0: do not trap divide by 0.

1: trap divide by O.

When this bit is set to 0, a divide by zero returns a quotient of 0.

AImEl@ 203

11100B-ATARM-31-Jul-12

* UNALIGN_TRP: Unaligned Access Trap
Enables unaligned access traps:

0: do not trap unaligned halfword and word accesses.

1: trap unaligned halfword and word accesses.

If this bit is set to 1, an unaligned access generates a usage fault.

Unaligned LDM, STM, LDRD, and STRD instructions always fault irrespective of whether UNALIGN_TRP is set to 1.
* USERSETMPEND

Enables unprivileged software access to the NVIC_STIR register, see “Software Trigger Interrupt Register” :
0: disable.

1: enable.

* NONEBASETHRDENA: Thread Mode Enable

Indicates how the processor enters Thread mode:

0: the processor can enter the Thread mode only when no exception is active.

1. the processor can enter the Thread mode from any level under the control of an EXC_RETURN value, see “Exception
Return” .

204 SAMAS Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

11.9.1.8 System Handler Priority Registers
The SCB_SHPR1-SCB_SHPR3 registers set the priority level, 0 to 15 of the exception handlers that have configurable pri-

ority. They are byte-accessible.

The system fault handlers and the priority field and register for each handler are:

Table 11-32. System Fault Handler Priority Fields

Handler Field Register Description
Memory management fault (MemManage) PRI_4
Bus fault (BusFault) PRI_5 “System Handler Priority Register 1”
Usage fault (UsageFault) PRI_6
SvCall PRI_11 “System Handler Priority Register 2”
PendSV PRI_14

“System Handler Priority Register 3”
SysTick PRI_15

Each PRI_N field is 8 bits wide, but the processor implements only bits [7:4] of each field, and bits [3:0] read as zero and

ignore writes.

11100B-ATARM-31-Jul-12

ATMEL

205

11.9.1.9 System Handler Priority Register 1

Name: SCB_SHPR1

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

| PRI_6 |
15 14 13 12 11 10 9 8

| PRI 5 |
7 6 5 4 3 2 1 0

| PRI_4 |

e PRI_6: Priority
Priority of system handler 6, UsageFault.

* PRIL_5: Priority
Priority of system handler 5, BusFault.

e PRI_4: Priority
Priority of system handler 4, MemManage.

206 SAMAS Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

11.9.1.10 System Handler Priority Register 2

Name: SCB_SHPR2
Access: Read-write
Reset: 0x000000000
31 30 29 28 27 26 25 24
| PRI_11 |
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

e PRI_11: Priority
Priority of system handler 11, SVCall.

AImEl@ 207

11100B-ATARM-31-Jul-12

11.9.1.11 System Handler Priority Register 3

Name: SCB_SHPR3

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| PRI_15 |
23 22 21 20 19 18 17 16

| PRI_14 |
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

e PRI_15: Priority
Priority of system handler 15, SysTick exception.

* PRI_14: Priority
Priority of system handler 14, PendSV.

206 SAMAS Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

11.9.1.12 System Handler Control and State Register

Name: SCB_SHCSR
Access: Read-write
Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
| - USGFAULTENA|BUSFAULTENA MEMFAULTENA|
15 14 13 12 11 10 9 8
SVCALLPENDE|BUSFAULTPEN|MEMFAULTPEN|USGFAULTPEN
D DED DED DED SYSTICKACT | PENDSVACT - MONITORACT
7 6 5 4 3 2 1 0
| SVCALLAVCT | - |USGFAULTACT| - |BUSFAULTACT'MEMFAULTACT|

The SHCSR register enables the system handlers, and indicates the pending status of the bus fault, memory management
fault, and SVC exceptions; it also indicates the active status of the system handlers.

» USGFAULTENA: Usage Fault Enable

0: Disables the exception.

1: Enables the exception.

 BUSFAULTENA: Bus Fault Enable

0: Disables the exception.

1. Enables the exception.

» MEMFAULTENA: Memory Management Fault Enable
0: Disables the exception.

1: Enables the exception.

» SVCALLPENDED: SVC Call Pending

Read:

0: The exception is not pending.

1: The exception is pending.

The user can write to these bits to change the pending status of the exceptions.
» BUSFAULTPENDED: Bus Fault Exception Pending
Read:

0: The exception is not pending.

1: The exception is pending.

Note: The user can write to these bits to change the pending status of the exceptions.

AImEl@ 209

11100B-ATARM-31-Jul-12

ATMEL

« MEMFAULTPENDED: Memory Management Fault Exception Pending
Read:

0: The exception is not pending.

1: The exception is pending.

Note: The user can write to these bits to change the pending status of the exceptions.
 USGFAULTPENDED: Usage Fault Exception Pending

Read:

0: The exception is not pending.

1: The exception is pending.

Note: The user can write to these bits to change the pending status of the exceptions.
» SYSTICKACT: SysTick Exception Active

Read:

0: The exception is not active.

1. The exception is active.

Note: The user can write to these bits to change the active status of the exceptions.
- Caution: A software that changes the value of an active bit in this register without a correct adjustment to the stacked content
can cause the processor to generate a fault exception. Ensure that the software writing to this register retains and subsequently
restores the current active status.
- Caution: After enabling the system handlers, to change the value of a bit in this register, the user must use a read-modify-write
procedure to ensure that only the required bit is changed.

 PENDSVACT: PendSV Exception Active

0: The exception is not active.

1: The exception is active.

« MONITORACT: Debug Monitor Active

0: Debug monitor is not active.

1: Debug monitor is active.

» SVCALLACT: SVC Call Active

0: SVC call is not active.

1: SVC call is active.

» USGFAULTACT: Usage Fault Exception Active
0: Usage fault exception is not active.

1: Usage fault exception is active.

* BUSFAULTACT: Bus Fault Exception Active
0: Bus fault exception is not active.

1: Bus fault exception is active.

210 SAMAS Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

« MEMFAULTACT: Memory Management Fault Exception Active
0: Memory management fault exception is not active.

1: Memory management fault exception is active.
If the user disables a system handler and the corresponding fault occurs, the processor treats the fault as a hard fault.

The user can write to this register to change the pending or active status of system exceptions. An OS kernel can write to
the active bits to perform a context switch that changes the current exception type.

AImEl@ 211

11100B-ATARM-31-Jul-12

11.9.1.13 Configurable Fault Status Register

Name: SCB_CFSR

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| - | DIVBYZERO | UNALIGNED |
23 22 21 20 19 18 17 16

| - | NOCP | INVPC | INVSTATE | UNDEFINSTR |
15 14 13 12 11 10 9 8

| BFRVALID | - | STKERR | UNSTKERR |IMPRECISERR| PRECISERR | IBUSERR |
7 6 5 4 3 2 1 0

| MMARVALID | - | MLSPERR | MSTKERR |MUNSTKERR| - | DACCVIOL | IACCVIOL |

* IACCVIOL: Instruction Access Violation flag
This is part of “MMFSR: Memory Management Fault Status Subregister” .

0: No instruction access violation fault.

1: The processor attempted an instruction fetch from a location that does not permit execution.

This fault occurs on any access to an XN region, even when the MPU is disabled or not present.

When this bit is 1, the PC value stacked for the exception return points to the faulting instruction. The processor has not
written a fault address to the SCB_MMFAR register.

» DACCVIOL: Data Access Violation flag

This is part of “MMFSR: Memory Management Fault Status Subregister” .

0: No data access violation fault.

1: The processor attempted a load or store at a location that does not permit the operation.

When this bit is 1, the PC value stacked for the exception return points to the faulting instruction. The processor has loaded
the SCB_MMFAR register with the address of the attempted access.

* MUNSTKERR: Memory Manager Fault on Unstacking for a Return From Exception

This is part of “MMFSR: Memory Management Fault Status Subregister” .

0: No unstacking fault.

1. Unstack for an exception return has caused one or more access violations.

This fault is chained to the handler. This means that when this bit is 1, the original return stack is still present. The proces-
sor has not adjusted the SP from the failing return, and has not performed a new save. The processor has not written a
fault address to the SCB_MMFAR register.

» MSTKERR: Memory Manager Fault on Stacking for Exception Entry
This is part of “MMFSR: Memory Management Fault Status Subregister” .
0: No stacking fault.

1: Stacking for an exception entry has caused one or more access violations.

212 SAMAS Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

When this bit is 1, the SP is still adjusted but the values in the context area on the stack might be incorrect. The processor
has not written a fault address to SCB_MMFAR register.

* MLSPERR: MemManage during Lazy State Preservation

This is part of “MMFSR: Memory Management Fault Status Subregister” .

0: No MemManage fault occurred during the floating-point lazy state preservation.

1. A MemManage fault occurred during the floating-point lazy state preservation.

« MMARVALID: Memory Management Fault Address Register (SCB_MMFAR) Valid Flag
This is part of “MMFSR: Memory Management Fault Status Subregister” .

0: The value in SCB_MMFAR is not a valid fault address.

1: SCB_MMFAR register holds a valid fault address.

If a memory management fault occurs and is escalated to a hard fault because of priority, the hard fault handler must set
this bit to 0. This prevents problems on return to a stacked active memory management fault handler whose SCB_MMFAR
value has been overwritten.

* |IBUSERR: Instruction Bus Error

This is part of “BFSR: Bus Fault Status Subregister” .
0: No instruction bus error.

1: Instruction bus error.

The processor detects the instruction bus error on prefetching an instruction, but it sets the IBUSERR flag to 1 only if it
attempts to issue the faulting instruction.

When the processor sets this bit to 1, it does not write a fault address to the BFAR register.
* PRECISERR: Precise Data Bus Error

This is part of “BFSR: Bus Fault Status Subregister” .

0: No precise data bus error.

1: A data bus error has occurred, and the PC value stacked for the exception return points to the instruction that caused the
fault.

When the processor sets this bit to 1, it writes the faulting address to the SCB_BFAR register.
* IMPRECISERR: Imprecise Data Bus Error

This is part of “BFSR: Bus Fault Status Subregister” .

0: No imprecise data bus error.

1: A data bus error has occurred, but the return address in the stack frame is not related to the instruction that caused the
error.

When the processor sets this bit to 1, it does not write a fault address to the SCB_BFAR register.

This is an asynchronous fault. Therefore, if it is detected when the priority of the current process is higher than the bus fault
priority, the bus fault becomes pending and becomes active only when the processor returns from all higher priority pro-
cesses. If a precise fault occurs before the processor enters the handler for the imprecise bus fault, the handler detects that
both this bit and one of the precise fault status bits are set to 1.

AImEl@ 213

11100B-ATARM-31-Jul-12

ATMEL

« UNSTKERR: Bus Fault on Unstacking for a Return From Exception
This is part of “BFSR: Bus Fault Status Subregister” .

0: No unstacking fault.
1: Unstack for an exception return has caused one or more bus faults.

This fault is chained to the handler. This means that when the processor sets this bit to 1, the original return stack is still
present. The processor does not adjust the SP from the failing return, does not performed a new save, and does not write
a fault address to the BFAR.

» STKERR: Bus Fault on Stacking for Exception Entry

This is part of “BFSR: Bus Fault Status Subregister” .

0: No stacking fault.

1: Stacking for an exception entry has caused one or more bus faults.

When the processor sets this bit to 1, the SP is still adjusted but the values in the context area on the stack might be incor-
rect. The processor does not write a fault address to the SCB_BFAR register.

 BFARVALID: Bus Fault Address Register (BFAR) Valid flag

This is part of “BFSR: Bus Fault Status Subregister” .

0: The value in SCB_BFAR is not a valid fault address.

1: SCB_BFAR holds a valid fault address.

The processor sets this bit to 1 after a bus fault where the address is known. Other faults can set this bit to 0, such as a
memory management fault occurring later.

If a bus fault occurs and is escalated to a hard fault because of priority, the hard fault handler must set this bit to 0. This pre-
vents problems if returning to a stacked active bus fault handler whose SCB_BFAR value has been overwritten.
* UNDEFINSTR: Undefined Instruction Usage Fault

This is part of “UFSR: Usage Fault Status Subregister” .

0: no undefined instruction usage fault.

1. the processor has attempted to execute an undefined instruction.

When this bit is set to 1, the PC value stacked for the exception return points to the undefined instruction.

An undefined instruction is an instruction that the processor cannot decode.

* INVSTATE: Invalid State Usage Fault

This is part of “UFSR: Usage Fault Status Subregister” .

0: No invalid state usage fault.

1: The processor has attempted to execute an instruction that makes illegal use of the EPSR.

When this bit is set to 1, the PC value stacked for the exception return points to the instruction that attempted the illegal use
of the EPSR.

This bit is not set to 1 if an undefined instruction uses the EPSR.

214 SAMAS Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

* INVPC: Invalid PC Load Usage Fault
This is part of “UFSR: Usage Fault Status Subregister” . It is caused by an invalid PC load by EXC_RETURN:

0: No invalid PC load usage fault.

1: The processor has attempted an illegal load of EXC_RETURN to the PC, as a result of an invalid context, or an invalid
EXC_RETURN value.

When this bit is set to 1, the PC value stacked for the exception return points to the instruction that tried to perform the ille-
gal load of the PC.

* NOCP: No Coprocessor Usage Fault

This is part of “UFSR: Usage Fault Status Subregister” . The processor does not support coprocessor instructions:

0: No usage fault caused by attempting to access a coprocessor.

1: The processor has attempted to access a coprocessor.

* UNALIGNED: Unaligned Access Usage Fault

This is part of “UFSR: Usage Fault Status Subregister” .

0: No unaligned access fault, or unaligned access trapping not enabled.

1: The processor has made an unaligned memory access.

Enable trapping of unaligned accesses by setting the UNALIGN_TRP bit in the SCB_CCR register to 1. See “Configuration
and Control Register” . Unaligned LDM, STM, LDRD, and STRD instructions always fault irrespective of the setting of
UNALIGN_TRP.

» DIVBYZERQO: Divide by Zero Usage Fault

This is part of “UFSR: Usage Fault Status Subregister” .

0: No divide by zero fault, or divide by zero trapping not enabled.

1: The processor has executed an SDIV or UDIV instruction with a divisor of 0.

When the processor sets this bit to 1, the PC value stacked for the exception return points to the instruction that performed
the divide by zero. Enable trapping of divide by zero by setting the DIV_0_TRP bit in the SCB_CCR register to 1. See “Con-
figuration and Control Register” .

AImEl@ 215

11100B-ATARM-31-Jul-12

ATMEL

11.9.1.14 Configurable Fault Status Register (Byte Access)

Name: SCB_CFSR (BYTE)

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| UFSR |
23 22 21 20 19 18 17 16

| UFSR |
15 14 13 12 11 10 9 8

| BFSR |
7 6 5 4 3 2 1 0

| MMFSR |

« MMFSR: Memory Management Fault Status Subregister

The flags in the MMFSR subregister indicate the cause of memory access faults. See bitfield [7..0] description in Section
11.9.1.13.

» BFSR: Bus Fault Status Subregister

The flags in the BFSR subregister indicate the cause of a bus access fault. See bitfield [14..8] description in Section
11.9.1.13.

* UFSR: Usage Fault Status Subregister
The flags in the UFSR subregister indicate the cause of a usage fault. See bitfield [31..15] description in Section 11.9.1.13.

Note: The UFSR bhits are sticky. This means that as one or more fault occurs, the associated bits are set to 1. A bit that is setto 1 is
cleared to 0 only by writing 1 to that bit, or by a reset.

The SCB_CFSR register indicates the cause of a memory management fault, bus fault, or usage fault. It is byte accessible.
The user can access the SCB_CFSR register or its subregisters as follows:

* access complete SCB_CFSR with a word access to 0OXEOOOED28

» access MMFSR with a byte access to OXEOOOED28

» access MMFSR and BFSR with a halfword access to 0OXEOOOED28

 access BFSR with a byte access to OXEOOOED29
access UFSR with a halfword access to OXEOOOED2A.

216 SAMAS Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

11.9.1.15 Hard Fault Status Register

Name: SCB_HFSR
Access: Read-write
Reset: 0x000000000
31 30 29 28 27 26 25 24

| DEBUGEVT FORCED | - |

23 22 21 20 19 18 17 16

I - |
15 14 13 12 11 10 9 8

I - |
7 6 5 4 3 2 1 0

| - | VECTTBL | — |

The HFSR register gives information about events that activate the hard fault handler. This register is read, write to clear.
This means that bits in the register read normally, but writing 1 to any bit clears that bit to 0.

« DEBUGEVT: Reserved for Debug Use
When writing to the register, write 0 to this bit, otherwise the behavior is unpredictable.

 FORCED: Forced Hard Fault
It indicates a forced hard fault, generated by escalation of a fault with configurable priority that cannot be handles, either
because of priority or because it is disabled:

0: No forced hard fault.

1: Forced hard fault.

When this bit is set to 1, the hard fault handler must read the other fault status registers to find the cause of the fault.
* VECTTBL: Bus Fault on a Vector Table

It indicates a bus fault on a vector table read during an exception processing:

0: No bus fault on vector table read.

1: Bus fault on vector table read.

This error is always handled by the hard fault handler.

When this bit is set to 1, the PC value stacked for the exception return points to the instruction that was preempted by the
exception.

Note: The HFSR bits are sticky. This means that, as one or more fault occurs, the associated bits are set to 1. A bit that is setto 1 is
cleared to 0 only by writing 1 to that bit, or by a reset.

AImEl@ 217

11100B-ATARM-31-Jul-12

A IIIIEI% O

11.9.1.16 MemManage Fault Address Register

Name: SCB_MMFAR

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| ADDRESS |
23 22 21 20 19 18 17 16

| ADDRESS |
15 14 13 12 11 10 9 8

| ADDRESS |
7 6 5 4 3 2 1 0

| ADDRESS |

The MMFAR register contains the address of the location that generated a memory management fault.

 ADDRESS

When the MMARVALID bit of the MMFSR subregister is set to 1, this field holds the address of the location that generated

the memory management fault.

Notes: 1. When an unaligned access faults, the address is the actual address that faulted. Because a single read or write instruction
can be split into multiple aligned accesses, the fault address can be any address in the range of the requested access size.

2. Flags in the MMFSR subregister indicate the cause of the fault, and whether the value in the SCB_MMFAR register is valid.
See “"MMFSR: Memory Management Fault Status Subregister” .

218 SAMAS Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

11.9.1.17 Bus Fault Address Register

Name: SCB_BFAR

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| ADDRESS |
23 22 21 20 19 18 17 16

| ADDRESS |
15 14 13 12 11 10 9 8

| ADDRESS |
7 6 5 4 3 2 1 0

| ADDRESS |

The BFAR register contains the address of the location that generated a bus fault.

» ADDRESS

When the BFARVALID bit of the BFSR subregister is set to 1, this field holds the address of the location that generated the
bus fault.

Notes: 1. When an unaligned access faults, the address in the SCB_BFAR register is the one requested by the instruction, even if it is
not the address of the fault.

2. Flags in the BFSR indicate the cause of the fault, and whether the value in the SCB_BFAR register is valid. See “BFSR: Bus
Fault Status Subregister” .

AImEl@ 219

11100B-ATARM-31-Jul-12

ATMEL

11.10 System Timer (SysTick)

The processor has a 24-bit system timer, SysTick, that counts down from the reload value to
zero, reloads (wraps to) the value in the SYST_RVR register on the next clock edge, then counts
down on subsequent clocks.

When the processor is halted for debugging, the counter does not decrement.

The SysTick counter runs on the processor clock. If this clock signal is stopped for low power
mode, the SysTick counter stops.

Ensure that the software uses aligned word accesses to access the SysTick registers.

The SysTick counter reload and current value are undefined at reset; the correct initialization
sequence for the SysTick counter is:

1. Program the reload value.
2. Clear the current value.
3. Program the Control and Status register.

11.10.1 System Timer (SysTick) User Interface

Table 11-33. System Timer (SysTick) Register Mapping

Offset Register Name Access Reset
OxEOOOEO010 SysTick Control and Status Register SYST_CSR Read-write 0x00000004
OxEOOOEO014 SysTick Reload Value Register SYST_RVR Read-write Unknown
OxEOOOEO018 SysTick Current Value Register SYST_CVR Read-write Unknown
OxXEOOOEO1C SysTick Calibration Value Register SYST_CALIB Read-only 0xC0000000

220 SAMAS Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

11.10.1.1 SysTick Control and Status

Name: SYST_CSR
Access: Read-write
Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
| - COUNTFLAG |
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0
| | | | | CLKSOURCE [TICKINT ENABLE |

The SysTick SYST_CSR register enables the SysTick features.

e COUNTFLAG: Count Flag
Returns 1 if the timer counted to 0 since the last time this was read.

» CLKSOURCE: Clock Source
Indicates the clock source:

0: External Clock.

1: Processor Clock.

e TICKINT
Enables a SysTick exception request:

0: Counting down to zero does not assert the SysTick exception request.

1: Counting down to zero asserts the SysTick exception request.

The software can use COUNTFLAG to determine if SysTick has ever counted to zero.

« ENABLE
Enables the counter:

0: Counter disabled.

1: Counter enabled.

When ENABLE is set to 1, the counter loads the RELOAD value from the SYST_RVR register and then counts down. On
reaching 0, it sets the COUNTFLAG to 1 and optionally asserts the SysTick depending on the value of TICKINT. It then

loads the RELOAD value again, and begins counting.

ATMEL

11100B-ATARM-31-Jul-12

221

11.10.1.2 SysTick Reload Value Registers

Name: SYST_RVR

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

| RELOAD |
15 14 13 12 11 10 9 8

| RELOAD |
7 6 5 4 3 2 1 0

| RELOAD |

The SYST_RVR register specifies the start value to load into the SYST_CVR register.

» RELOAD
Value to load into the SYST_CVR register when the counter is enabled and when it reaches 0.

The RELOAD value can be any value in the range 0x00000001-0x00FFFFFF. A start value of O is possible, but has no
effect because the SysTick exception request and COUNTFLAG are activated when counting from 1 to O.

The RELOAD value is calculated according to its use: For example, to generate a multi-shot timer with a period of N pro-
cessor clock cycles, use a RELOAD value of N-1. If the SysTick interrupt is required every 100 clock pulses, set RELOAD
to 99.

222 SAMAS Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

11.10.1.3 SysTick Current Value Register

Name: SYST_CVR

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

| CURRENT |
15 14 13 12 11 10 9 8

| CURRENT |
7 6 5 4 3 2 1 0

| CURRENT |

The SysTick SYST_CVR register contains the current value of the SysTick counter.

» CURRENT
Reads return the current value of the SysTick counter.

A write of any value clears the field to 0, and also clears the SYST_CSR.COUNTFLAG bit to 0.

AImEl@ 223

11100B-ATARM-31-Jul-12

ATMEL

11.10.1.4 SysTick Calibration Value Register

Name: SYST_CALIB

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24

[NOREF SKEW — |
23 22 21 20 19 18 17 16

| TENMS |
15 14 13 12 11 10 9 8

| TENMS |
7 6 5 4 3 2 1 0

| TENMS |

The SysTick SYST_CSR register indicates the SysTick calibration properties.

* NOREF: No Reference Clock

It indicates whether the device provides a reference clock to the processor:

0: Reference clock provided.

1: No reference clock provided.

If your device does not provide a reference clock, the SYST_CSR.CLKSOURCE bit reads-as-one and ignores writes.
* SKEW

It indicates whether the TENMS value is exact:

0: TENMS value is exact.

1: TENMS value is inexact, or not given.

An inexact TENMS value can affect the suitability of SysTick as a software real time clock.
* TENMS: Ten Milliseconds

The reload value for 10 ms (100 Hz) timing is subject to system clock skew errors. If the value reads as zero, the calibration
value is not known.

Read as 0x000030D4. The SysTick calibration value is fixed at 0x000030D4 (12500), which allows the generation of a time
base of 1 ms with SysTick clock at 12.5 MHz (100/8 = 12.5 MHz).

224 SAMAS Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

11.11 Memory Protection Unit (MPU)

The MPU divides the memory map into a number of regions, and defines the location, size,
access permissions, and memory attributes of each region. It supports:

« independent attribute settings for each region

« overlapping regions

 export of memory attributes to the system.
The memory attributes affect the behavior of memory accesses to the region. The Cortex-M4
MPU defines:

* eight separate memory regions, 0-7

 a background region.

When memory regions overlap, a memory access is affected by the attributes of the region with
the highest number. For example, the attributes for region 7 take precedence over the attributes
of any region that overlaps region 7.

The background region has the same memory access attributes as the default memory map, but
is accessible from privileged software only.

The Cortex-M4 MPU memory map is unified. This means that instruction accesses and data
accesses have the same region settings.

If a program accesses a memory location that is prohibited by the MPU, the processor generates
a memory management fault. This causes a fault exception, and might cause the termination of
the process in an OS environment.

In an OS environment, the kernel can update the MPU region setting dynamically based on the
process to be executed. Typically, an embedded OS uses the MPU for memory protection.

The configuration of MPU regions is based on memory types (see “Memory Regions, Types and
Attributes”).

Table 11-34 shows the possible MPU region attributes. These include Share ability and cache
behavior attributes that are not relevant to most microcontroller implementations. See “MPU Con-
figuration for a Microcontroller” for guidelines for programming such an implementation.

Table 11-34. Memory Attributes Summary

Memory Type

Shareability | Other Attributes Description

Strongly- ordered

All accesses to Strongly-ordered memory occur in program order. All
Strongly-ordered regions are assumed to be shared.

_ Shared - Memory-mapped peripherals that several processors share.
pevice Non-shared - Memory-mapped peripherals that only a single processor uses.
Shared Normal memory that is shared between several processors.
Normal Non-shared Normal memory that only a single processor uses.

11100B-ATARM-31-Jul-12

AImEl@ 225

ATMEL

11.11.1 MPU Access Permission Attributes
This section describes the MPU access permission attributes. The access permission bits (TEX,
C, B, S, AP, and XN) of the MPU_RASR control the access to the corresponding memory
region. If an access is made to an area of memory without the required permissions, then the
MPU generates a permission fault.

The table below shows the encodings for the TEX, C, B, and S access permission bits.

Table 11-35. TEX, C, B, and S Encoding

TEX | C B S Memory Type Shareability | Other Attributes
0 0 x® grt.(rjc::gtljy- Shareable -
1 x® | Device Shareable -
0 Not))
000 0 Normal shareable Ou_ter and inner write-through. No
write allocate.
1 Shareable
1
Not
1 0 Normal shareable Outer and inner write-back. No write
allocate.
1 Shareable
0 Not
0 0 Normal shareable
1 Shareable
1 x® | Reserved encoding -
b001 0 <@ Implementation defined i
attributes.
1 Not
1 0 Normal shareable Outer and inner write-back. Write and
read allocate.
1 Shareable
0 x® | Device ’s\lr?at\reable Nonshared Device.
0
b010 1 x® | Reserved encoding -
1 x® | x@ | Reserved encoding -
biB 0 Not
8 A A Normal shareable
1 Shareable

Note: 1. The MPU ignores the value of this bit.

Table 11-36 shows the cache policy for memory attribute encodings with a TEX value is in the
range 4-7.

Table 11-36. Cache Policy for Memory Attribute Encoding

Encoding, AA or BB | Corresponding Cache Policy

00 Non-cacheable

226 SAMAS Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

111111

11.11.1.2

11.11.1.3

11100B-ATARM-31-Jul-12

Table 11-36. Cache Policy for Memory Attribute Encoding (Continued)

Encoding, AA or BB

Corresponding Cache Policy

01 Write back, write and read allocate
10 Write through, no write allocate
11 Write back, no write allocate

Table 11-37 shows the AP encodings that define the access permissions for privileged and
unprivileged software.

Table 11-37. AP Encoding

Privileged Unprivileged
AP[2:0] | Permissions Permissions Description
000 No access No access All accesses generate a permission fault
001 RW No access Access from privileged software only
010 RW RO \é\‘/srri:re“ssgi);rllj?;;il\t/ileged software generate a
011 RW RW Full access
100 Unpredictable Unpredictable | Reserved
101 RO No access Reads by privileged software only
110 RO RO Read only, by privileged or unprivileged software
111 RO RO Read only, by privileged or unprivileged software

MPU Mismatch

When an access violates the MPU permissions, the processor generates a memory manage-
ment fault, see “Exceptions and Interrupts” . The MMFSR indicates the cause of the fault. See
“MMFSR: Memory Management Fault Status Subregister” for more information.

Updating an MPU Region

To update the attributes for an MPU region, update the MPU_RNR, MPU_RBAR and
MPU_RASR registers. Each register can be programed separately, or a multiple-word write can
be used to program all of these registers. MPU_RBAR and MPU_RASR aliases can be used to
program up to four regions simultaneously using an STM instruction.

Updating an MPU region using separate words

Simple code to configure one region:

R2 =

regi on numnber

si zel enabl e
attributes

. R4 addr ess
LDR RO, =MPU_RNR
STR R1, [RO, #0x0]
STR R4, [RO, #0x4]
STRH R2, [RO, #0x8]
STRH R3, [RO, #O0xA]

; OXEOOOED98, MPU regi on nunber register
; Regi on Nunber
Regi on Base Address
; Region Size and Enabl e
; Region Attribute

ATMEL

227

111114

228

ATMEL

Disable a region before writing new region settings to the MPU, if the region being changed was
previously enabled . For example:

; RL = regi on nunber
R2 = sizel/enabl e

; R3 = attributes

;. R4 = address

LDR RO, =MPU_RNR ; OXEOOOED98, MPU regi on nunber register
STR R1, [RO, #0xO0] ; Regi on Nunber

BIC R2, R2, #1 ; Disable

STRH R2, [RO, #0x8] ; Region Size and Enabl e

STR R4, [RO, #0x4] ; Regi on Base Address

STRH R3, [RO, #O0xA] ; Region Attribute

ORR R2, #1 : Enabl e

STRH R2, [RO, #0x8] ; Region Size and Enabl e

The software must use memory barrier instructions:

« before the MPU setup, if there might be outstanding memory transfers, such as buffered
writes, that might be affected by the change in MPU settings

« after the MPU setup, if it includes memory transfers that must use the new MPU settings.

However, memory barrier instructions are not required if the MPU setup process starts by enter-
ing an exception handler, or is followed by an exception return, because the exception entry and
exception return mechanisms cause memory barrier behavior.

The software does not need any memory barrier instructions during an MPU setup, because it
accesses the MPU through the PPB, which is a Strongly-Ordered memory region.

For example, if the user wants all of the memory access behavior to take effect immediately after
the programming sequence, a DSB instruction and an ISB instruction must be used. A DSB is
required after changing MPU settings, such as at the end of a context switch. An ISB is required
if the code that programs the MPU region or regions is entered using a branch or call. If the pro-
gramming sequence is entered using a return from exception, or by taking an exception, then an
ISB is not required .

Updating an MPU Region Using Multi-word Writes

The user can program directly using multi-word writes, depending on how the information is
divided. Consider the following reprogramming:

; RL = regi on nunber

. R2 = address

; R3 = size, attributes in one

LDR RO, =MPU_RNR ; OXEOOOED98, MPU regi on nunber register
STR R1, [RO, #0x0] ; Regi on Nunber

STR R2, [RO, #0x4] ; Region Base Address

STR R3, [RO, #0x8] ; Region Attribute, Size and Enable

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

Use an STM instruction to optimize this:

; R1L = regi on nunber

R2 = address
. R3 = size, attributes in one
LDR RO, =MPU RNR ; OXEOOOED98, MPU regi on nunber register
STM RO, {R1l-R3} ; Regi on Nunber, address, attribute, size and enable

This can be done in two words for pre-packed information. This means that the MPU_RBAR
contains the required region number and had the VALID bit set to 1. See “MPU Region Base
Address Register” . Use this when the data is statically packed, for example in a boot loader:

R1 = address and regi on nunber in one
: R2 = size and attributes in one
LDR RO, =MPU_RBAR ; OxEOOOED9C, MPU Regi on Base register
STR R1, [RO, #0x0] ; Region base address and
; region nunber conbined with VALID (bit 4) set to 1
STR R2, [RO, #0x4] ; Region Attribute, Size and Enable

Use an STM instruction to optimize this:

; RL = address and regi on nunber in one

; R2 = size and attributes in one

LDR RO, =MPU_RBAR ; OXEOOOEDO9C, MPU Regi on Base regi ster

STM RO, {R1l-R2} ; Regi on base address, region nunber and VALID bit,
; and Region Attribute, Size and Enabl e

11.11.1.5 Subregions
Regions of 256 bytes or more are divided into eight equal-sized subregions. Set the correspond-
ing bit in the SRD field of the MPU_RASR field to disable a subregion. See “MPU Region
Attribute and Size Register” . The least significant bit of SRD controls the first subregion, and the
most significant bit controls the last subregion. Disabling a subregion means another region
overlapping the disabled range matches instead. If no other enabled region overlaps the dis-
abled subregion, the MPU issues a fault.

Regions of 32, 64, and 128 bytes do not support subregions. With regions of these sizes, the
SRD fieldmust be set to 0x00, otherwise the MPU behavior is unpredictable.

11.11.1.6 Example of SRD Use
Two regions with the same base address overlap. Region 1 is 128 KB, and region 2 is 512 KB.
To ensure the attributes from region 1 apply to the first 128 KB region, set the SRD field for
region 2 to b00000011 to disable the first two subregions, as in Figure 11-12 below:

AImEl@ 229

11100B-ATARM-31-Jul-12

11.11.1.7

ATMEL

Figure 11-12. SRD Use

Region 2, with Offset from
subregions base address
512KB
448KB
384KB
320KB
256KB
Region 1 192KB

Disabled subregion 128KB

64KB
Disabl region
Base address of both regions isabled subregio 0

MPU Design Hints And Tips

To avoid unexpected behavior, disable the interrupts before updating the attributes of a region
that the interrupt handlers might access.

Ensure the software uses aligned accesses of the correct size to access MPU registers:

« except for the MPU_RASR register, it must use aligned word accesses
« for the MPU_RASR register, it can use byte or aligned halfword or word accesses.
The processor does not support unaligned accesses to MPU registers.

When setting up the MPU, and if the MPU has previously been programmed, disable unused
regions to prevent any previous region settings from affecting the new MPU setup.

MPU Configuration for a Microcontroller

230

Usually, a microcontroller system has only a single processor and no caches. In such a system,
program the MPU as follows:

Table 11-38. Memory region attributes for a microcontroller

Memory Region | TEX C B S Memory Type and Attributes

Flash memory b000 1 | 0 | 0 | Normal memory, non-shareable, write-through
Internal SRAM b000 1 | 0 | 1 | Normal memory, shareable, write-through

External SRAM b000 1 |1 | 1 | Normal memory, shareable, write-back, write-allocate
Peripherals b000 0 | 1 | 1 | Device memory, shareable

In most microcontroller implementations, the share ability and cache policy attributes do not
affect the system behavior. However, using these settings for the MPU regions can make the
application code more portable. The values given are for typical situations. In special systems,
such as multiprocessor designs or designs with a separate DMA engine, the share ability attri-
bute might be important. In these cases, refer to the recommendations of the memory device
manufacturer.

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

11.11.2

Memory Protection Unit (MPU) User Interface

Table 11-39. Memory Protection Unit (MPU) Register Mapping

Offset Register Name Access Reset
OxEOOOED90 MPU Type Register MPU_TYPE Read-only 0x00000800
OxEOOOED94 MPU Control Register MPU_CTRL Read-write 0x00000000
OXEOOOED98 MPU Region Number Register MPU_RNR Read-write 0x00000000
OXEOOOED9C MPU Region Base Address Register MPU_RBAR Read-write 0x00000000
OXEOOOEDAO MPU Region Attribute and Size Register MPU_RASR Read-write 0x00000000
OXEOOOEDA4 | Allas of RBAR, see MPU Region Base Address MPU_RBAR_AL | Read-write 0x00000000
Register - -
OXEO0OEDAS Q'('azsis‘t’;RASR' see MPU Region Attribute and Size | o) RasR_A1 | Read-write 000000000
OXEOOOEDAC g'ézsisct’;RBAR’ see MPU Region Base Address MPU_RBAR_A2 | Read-write 0x00000000
OXEO00EDBO | Alas of RASR, see MPU Region Attribute and Size | i) pasr A2 | Read-write 0x00000000
Register - -
OXEOOOEDBA4 Q'('azsis‘t’;RBAR' see MPU Region Base Address MPU_RBAR_A3 | Read-write 0x00000000
OXEOOOEDBS Alias of RASR, see MPU Region Attribute and Size MPU_RASR_A3 | Read-write 0x00000000

Register

11100B-ATARM-31-Jul-12

ATMEL

231

11.11.2.1 MPU Type Register

Name: MPU_TYPE

Access: Read-write

Reset: 0x00000800
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

| IREGION |
15 14 13 12 11 10 9 8

| DREGION |
7 6 5 4 3 2 1 0

| - | SEPARATE |

The MPU_TYPE register indicates whether the MPU is present, and if so, how many regions it supports.
* IREGION: Instruction Region

Indicates the number of supported MPU instruction regions.

Always contains 0x00. The MPU memory map is unified and is described by the DREGION field.

* DREGION: Data Region

Indicates the number of supported MPU data regions:

0x08 = Eight MPU regions.

» SEPARATE: Separate Instruction

Indicates support for unified or separate instruction and date memory maps:

0: unified.

232 SAMAS Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

11.11.2.2 MPU Control Register

Name: MPU_CTRL
Access: Read-write
Reset: 0x00000800
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0
| - | PRIVDEFENA | HFENMIENA | ENABLE |

The MPU CTRL register enables the MPU, enables the default memory map background region, and enables the use of
the MPU when in the hard fault, Non-maskable Interrupt (NMI), and FAULTMASK escalated handlers.

* PRIVDEFENA: Privileged Default Memory Map Enabled
Enables privileged software access to the default memory map:

0: If the MPU is enabled, disables the use of the default memory map. Any memory access to a location not covered by any

enabled region causes a fault.

1: If the MPU is enabled, enables the use of the default memory map as a background region for privileged software

accesses.

When enabled, the background region acts as a region number -1. Any region that is defined and enabled has priority over

this default map.

If the MPU is disabled, the processor ignores this bit.

« HFNMIENA: Hard Fault and NMI Enabled

Enables the operation of MPU during hard fault, NMI, and FAULTMASK handlers.

When the MPU is enabled:

0: MPU is disabled during hard fault, NMI, and FAULTMASK handlers, regardless of the value of the ENABLE bit.

1: the MPU is enabled during hard fault, NMI, and FAULTMASK handlers.

When the MPU is disabled, if this bit is set to 1, the behavior is unpredictable.

« ENABLE
Enables the MPU:

0: MPU disabled.
1: MPU enabled.

When ENABLE and PRIVDEFENA are both set to 1:

* For privileged accesses, the default memory map is as described in “Memory Model” . Any access by privileged
software that does not address an enabled memory region behaves as defined by the default memory map.

11100B-ATARM-31-Jul-12

ATMEL

233

ATMEL

» Any access by unprivileged software that does not address an enabled memory region causes a memory management
fault.

XN and Strongly-ordered rules always apply to the System Control Space regardless of the value of the ENABLE bit.

When the ENABLE bit is set to 1, at least one region of the memory map must be enabled for the system to function
unless the PRIVDEFENA bit is set to 1. If the PRIVDEFENA bit is set to 1 and no regions are enabled, then only privileged
software can operate.

When the ENABLE bit is set to 0, the system uses the default memory map. This has the same memory attributes as if
the MPU is not implemented. The default memory map applies to accesses from both privileged and unprivileged software.

When the MPU is enabled, accesses to the System Control Space and vector table are always permitted. Other areas are
accessible based on regions and whether PRIVDEFENA is set to 1.

Unless HFNMIENA is set to 1, the MPU is not enabled when the processor is executing the handler for an exception with
priority —1 or —2. These priorities are only possible when handling a hard fault or NMI exception, or when FAULTMASK is
enabled. Setting the HFNMIENA bit to 1 enables the MPU when operating with these two priorities.

232 SAMAS Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

11.11.2.3 MPU Region Number Register

Name: MPU_RNR

Access: Read-write

Reset: 0x00000800
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

| REGION |

The MPU_RNR selects which memory region is referenced by the MPU_RBAR and MPU_RASR registers.
 REGION

Indicates the MPU region referenced by the MPU_RBAR and MPU_RASR registers.

The MPU supports 8 memory regions, so the permitted values of this field are 0-7.

Normally, the required region number is written to this register before accessing the MPU_RBAR or MPU_RASR. However,
the region number can be changed by writing to the MPU_RBAR with the VALID bit set to 1; see “MPU Region Base
Address Register” . This write updates the value of the REGION field.

AImEl@ 235

11100B-ATARM-31-Jul-12

11.11.2.4 MPU Region Base Address Register

Name: MPU_RBAR

Access: Read-write

Reset: 0x00000000
31 30 29 28 27 26 25 24

| ADDR |
23 22 21 20 19 18 17 16

| ADDR |
15 14 13 12 11 10 9 N

| ADDR |
N-1 6 5 4 3 2 1 0

| - [vaup | REGION |

Note: If the region size is 32B, the ADDR field is bits [31:5] and there is no Reserved field.

The MPU_RBAR defines the base address of the MPU region selected by the MPU_RNR, and can update the value of the
MPU_RNR.

Write MPU_RBAR with the VALID bit set to 1 to change the current region number and update the MPU_RNR.
» ADDR: Region Base Address

The value of N depends on the region size. The ADDR field is bits[31:N] of the MPU_RBAR. The region size, as specified
by the SIZE field in the MPU_RASR, defines the value of N:

N = Log2(Region size in bytes),

If the region size is configured to 4 GB, in the MPU_RASR, there is no valid ADDR field. In this case, the region occupies
the complete memory map, and the base address is 0x00000000.

The base address is aligned to the size of the region. For example, a 64 KB region must be aligned on a multiple of 64 KB,
for example, at 0x00010000 or 0x00020000.

e VALID: MPU Region Number Valid

Write:

0: MPU_RNR not changed, and the processor updates the base address for the region specified in the MPU_RNR, and
ignores the value of the REGION field.

1: the processor updates the value of the MPU_RNR to the value of the REGION field, and updates the base address for
the region specified in the REGION field.

Always reads as zero.
* REGION: MPU Region
For the behavior on writes, see the description of the VALID field.

On reads, returns the current region number, as specified by the MPU_RNR.

23 SAMAS Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

11.11.2.5 MPU Region Attribute and Size Register

Name: MPU_RASR

Access: Read-write

Reset: 0x00000000
31 30 29 28 27 26 25 24

| - XN - AP |
23 22 21 20 19 18 17 16

| - TEX S C B |
15 14 13 12 11 10 9 8

| SRD |
7 6 5 4 3 2 1 0

| - | SIZE | ENABLE |

The MPU_RASR defines the region size and memory attributes of the MPU region specified by the MPU_RNR, and

enables that region and any subregions.

MPU_RASR is accessible using word or halfword accesses:

+ the most significant halfword holds the region attributes.

« the least significant halfword holds the region size, and the region and subregion enable bits.

¢ XN: Instruction Access Disable
0: Instruction fetches enabled.

1: Instruction fetches disabled.

* AP: Access Permission
See Table 11-37.

* TEX, C, B: Memory Access Attributes
See Table 11-35.

* S: Shareable
See Table 11-35.

* SRD: Subregion Disable

For each bit in this field:

0: corresponding sub-region is enabled.
1: corresponding sub-region is disabled.

See “Subregions” for more information.

Region sizes of 128 bytes and less do not support subregions. When writing the attributes for such a region, write the SRD

field as 0x00.

11100B-ATARM-31-Jul-12

ATMEL

237

ATMEL

» SIZE: Size of the MPU Protection Region
The minimum permitted value is 3 (b00010).

The SIZE field defines the size of the MPU memory region specified by the MPU_RNR. as follows:

(Region size in bytes) = 2(51ZE+1)

The smallest permitted region size is 32B, corresponding to a SIZE value of 4. The table below gives an example of SIZE
values, with the corresponding region size and value of N in the MPU_RBAR.

SIZE value | Region size | Value of N® | Note

b00100 (4) 32B 5 Minimum permitted size
b01001 (9) 1 KB 10 -

b10011 (19) | 1 MB 20 -

b11101 (29) | 1GB 30 -

b11111(31) H 4GB b01100 Maximum possible size

Note: 1. Inthe MPU_RBAR, see “MPU Region Base Address Register”

« ENABLE: Region Enable

Note: For information about access permission, see “MPU Access Permission Attributes” .

238 SAMAS Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

11.12 Glossary
This glossary describes some of the terms used in technical documents from ARM.

Abort A mechanism that indicates to a processor that the value associated with a memory access is invalid.
An abort can be caused by the external or internal memory system as a result of attempting to access
invalid instruction or data memory.

Aligned A data item stored at an address that is divisible by the number of bytes that defines the data size is
said to be aligned. Aligned words and halfwords have addresses that are divisible by four and two
respectively. The terms word-aligned and halfword-aligned therefore stipulate addresses that are
divisible by four and two respectively.

Banked register A register that has multiple physical copies, where the state of the processor determines which copy is
used. The Stack Pointer, SP (R13) is a banked register.

Base register In instruction descriptions, a register specified by a load or store instruction that is used to hold the
base value for the instruction’s address calculation. Depending on the instruction and its addressing
mode, an offset can be added to or subtracted from the base register value to form the address that is
sent to memory.

See also “Index register”

Big-endian (BE) Byte ordering scheme in which bytes of decreasing significance in a data word are stored at
increasing addresses in memory.

See also “Byte-invariant” , “Endianness” , “Little-endian (LE)” .

Big-endian memory
Memory in which:
a byte or halfword at a word-aligned address is the most significant byte or halfword within the word at
that address,
a byte at a halfword-aligned address is the most significant byte within the halfword at that address.

See also “Little-endian memory” .

Breakpoint
A breakpoint is a mechanism provided by debuggers to identify an instruction at which program
execution is to be halted. Breakpoints are inserted by the programmer to enable inspection of register
contents, memory locations, variable values at fixed points in the program execution to test that the
program is operating correctly. Breakpoints are removed after the program is successfully tested.

Byte-invariant In a byte-invariant system, the address of each byte of memory remains unchanged when switching

between little-endian and big-endian operation. When a data item larger than a byte is loaded from or
stored to memory, the bytes making up that data item are arranged into the correct order depending
on the endianness of the memory access.

An ARM byte-invariant implementation also supports unaligned halfword and word memory accesses.
It expects multi-word accesses to be word-aligned.

AImEl@ 239

11100B-ATARM-31-Jul-12

Condition field

Conditional execution

Context

Coprocessor

Debugger

Direct Memory Access
(DMA)

Doubleword

Doubleword-aligned

Endianness

Exception

Exception service routine

Exception vector

Flat address mapping

ATMEL

A four-bit field in an instruction that specifies a condition under which the instruction can execute.

If the condition code flags indicate that the corresponding condition is true when the instruction starts
executing, it executes normally. Otherwise, the instruction does nothing.

The environment that each process operates in for a multitasking operating system. In ARM
processors, this is limited to mean the physical address range that it can access in memory and the
associated memory access permissions.

A processor that supplements the main processor. Cortex-M4 does not support any coprocessors.

A debugging system that includes a program, used to detect, locate, and correct software faults,
together with custom hardware that supports software debugging.

An operation that accesses main memory directly, without the processor performing any accesses to
the data concerned.

A 64-bit data item. The contents are taken as being an unsigned integer unless otherwise stated.

A data item having a memory address that is divisible by eight.

Byte ordering. The scheme that determines the order that successive bytes of a data word are stored
in memory. An aspect of the system’s memory mapping.

See also “Little-endian (LE)” and “Big-endian (BE)”

An event that interrupts program execution. When an exception occurs, the processor suspends the
normal program flow and starts execution at the address indicated by the corresponding exception
vector. The indicated address contains the first instruction of the handler for the exception.

An exception can be an interrupt request, a fault, or a software-generated system exception. Faults
include attempting an invalid memory access, attempting to execute an instruction in an invalid
processor state, and attempting to execute an undefined instruction.

See “Interrupt handler” .

See “Interrupt vector” .

A system of organizing memory in which each physical address in the memory space is the same as
the corresponding virtual address.

240 SAMAS Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

Halfword

lllegal instruction

Implementation-defined

Implementation-specific

Index register

Instruction cycle count

Interrupt handler

Interrupt vector

Little-endian (LE)

Little-endian memory

Load/store architecture

Memory Protection Unit
(MPU)

Prefetching

11100B-ATARM-31-Jul-12

A 16-bit data item.
An instruction that is architecturally Undefined.

The behavior is not architecturally defined, but is defined and documented by individual
implementations.

The behavior is not architecturally defined, and does not have to be documented by individual
implementations. Used when there are a number of implementation options available and the option
chosen does not affect software compatibility.

In some load and store instruction descriptions, the value of this register is used as an offset to be
added to or subtracted from the base register value to form the address that is sent to memory. Some
addressing modes optionally enable the index register value to be shifted prior to the addition or
subtraction.

See also “Base register” .

The number of cycles that an instruction occupies the Execute stage of the pipeline.
A program that control of the processor is passed to when an interrupt occurs.

One of a number of fixed addresses in low memory, or in high memory if high vectors are configured,
that contains the first instruction of the corresponding interrupt handler.

Byte ordering scheme in which bytes of increasing significance in a data word are stored at increasing
addresses in memory.

See also “Big-endian (BE)" , “Byte-invariant” , “Endianness” .

Memory in which:

a byte or halfword at a word-aligned address is the least significant byte or halfword within the word at
that address,

a byte at a halfword-aligned address is the least significant byte within the halfword at that address.

See also “Big-endian memory” .

A processor architecture where data-processing operations only operate on register contents, not
directly on memory contents.

Hardware that controls access permissions to blocks of memory. An MPU does not perform any
address translation.

In pipelined processors, the process of fetching instructions from memory to fill up the pipeline before
the preceding instructions have finished executing. Prefetching an instruction does not mean that the
instruction has to be executed.

AImEl@ 241

ATMEL

Preserved Preserved by writing the same value back that has been previously read from the same field on the
same processor.

Read Reads are defined as memory operations that have the semantics of a load. Reads include the Thumb
instructions LDM, LDR, LDRSH, LDRH, LDRSB, LDRB, and POP.

Region A partition of memory space.

Reserved
A field in a control register or instruction format is reserved if the field is to be defined by the

implementation, or produces Unpredictable results if the contents of the field are not zero. These fields
are reserved for use in future extensions of the architecture or are implementation-specific. All
reserved bits not used by the implementation must be written as 0 and read as 0.

Thread-safe In a multi-tasking environment, thread-safe functions use safeguard mechanisms when accessing
shared resources, to ensure correct operation without the risk of shared access conflicts.

Thumb instruction One or two halfwords that specify an operation for a processor to perform. Thumb instructions must be
halfword-aligned.

Unaligned
g A data item stored at an address that is not divisible by the number of bytes that defines the data size

is said to be unaligned. For example, a word stored at an address that is not divisible by four.

Undefined Indicates an instruction that generates an Undefined instruction exception.

Unpredictable One cannot rely on the behavior. Unpredictable behavior must not represent security holes.
Unpredictable behavior must not halt or hang the processor, or any parts of the system.

Warm reset Also known as a core reset. Initializes the majority of the processor excluding the debug controller and
debug logic. This type of reset is useful if debugging features of a processor.

Word A 32-bit data item.

Write Writes are defined as operations that have the semantics of a store. Writes include the Thumb

instructions STM, STR, STRH, STRB, and PUSH.

22 SAMAS Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

12. Debug and Test Features

12.1 Description

The SAM4 Series Microcontrollers feature a number of complementary debug and test
capabilities. The Serial Wire/JTAG Debug Port (SWJ-DP) combining a Serial Wire Debug Port
(SW-DP) and JTAG Debug (JTAG-DP) port is used for standard debugging functions, such as
downloading code and single-stepping through programs. It also embeds a serial wire trace.

12.2 Embedded Characteristics

» Debug access to all memory and registers in the system, including Cortex-M4 register bank
when the core is running, halted, or held in reset.

« Serial Wire Debug Port (SW-DP) and Serial Wire JTAG Debug Port (SWJ-DP) debug access
« Flash Patch and Breakpoint (FPB) unit for implementing breakpoints and code patches

« Data Watchpoint and Trace (DWT) unit for implementing watchpoints, data tracing, and
system profiling

« Instrumentation Trace Macrocell (ITM) for support of printf style debugging
* [IEEE1149.1 JTAG Boundary-can on All Digital Pins

Figure 12-1. Debug and Test Block Diagram

[]| Tvs

]| Tekriswelk

[]| o

TAP
[|

Boundary SWJ-DP \L ¢ |:| JTAGSEL

> |:| TDO/TRACESWO

POR

Reset N
and

Test I:l TST

AImEl@ 243

11100B-ATARM-31-Jul-12

ATMEL

12.3 Application Examples

12.31 Debug Environment
Figure 12-2 shows a complete debug environment example. The SWJ-DP interface is used for

standard debugging functions, such as downloading code and single-stepping through the pro-
gram and viewing core and peripheral registers.

Figure 12-2. Application Debug Environment Example

/
Host Debugger
PC

SWJ-DP
Emulator/Probe

SWJ-DP
Connector

SAM4

SAM4-based Application Board

12.3.2 Test Environment
Figure 12-3 shows a test environment example (JTAG Boundary scan). Test vectors are sent

and interpreted by the tester. In this example, the “board in test” is designed using a number of
JTAG-compliant devices. These devices can be connected to form a single scan chain.

242 SAMAS Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

Figure 12-3. Application Test Environment Example

Test Adaptor
Tester
JTAG
Probe
JTAG .)
Connector || Chip ny == Chip 2
I
SAM4-based Application Board In Test
12.4 Debug and Test Pin Description
Table 12-1. Debug and Test Signal List
Signal Name Function Type Active Level
Reset/Test
NRST Microcontroller Reset Input/Output Low
TST Test Select Input
SWD/ITAG
TCK/SWCLK Test Clock/Serial Wire Clock Input
TDI Test Data In Input
TDO/TRACESWO Test Data Out/Trace Asynchronous Output
Data Out
TMS/SWDIO Test Mode Select/Serial Wire Input
Input/Output
JTAGSEL JTAG Selection Input High

AImEl@ 245

11100B-ATARM-31-Jul-12

ATMEL

12.5 Functional Description

1251

12.5.2

Test Pin

One dedicated pin, TST, is used to define the device operating mode. When this pin is at low
level during power-up, the device is in normal operating mode. When at high level, the device is
in test mode or FFPI mode. The TST pin integrates a permanent pull-down resistor of about 15
kQ, so that it can be left unconnected for normal operation. Note that when setting the TST pin to
low or high level at power up, it must remain in the same state during the duration of the whole
operation.

Debug Architecture

Figure 12-4 shows the Debug Architecture used in the SAM4. The Cortex-M4 embeds four func-
tional units for debug:

* SWJ-DP (Serial Wire/JTAG Debug Port)

* FPB (Flash Patch Breakpoint)

« DWT (Data Watchpoint and Trace)

* ITM (Instrumentation Trace Macrocell)

* TPIU (Trace Port Interface Unit)

The debug architecture information that follows is mainly dedicated to developers of SWJ-DP
Emulators/Probes and debugging tool vendors for Cortex-M4 based microcontrollers. For further
details on SWJ-DP see the Cortex-M4 technical reference manual.

Figure 12-4. Debug Architecture

DWT

4 watchpoints

PC sampler

data address sampler

data sampler

interrupt trace

CPU statistics

FPB
SWJ-DP
6 breakpoints
SWD/JTAG
IT™
software trace SWO trace
32 channels
TPIU
time stamping

1253

246

Serial Wire/JTAG Debug Port (SWJ-DP)

The Cortex-M4 embeds a SWJ-DP Debug port which is the standard CoreSight™ debug port. It
combines Serial Wire Debug Port (SW-DP), from 2 to 3 pins and JTAG debug Port (JTAG-DP),
5 pins.

By default, the JTAG Debug Port is active. If the host debugger wants to switch to the Serial
Wire Debug Port, it must provide a dedicated JTAG sequence on TMS/SWDIO and
TCK/SWCLK which disables JTAG-DP and enables SW-DP.

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

When the Serial Wire Debug Port is active, TDO/TRACESWO can be used for trace. The asyn-
chronous TRACE output (TRACESWO) is multiplexed with TDO. So the asynchronous trace
can only be used with SW-DP, not JTAG-DP.

Table 12-2. SWJ-DP Pin List

Pin Name JTAG Port Serial Wire Debug Port
TMS/SWDIO T™MS SWDIO
TCK/SWCLK TCK SWCLK

TDI TDI -
TDO/TRACESWO TDO TRACESWO (optional: trace)

SW-DP or JTAG-DP mode is selected when JTAGSEL is low. It is not possible to switch directly

between SWJ-DP and JTAG boundary scan operations. A chip reset must be performed after
JTAGSEL is changed.

12.5.3.1 SW-DP and JTAG-DP Selection Mechanism

Debug port selection mechanism is done by sending specific SWDIOTMS sequence. The JTAG-
DP is selected by default after reset.

« Switch from JTAG-DP to SW-DP. The sequence is:
— Send more than 50 SWCLKTCK cycles with SWDIOTMS =1
— Send the 16-bit sequence on SWDIOTMS =0111100111100111 (0x79E7 MSB first)
— Send more than 50 SWCLKTCK cycles with SWDIOTMS =1
» Switch from SWD to JTAG. The sequence is:
— Send more than 50 SWCLKTCK cycles with SWDIOTMS =1

— Send the 16-bit sequence on SWDIOTMS = 0011110011100111 (Ox3CE7 MSB
first)

— Send more than 50 SWCLKTCK cycles with SWDIOTMS =1

12.5.4 FPB (Flash Patch Breakpoint)
The FPB:
* Implements hardware breakpoints

« Patches code and data from code space to system space.
The FPB unit contains:
« Two literal comparators for matching against literal loads from Code space, and remapping to
a corresponding area in System space.

« Six instruction comparators for matching against instruction fetches from Code space and
remapping to a corresponding area in System space.

« Alternatively, comparators can also be configured to generate a Breakpoint instruction to the
processor core on a match.

1255 DWT (Data Watchpoint and Trace)
The DWT contains four comparators which can be configured to generate the following:

* PC sampling packets at set intervals
« PC or Data watchpoint packets

AImEl@ 247

11100B-ATARM-31-Jul-12

ATMEL

« Watchpoint event to halt core
The DWT contains counters for the items that follow:

* Clock cycle (CYCCNT)

* Folded instructions

 Load Store Unit (LSU) operations

« Sleep Cycles

« CPI (all instruction cycles except for the first cycle)
* Interrupt overhead

12.5.6 ITM (Instrumentation Trace Macrocell)

The ITM is an application driven trace source that supports printf style debugging to trace Oper-
ating System (OS) and application events, and emits diagnostic system information. The ITM
emits trace information as packets which can be generated by three different sources with sev-
eral priority levels:

» Software trace: Software can write directly to ITM stimulus registers. This can be done
thanks to the “printf” function. For more information, refer to Section 12.5.6.1 “How to
Configure the ITM”.

* Hardware trace: The ITM emits packets generated by the DWT.

« Time stamping: Timestamps are emitted relative to packets. The ITM contains a 21-bit
counter to generate the timestamp.

12.5.6.1 How to Configure the ITM
The following example describes how to output trace data in asynchronous trace mode.

« Configure the TPIU for asynchronous trace mode (refer to Section 12.5.6.3 “5.4.3. How to
Configure the TPIU")

« Enable the write accesses into the ITM registers by writing “OXC5ACCES5” into the
Lock Access Register (Address: 0XEOOOOFBO)

» Write 0x00010015 into the Trace Control Register:
— Enable ITM
— Enable Synchronization packets
— Enable SWO behavior
— Fixthe ATB ID to 1
« Write Ox1 into the Trace Enable Register:
— Enable the Stimulus port 0
* Write Ox1 into the Trace Privilege Register:

— Stimulus port 0 only accessed in privileged mode (Clearing a bit in this register will
result in the corresponding stimulus port being accessible in user mode.)

« Write into the Stimulus port O register: TPIU (Trace Port Interface Unit)
The TPIU acts as a bridge between the on-chip trace data and the Instruction Trace Macro-
cell (ITM).

The TPIU formats and transmits trace data off-chip at frequencies asynchronous to the core.

248 SAMAS Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

12.5.6.2

12.5.6.3

12.5.7

12571

11100B-ATARM-31-Jul-12

Asynchronous Mode
The TPIU is configured in asynchronous mode, trace data are output using the single TRAC-
ESWO pin. The TRACESWO signal is multiplexed with the TDO signal of the JTAG Debug Port.
As a consequence, asynchronous trace mode is only available when the Serial Wire Debug
mode is selected since TDO signal is used in JTAG debug mode.

Two encoding formats are available for the single pin output:

* Manchester encoded stream. This is the reset value.
* NRZ_based UART byte structure

5.4.3. How to Configure the TPIU
This example only concerns the asynchronous trace mode.

« Set the TRCENA bit to 1 into the Debug Exception and Monitor Register (OXEOOOEDFC) to
enable the use of trace and debug blocks.
» Write 0x2 into the Selected Pin Protocol Register
— Select the Serial Wire Output — NRZ
« Write 0x100 into the Formatter and Flush Control Register

« Set the suitable clock prescaler value into the Async Clock Prescaler Register to scale the
baud rate of the asynchronous output (this can be done automatically by the debugging tool).

IEEE® 1149.1 JTAG Boundary Scan

IEEE 1149.1 JTAG Boundary Scan allows pin-level access independent of the device packaging
technology.

IEEE 1149.1 JTAG Boundary Scan is enabled when TST is tied to low, while JTAGSEL is high
during power-up, and must be kept in this state during the whole boundary scan operation. The
SAMPLE, EXTEST and BYPASS functions are implemented. In SWD/JTAG debug mode, the
ARM processor responds with a non-JTAG chip ID that identifies the processor. This is not IEEE
1149.1 JTAG-compliant.

It is not possible to switch directly between JTAG Boundary Scan and SWJ Debug Port opera-
tions. A chip reset must be performed after JTAGSEL is changed.

A Boundary-scan Descriptor Language (BSDL) file is provided on Atmel’s web site to set up the
test.

JTAG Boundary-scan Register
The Boundary-scan Register (BSR) contains a number of bits which correspond to active pins
and associated control signals.

Each SAM4 input/output pin corresponds to a 3-bit register in the BSR. The OUTPUT bit con-
tains data that can be forced on the pad. The INPUT bit facilitates the observability of data
applied to the pad. The CONTROL bit selects the direction of the pad.

For more information, please refer to BDSL files available for the SAM4 Series.

AImEl@ 249

12.5.8 ID Code Register
Access: Read-only

31 30 29 28 27 26 25 24
| VERSION PART NUMBER |
23 22 21 20 19 18 17 16

| PART NUMBER |

15 14 13 12 11 10 9 8

| PART NUMBER MANUFACTURER IDENTITY |
7 6 5 4 3 2 1 0

| MANUFACTURER IDENTITY 1 |

» VERSION[31:28]: Product Version Number
Set to 0x0.

 PART NUMBER[27:12]: Product Part Number

Chip Name Chip ID
SAM4S 0x05B32

* MANUFACTURER IDENTITY[11:1]
Set to OxO1F.

» Bit[0] Required by IEEE Std. 1149.1.

Set to Ox1.
Chip Name JTAG ID Code
SAM4S 0x05B3203F

250 SAMAS Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

13. Reset Controller (RSTC)

13.1 Description

The Reset Controller (RSTC), based on power-on reset cells, handles all the resets of the sys-

tem without any external components. It reports which reset occurred last.

The Reset Controller also drives independently or simultaneously the external reset and the

peripheral and processor resets.

13.2 Embedded Characteristics
« Manages all Resets of the System, Including
— External Devices through the NRST Pin
— Processor Reset
— Peripheral Set Reset
» Based on Embedded Power-on Cell
* Reset Source Status
— Status of the Last Reset
— Either Software Reset, User Reset, Watchdog Reset
« External Reset Signal Shaping

13.3 Block Diagram

Figure 13-1. Reset Controller Block Diagram

Reset Controller

core_backup_reset

vddcore_nreset >
Reset
user_reset State
NRST Manager

NRST
D Manager
nrst_out
— exter_nreset

WDRPROC

wd_fault >

\

SLCK

ATMEL

11100B-ATARM-31-Jul-12

Y

rstc_irq

proc_nreset

periph_nreset

251

ATMEL

13.4 Functional Description

13.4.1

13.4.2

134.2.1

252

Reset Controller Overview

The Reset Controller is made up of an NRST Manager and a Reset State Manager. It runs at
Slow Clock and generates the following reset signals:

« proc_nreset: Processor reset line. It also resets the Watchdog Timer

« periph_nreset: Affects the whole set of embedded peripherals

« nrst_out: Drives the NRST pin

These reset signals are asserted by the Reset Controller, either on external events or on soft-
ware action. The Reset State Manager controls the generation of reset signals and provides a
signal to the NRST Manager when an assertion of the NRST pin is required.

The NRST Manager shapes the NRST assertion during a programmable time, thus controlling
external device resets.

The Reset Controller Mode Register (RSTC_MR), allowing the configuration of the Reset Con-
troller, is powered with VDDIO, so that its configuration is saved as long as VDDIO is on.

NRST Manager

After power-up, NRST is an output during the ERSTL time period defined in the RSTC_MR.
When ERSTL has elapsed, the pin behaves as an input and all the system is held in reset if
NRST is tied to GND by an external signal.

The NRST Manager samples the NRST input pin and drives this pin low when required by the
Reset State Manager. Figure 13-2 shows the block diagram of the NRST Manager.

Figure 13-2. NRST Manager

RSTC_MR
RSTC_SR URSTIEN
URSTS

—> rstc_irq

NRSTL | rsTC_MR other [2
URSTEN interrupt
sources

> user_reset
NRST RSTC_MR
Dﬁ ERSTL
| nrst_out

I External Reset Timer fje————— exter_nreset

NRST Signal or Interrupt

The NRST Manager samples the NRST pin at Slow Clock speed. When the line is detected low,
a User Reset is reported to the Reset State Manager.

However, the NRST Manager can be programmed to not trigger a reset when an assertion of
NRST occurs. Writing the bit URSTEN at 0 in RSTC_MR disables the User Reset trigger.

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

The level of the pin NRST can be read at any time in the bit NRSTL (NRST level) in RSTC_SR.
As soon as the pin NRST is asserted, the bit URSTS in RSTC_SR is set. This bit clears only
when RSTC_SR is read.

The Reset Controller can also be programmed to generate an interrupt instead of generating a
reset. To do so, the bit URSTIEN in RSTC_MR must be written at 1.

13.4.2.2 NRST External Reset Control

The Reset State Manager asserts the signal ext_nreset to assert the NRST pin. When this
occurs, the “nrst_out” signal is driven low by the NRST Manager for a time programmed by the
field ERSTL in RSTC_MR. This assertion duration, named EXTERNAL_RESET_LENGTH, lasts
2ERSTLHD glow Clock cycles. This gives the approximate duration of an assertion between 60 ps
and 2 seconds. Note that ERSTL at O defines a two-cycle duration for the NRST pulse.

This feature allows the Reset Controller to shape the NRST pin level, and thus to guarantee that
the NRST line is driven low for a time compliant with potential external devices connected on the
system reset.

As the ERSTL field is within RSTC_MR register, which is backed-up, it can be used to shape the
system power-up reset for devices requiring a longer startup time than the Slow Clock Oscillator.

13.4.3 Brownout Manager

13.4.4 Reset States

The Brownout manager is embedded within the Supply Controller, please refer to the product
Supply Controller section for a detailed description.

The Reset State Manager handles the different reset sources and generates the internal reset
signals. It reports the reset status in the field RSTTYP of the Status Register (RSTC_SR). The
update of the field RSTTYP is performed when the processor reset is released.

13.4.4.1 General Reset

11100B-ATARM-31-Jul-12

A general reset occurs when a Power-on-reset is detected, a Brownout or a Voltage regulation
loss is detected by the Supply controller. The vddcore_nreset signal is asserted by the Supply
Controller when a general reset occurs.

All the reset signals are released and the field RSTTYP in RSTC_SR reports a General Reset.
As the RSTC_MR is reset, the NRST line rises 2 cycles after the vddcore_nreset, as ERSTL
defaults at value 0x0.

Figure 13-3 shows how the General Reset affects the reset signals.

AImEl@ 253

ATMEL

Figure 13-3. General Reset State

SLCK I 1 I | | | | | |_|_|_U

MCK

backup_nreset

proc_nreset

RSTTYP

periph_nreset

NRST
(nrst_out)

13.4.4.2

13.4.4.3

XXX 0x0 = General Reset XXX

)
)
P S % %
(
)
)
)

<

EXTERNAL RESET LENGTH
=2 cycles

Y

Backup Reset

User Reset

A Backup reset occurs when the chip returns from Backup Mode. The core_backup_reset signal
is asserted by the Supply Controller when a Backup reset occurs.

The field RSTTYP in RSTC_SR is updated to report a Backup Reset.

The User Reset is entered when a low level is detected on the NRST pin and the bit URSTEN in
RSTC_MR is at 1. The NRST input signal is resynchronized with SLCK to insure proper behav-
ior of the system.

The User Reset is entered as soon as a low level is detected on NRST. The Processor Reset
and the Peripheral Reset are asserted.

The User Reset is left when NRST rises, after a two-cycle resynchronization time and a 3-cycle
processor startup. The processor clock is re-enabled as soon as NRST is confirmed high.

When the processor reset signal is released, the RSTTYP field of the Status Register
(RSTC_SR) is loaded with the value 0x4, indicating a User Reset.

The NRST Manager guarantees that the NRST line is asserted for
EXTERNAL_RESET_LENGTH Slow Clock cycles, as programmed in the field ERSTL. How-
ever, if NRST does not rise after EXTERNAL_RESET_LENGTH because it is driven low
externally, the internal reset lines remain asserted until NRST actually rises.

25 SAMAS Series [Preliminary] m——

11100B-ATARM-31-Jul-12

SAMA4S Series [Preliminary]

Figure 13-4. User Reset State

see L[Loy e
MeK o gEpEpERE
NRST /

Resynch. Resynch. Processor Startup
2 cycles 2 cycles =2 cycles
proc_nreset /
RSTTYP Any XXX 0x4 = User Reset
periph_nreset
NRST /
(nrst_out)

< >
<

>= EXTERNAL RESET LENGTH

13.4.4.4 Software Reset

The Reset Controller offers several commands used to assert the different reset signals. These

commands are performed by writing the Control Register (RSTC_CR) with the following bits
at 1:

* PROCRST: Writing PROCRST at 1 resets the processor and the watchdog timer

« PERRST: Writing PERRST at 1 resets all the embedded peripherals including the memory
system, and, in particular, the Remap Command. The Peripheral Reset is generally used for
debug purposes.

Except for debug purposes, PERRST must always be used in conjunction with PROCRST
(PERRST and PROCRST set both at 1 simultaneously).

*« EXTRST: Writing EXTRST at 1 asserts low the NRST pin during a time defined by the field
ERSTL in the Mode Register (RSTC_MR).

The software reset is entered if at least one of these bits is set by the software. All these com-

mands can be performed independently or simultaneously. The software reset lasts 3 Slow
Clock cycles.

The internal reset signals are asserted as soon as the register write is performed. This is

detected on the Master Clock (MCK). They are released when the software reset is left, i.e.; syn-
chronously to SLCK.

If EXTRST is set, the nrst_out signal is asserted depending on the programming of the field
ERSTL. However, the resulting falling edge on NRST does not lead to a User Reset.

AImEl@ 255

11100B-ATARM-31-Jul-12

ATMEL

If and only if the PROCRST bit is set, the Reset Controller reports the software status in the field
RSTTYP of the Status Register (RSTC_SR). Other Software Resets are not reported in
RSTTYP.

As soon as a software operation is detected, the bit SRCMP (Software Reset Command in Prog-
ress) is set in the Status Register (RSTC_SR). It is cleared as soon as the software reset is left.
No other software reset can be performed while the SRCMP bit is set, and writing any value in
RSTC_CR has no effect.

Figure 13-5. Software Reset

SLCK

MCK

Write RSTC_CR

proc_nreset
if PROCRST=1

RSTTYP

periph_nreset
if PERRST=1

NRST
(nrst_out)
if EXTRST=1

SRCMP in RSTC_SR

L L

Any
Freq.

EpEpEpERERER RN
eSS

Resynch/Processor Startup
1 cycle =2 cycles

A
Y

Any XXX 0x3 = Software Reset

S XK A D

A
Y

EXTERNAL RESET LENGTH
8 cycles (ERSTL=2)

Y

S

13.4.4.5 Watchdog Reset

The Watchdog Reset is entered when a watchdog fault occurs. This state lasts 3 Slow Clock
cycles.

When in Watchdog Reset, assertion of the reset signals depends on the WDRPROC bit in
WDT_MR:

« If WDRPROC is 0, the Processor Reset and the Peripheral Reset are asserted. The NRST
line is also asserted, depending on the programming of the field ERSTL. However, the
resulting low level on NRST does not result in a User Reset state.

« If WDRPROC = 1, only the processor reset is asserted.

The Watchdog Timer is reset by the proc_nreset signal. As the watchdog fault always causes a
processor reset if WDRSTEN is set, the Watchdog Timer is always reset after a Watchdog
Reset, and the Watchdog is enabled by default and with a period set to a maximum.

When the WDRSTEN in WDT_MR bit is reset, the watchdog fault has no impact on the reset
controller.

256 SAMAS Series [Preliminary] m——

11100B-ATARM-31-Jul-12

SAMA4S Series [Preliminary]

Figure 13-6. Watchdog Reset

see LTI L L LWL L L
[L [
N

Any
MCK Freq.

wd_fault /—

Processor Startup|
2cycles

proc_nreset /

RSTTYP Any XXX 0x2 = Watchdog Reset

periph_nreset

Only if
WDRPROC =0

NRST
(nrst_out)

I EXTERNAL RESET LENGTH
8 cycles (ERSTL=2)

13.45 Reset State Priorities
The Reset State Manager manages the following priorities between the different reset sources,
given in descending order:
* General Reset
» Backup Reset
« Watchdog Reset
» Software Reset
* User Reset
Particular cases are listed below:

* When in User Reset:

— A watchdog event is impossible because the Watchdog Timer is being reset by the
proc_nreset signal.

— A software reset is impossible, since the processor reset is being activated.
* When in Software Reset:
— A watchdog event has priority over the current state.
— The NRST has no effect.
* When in Watchdog Reset:
— The processor reset is active and so a Software Reset cannot be programmed.
— A User Reset cannot be entered.

AImEl@ 257

11100B-ATARM-31-Jul-12

ATMEL

13.4.6 Reset Controller Status Register
The Reset Controller status register (RSTC_SR) provides several status fields:

* RSTTYP field: This field gives the type of the last reset, as explained in previous sections.

* SRCMP bit: This field indicates that a Software Reset Command is in progress and that no
further software reset should be performed until the end of the current one. This bit is
automatically cleared at the end of the current software reset.

* NRSTL bit: The NRSTL bit of the Status Register gives the level of the NRST pin sampled on
each MCK rising edge.

* URSTS bhit: A high-to-low transition of the NRST pin sets the URSTS bit of the RSTC_SR
register. This transition is also detected on the Master Clock (MCK) rising edge (see Figure
13-7). If the User Reset is disabled (URSTEN = 0) and if the interruption is enabled by the
URSTIEN bit in the RSTC_MR register, the URSTS bit triggers an interrupt. Reading the
RSTC_SR status register resets the URSTS bit and clears the interrupt.

Figure 13-7. Reset Controller Status and Interrupt

_ read
Peripheral Access RSTC SR
2 cycle 2 cycle
resync¢hronizatipn resynchionizatiory

/—’_\
NRST _\ /“—_\
NRSTL
URSTS /
rstc_irq
if (URSTEN = 0) and _
(URSTIEN = 1)

258 SAMAS Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

13.5 Reset Controller (RSTC) User Interface

Table 13-1. Register Mapping
Offset Register Name Access Reset
0x00 Control Register RSTC_CR Write-only -
0x04 Status Register RSTC_SR Read-only 0x0000_0000
0x08 Mode Register RSTC_MR Read-write 0x0000 0001

11100B-ATARM-31-Jul-12

ATMEL

259

ATMEL

13.5.1 Reset Controller Control Register

Name: RSTC_CR

Address: 0x400E1400

Access: Write-only
31 30 29 28 27 26 25 24

| KEY |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - - I - |
7 6 5 4 3 2 1 0

| - | - | - | - | EXTRST | PERRST - | PROCRST |

e PROCRST: Processor Reset
0 = No effect.

1 =If KEY is correct, resets the processor.

* PERRST: Peripheral Reset
0 = No effect.

1 = If KEY is correct, resets the peripherals.

» EXTRST: External Reset
0 = No effect.

1 =If KEY is correct, asserts the NRST pin and resets the processor and the peripherals.

 KEY: System Reset Key

Should be written at value 0xA5. Writing any other value in this field aborts the write operation.

260

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

13.5.2 Reset Controller Status Register

Name: RSTC_SR

Address: 0x400E1404

Access: Read-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

| - | - | - | - | - | - | SRCMP | NRSTL |
15 14 13 12 11 10 9 8

I - I - I - I - I - I RSTTYP |
7 6 5 4 3 2 1 0

I - I - I - I - I - I - - URSTS |

* URSTS: User Reset Status
0 = No high-to-low edge on NRST happened since the last read of RSTC_SR.

1 = At least one high-to-low transition of NRST has been detected since the last read of RSTC_SR.

* RSTTYP: Reset Type
Reports the cause of the last processor reset. Reading this RSTC_SR does not reset this field.

RSTTYP Reset Type Comments
0 0 0 General Reset First power-up Reset
0 0 1 Backup Reset Return from Backup Mode
0 1 0 Watchdog Reset Watchdog fault occurred
0 1 1 Software Reset Processor reset required by the software
1 0 0 User Reset NRST pin detected low

* NRSTL: NRST Pin Level
Registers the NRST Pin Level at Master Clock (MCK).

» SRCMP: Software Reset Command in Progress
0 = No software command is being performed by the reset controller. The reset controller is ready for a software command.

1 = A software reset command is being performed by the reset controller. The reset controller is busy.

AImEl@ 261

11100B-ATARM-31-Jul-12

ATMEL

13.5.3 Reset Controller Mode Register

Name: RSTC_MR

Address: 0x400E1408

Access: Read-write
31 30 29 28 27 26 25 24

| KEY |
23 22 21 20 19 18 17 16

- T - T - T - T - - - —
15 14 13 12 11 10 9 8

I - I - I - I - I ERSTL |
7 6 5 4 3 2 1 0

| - | - | | URSTIEN | - - - URSTEN |

« URSTEN: User Reset Enable

0 = The detection of a low level on the pin NRST does not generate a User Reset.

1 = The detection of a low level on the pin NRST triggers a User Reset.

* URSTIEN: User Reset Interrupt Enable

0 = USRTS hit in RSTC_SR at 1 has no effect on rstc_irqg.

1 = USRTS bitin RSTC_SR at 1 asserts rstc_irq if URSTEN = 0.

» ERSTL: External Reset Length
This field defines the external reset length. The external reset is asserted during a time of 2ERSTH*D Slow Clock cycles. This

allows assertion duration to be programmed between 60 ps and 2 seconds.

» KEY: Password

Should be written at value 0xA5. Writing any other value in this field aborts the write operation.

262

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

14. Real-time Timer (RTT)

14.1 Description

The Real-time Timer (RTT) is built around a 32-bit counter used to count roll-over events of the
programmable 16-bit prescaler which enables counting elapsed seconds from a 32 kHz slow
clock source. It generates a periodic interrupt and/or triggers an alarm on a programmed value.

14.2 Embedded Characteristics
* 32-bit Free-running back-up counter
* Integrates a 16-bit programmable prescaler running on slow clock

« Alarm Register capable to generate a wake-up of the system through the Shut Down
Controller

14.3 Block Diagram

Figure 14-1. Real-time Timer

RTT_MR RTT_MR
RTTRST | | RTPRES

RTT_MR
reload RTTINCIEN
SLCK S 16t

Divider

0 set

RTT_MR l RTT_SR | RTTINC ||
RTTRST |—A\1 0 / reset
|
rtt_int

32-bit D—>
> Counter read ¢
RTT SR RTT_MR

| ALMIEN |

RTT VR | CRTV | reset
RTT_SR ALMS |

set

rtt_alarm

o

RTT_AR ALMV

AImEl@ 263

11100B-ATARM-31-Jul-12

ATMEL

14.4 Functional Description

264

The Real-time Timer can be used to count elapsed seconds. It is built around a 32-bit counter
fed by Slow Clock divided by a programmable 16-bit value. The value can be programmed in the
field RTPRES of the Real-time Mode Register (RTT_MR).

Programming RTPRES at 0x00008000 corresponds to feeding the real-time counter with a 1 Hz
signal (if the Slow Clock is 32.768 kHz). The 32-bit counter can count up to 232 seconds, corre-
sponding to more than 136 years, then roll over to 0.

The Real-time Timer can also be used as a free-running timer with a lower time-base. The best
accuracy is achieved by writing RTPRES to 3. Programming RTPRES to 1 or 2 is possible, but
may result in losing status events because the status register is cleared two Slow Clock cycles
after read. Thus if the RTT is configured to trigger an interrupt, the interrupt occurs during 2 Slow
Clock cycles after reading RTT_SR. To prevent several executions of the interrupt handler, the
interrupt must be disabled in the interrupt handler and re-enabled when the status register is
clear.

The Real-time Timer value (CRTV) can be read at any time in the register RTT_VR (Real-time
Value Register). As this value can be updated asynchronously from the Master Clock, it is advis-
able to read this register twice at the same value to improve accuracy of the returned value.

The current value of the counter is compared with the value written in the alarm register
RTT_AR (Real-time Alarm Register). If the counter value matches the alarm, the bit ALMS in
RTT_SR is set. The alarm register is set to its maximum value, corresponding to OXFFFF_FFFF,
after a reset.

The bit RTTINC in RTT_SR is set each time the Real-time Timer counter is incremented. This bit
can be used to start a periodic interrupt, the period being one second when the RTPRES is pro-
grammed with 0x8000 and Slow Clock equal to 32.768 Hz.

Reading the RTT_SR status register resets the RTTINC and ALMS fields.

Writing the bit RTTRST in RTT_MR immediately reloads and restarts the clock divider with the
new programmed value. This also resets the 32-bit counter.

Note: Because of the asynchronism between the Slow Clock (SCLK) and the System Clock (MCK):
1) The restart of the counter and the reset of the RTT_VR current value register is effective only 2
slow clock cycles after the write of the RTTRST bit in the RTT_MR register.
2) The status register flags reset is taken into account only 2 slow clock cycles after the read of the
RTT_SR (Status Register).

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

Figure 14-2. RTT Counting

APB cycle
<>

RTPRES - 1

1L

JUTUUUUUUUL

Prescaler

0 L

d

e

RTT 0

ALMV-

1

ALMV

ALMV+1

ALMV+2

K ALM

RTTINC (RTT_SR) /

ALMS (RTT_SR)

/

APB Interface

11100B-ATARM-31-Jul-12

ATMEL

read RTT_SR

SAMA4S Series [Preliminary]

265

14.5 Real-Time Timer (RTT) User Interface

Table 14-1. Register Mapping

Offset Register Name Access Reset

0x00 Mode Register RTT_MR Read-write 0x0000_8000
0x04 Alarm Register RTT_AR Read-write OxFFFF_FFFF
0x08 Value Register RTT_VR Read-only 0x0000_0000
0x0C Status Register RTT_SR Read-only 0x0000_0000

266 SAMAS Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

145.1 Real-time Timer Mode Register
Name: RTT_MR

Address: 0x400E1430

Access: Read-write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

| - | - | - | - | - | RTTRST | RTTINCIEN | ALMIEN |
15 14 13 12 11 10 9 8

| RTPRES |
7 6 5 4 3 2 1 0

| RTPRES |

* RTPRES: Real-time Timer Prescaler Value
Defines the number of SLCK periods required to increment the Real-time timer. RTPRES is defined as follows:

RTPRES = 0: The prescaler period is equal to 2! * SCLK period.
RTPRES # 0: The prescaler period is equal to RTPRES * SCLK period.
» ALMIEN: Alarm Interrupt Enable

0 = The bit ALMS in RTT_SR has no effect on interrupt.

1 =The bit ALMS in RTT_SR asserts interrupt.

» RTTINCIEN: Real-time Timer Increment Interrupt Enable

0 = The bit RTTINC in RTT_SR has no effect on interrupt.

1 =The bit RTTINC in RTT_SR asserts interrupt.

* RTTRST: Real-time Timer Restart

0 = No effect.

1 = Reloads and restarts the clock divider with the new programmed value. This also resets the 32-bit counter.

AImEl@ 267

11100B-ATARM-31-Jul-12

14.5.2 Real-time Timer Alarm Register
Name: RTT_AR

Address: 0x400E1434

Access: Read-write
31 30 29 28 27 26 25 24

| ALMV |
23 22 21 20 19 18 17 16

| ALMV |
15 14 13 12 11 10 9 8

| ALMV |
7 6 5 4 3 2 1 0

| ALMV |

e ALMV: Alarm Value
Defines the alarm value (ALMV+1) compared with the Real-time Timer.

28 SAMAS Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

14.5.3 Real-time Timer Value Register

Name: RTT_VR
Address: 0x400E1438
Access: Read-only
31 30 29 28 27 26 25 24
| CRTV |
23 22 21 20 19 18 17 16
| CRTV |
15 14 13 12 11 10 9 8
| CRTV |
7 6 5 4 3 2 1 0
| CRTV |
e CRTV: Current Real-time Value
Returns the current value of the Real-time Timer.
AIMEL 269
Y)

11100B-ATARM-31-Jul-12

ATMEL

14.5.4 Real-time Timer Status Register
Name: RTT_SR

Address: 0x400E143C

Access: Read-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | RTTINC | ALMS |

* ALMS: Real-time Alarm Status
0 = The Real-time Alarm has not occurred since the last read of RTT_SR.

1 = The Real-time Alarm occurred since the last read of RTT_SR.
 RTTINC: Real-time Timer Increment
0 = The Real-time Timer has not been incremented since the last read of the RTT_SR.

1 = The Real-time Timer has been incremented since the last read of the RTT_SR.

270 SAMAS Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

15. Real Time Clock (RTC)

15.1 Description

The Real-Time Clock (RTC) peripheral is designed for very low power consumption.

It combines a complete time-of-day clock with alarm and a two-hundred-year Gregorian or Per-
sian calendar, complemented by a programmable periodic interrupt. The alarm and calendar
registers are accessed by a 32-bit data bus.

The time and calendar values are coded in binary-coded decimal (BCD) format. The time format
can be 24-hour mode or 12-hour mode with an AM/PM indicator.

Updating time and calendar fields and configuring the alarm fields are performed by a parallel
capture on the 32-bit data bus. An entry control is performed to avoid loading registers with
incompatible BCD format data or with an incompatible date according to the current
month/year/century.

A clock divider calibration circuitry enables to compensate crystal oscillator frequency
inaccuracy.

An RTC output can be programmed to generate several waveforms, including a prescaled clock
derived from 32.768 KHz

15.2 Embedded Characteristics

11100B-ATARM-31-Jul-12

* Ultra Low Power Consumption

 Full Asynchronous Design

« Gregorian Calendar up to 2099 or Persian Calendar
» Programmable Periodic Interrupt

« Valid Time and Date Programmation Check

* On-The-Fly Time and Date Validity Check

* Crystal Oscillator Clock Calibration

» Waveform Generation

AImEl@ 271

ATMEL

15.3 Block Diagram

Figure 15-1. RTC Block Diagram

! }
Slow Clock: SLCF 32768 Divider) Wave B> RTCOUTO
Time Date

Generator —» RTCOUT1

o] T TH %
3 P i

Entry Interrupt
APB<E===pp-| User Interface Control Alarm Control RTC Interrug

22 SAMAS Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

15.4 Product Dependencies

154.1 Power Management
The Real-time Clock is continuously clocked at 32768 Hz. The Power Management Controller
has no effect on RTC behavior.

15.4.2 Interrupt
RTC interrupt line is connected on one of the internal sources of the interrupt controller. RTC
interrupt requires the interrupt controller to be programmed first.

15.5 Functional Description

The RTC provides a full binary-coded decimal (BCD) clock that includes century (19/20), year
(with leap years), month, date, day, hours, minutes and seconds.

The valid year range is 1900 to 2099 in Gregorian mode, a two-hundred-year calendar. (Or 1300
to 1499 in Persian mode.)

The RTC can operate in 24-hour mode or in 12-hour mode with an AM/PM indicator.

Corrections for leap years are included (all years divisible by 4 being leap years). This is correct
up to the year 2099.

15.5.1 Reference Clock
The reference clock is Slow Clock (SLCK). It can be driven internally or by an external 32.768
kHz crystal.

During low power modes of the processor, the oscillator runs and power consumption is critical.
The crystal selection has to take into account the current consumption for power saving and the
frequency drift due to temperature effect on the circuit for time accuracy.

15.5.2 Timing
The RTC is updated in real time at one-second intervals in normal mode for the counters of sec-
onds, at one-minute intervals for the counter of minutes and so on.

Due to the asynchronous operation of the RTC with respect to the rest of the chip, to be certain
that the value read in the RTC registers (century, year, month, date, day, hours, minutes, sec-
onds) are valid and stable, it is necessary to read these registers twice. If the data is the same
both times, then it is valid. Therefore, a minimum of two and a maximum of three accesses are
required.

15.5.3 Alarm
The RTC has five programmable fields: month, date, hours, minutes and seconds.

Each of these fields can be enabled or disabled to match the alarm condition:
« If all the fields are enabled, an alarm flag is generated (the corresponding flag is asserted
and an interrupt generated if enabled) at a given month, date, hour/minute/second.
« If only the “seconds” field is enabled, then an alarm is generated every minute.

Depending on the combination of fields enabled, a large number of possibilities are available to
the user ranging from minutes to 365/366 days.

AImEl@ 273

11100B-ATARM-31-Jul-12

1554

1555

15.5.6

274

ATMEL

Error Checking when Programming

Verification on user interface data is performed when accessing the century, year, month, date,
day, hours, minutes, seconds and alarms. A check is performed on illegal BCD entries such as
illegal date of the month with regard to the year and century configured.

If one of the time fields is not correct, the data is not loaded into the register/counter and a flag is
set in the validity register. The user can not reset this flag. It is reset as soon as an acceptable
value is programmed. This avoids any further side effects in the hardware. The same procedure
is done for the alarm.

The following checks are performed:

1. Century (check ifitis in range 19 - 20 or 13-14 in Persian mode)

Year (BCD entry check)

Date (check range 01 - 31)

Month (check if it is in BCD range 01 - 12, check validity regarding “date”)

Day (check range 1 - 7)

Hour (BCD checks: in 24-hour mode, check range 00 - 23 and check that AM/PM flag is
not set if RTC is set in 24-hour mode; in 12-hour mode check range 01 - 12)

7. Minute (check BCD and range 00 - 59)

8. Second (check BCD and range 00 - 59)

Note: If the 12-hour mode is selected by means of the RTC_MR register, a 12-hour value can be pro-
grammed and the returned value on RTC_TIMR will be the corresponding 24-hour value. The
entry control checks the value of the AM/PM indicator (bit 22 of RTC_TIMR register) to determine
the range to be checked.

o0 swN

RTC Internal Free Running Counter Error Checking

To improve the reliability and security of the RTC, a permanent check is performed on the inter-
nal free running counters to report non-BCD or invalid date/time values.

An error is reported by TDERR bit in the status register (RTC_SR) if an incorrect value has been
detected. The flag can be cleared by programming the TDERRCLR in the RTC status clear con-
trol register (RTC_SCCR).

Anyway the TDERR error flag will be set again if the source of the error has not been cleared
before clearing the TDERR flag. The clearing of the source of such error can be done either by
reprogramming a correct value on RTC_CALR and/or RTC_TIMR registers.

The RTC internal free running counters may automatically clear the source of TDERR due to
their roll-over (i.e. every 10 seconds for SECONDS|3:0] bitfield in RTC_TIMR register). In this
case the TDERR is held high until a clear command is asserted by TDERRCLR bit in
RTC_SCCR register.

Updating Time/Calendar

To update any of the time/calendar fields, the user must first stop the RTC by setting the corre-
sponding field in the Control Register. Bit UPDTIM must be set to update time fields (hour,
minute, second) and bit UPDCAL must be set to update calendar fields (century, year, month,
date, day).

Then the user must poll or wait for the interrupt (if enabled) of bit ACKUPD in the Status Regis-
ter. Once the bit reads 1, it is mandatory to clear this flag by writing the corresponding bit in
RTC_SCCR. The user can now write to the appropriate Time and Calendar register.

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

11100B-ATARM-31-Jul-12

Once the update is finished, the user must reset (0) UPDTIM and/or UPDCAL in the Control

When entering programming mode of the calendar fields, the time fields remain enabled. When
entering the programming mode of the time fields, both time and calendar fields are stopped.
This is due to the location of the calendar logic circuity (downstream for low-power consider-
ations). It is highly recommended to prepare all the fields to be updated before entering
programming mode. In successive update operations, the user must wait at least one second
after resetting the UPDTIM/UPDCAL bit in the RTC_CR (Control Register) before setting these
bits again. This is done by waiting for the SEC flag in the Status Register before setting
UPDTIM/UPDCAL bit. After resetting UPDTIM/UPDCAL, the SEC flag must also be cleared.

AImEl@ 275

Figure 15-2. Update Sequence
Begin

Prepare TIme or Calendar Fields

Set UPDTIM and/or UPDCAL
bit(s) in RTC_CR

<€
Read RTC_SR
Polling or
IRQ (if enabled)
ACKUPD No
=17?
Yes

Clear ACKUPD bit in RTC_SCCR

Update Time and/or Calendar values in
RTC_TIMR/RTC_CALR

Clear UPDTIM and/or UPDCAL bit in
RTC _CR

End

276 SAMAS Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

15.5.7

11100B-ATARM-31-Jul-12

RTC Accurate Clock Calibration

The crystal oscillator that drives the RTC may not be as accurate as expected mainly due to
temperature variation. The RTC is equipped with circuitry able to correct slow clock crystal drift.

To compensate for possible temperature variations over time, this accurate clock calibration cir-
cuitry can be programmed on-the-fly and also programmed during application manufacturing, in
order to correct the crystal frequency accuracy at room temperature (20-25°C). The typical clock
drift range at room temperature is £20 ppm.

In a temperature range of -40°C to +85°C, the 32.768 KHz crystal oscillator clock inaccuracy can
be up to -200 ppm.

The RTC clock calibration circuitry allows positive or negative correction in a range of 1.5 ppm to
1950 ppm. After correction, the remaining crystal drift is as follows:

« Below 1 ppm, for an initial crystal drift between 1.5 ppm up to 90 ppm
« Below 2 ppm, for an initial crystal drift between 90 ppm up to 130 ppm
» Below 5 ppm, for an initial crystal drift between 130 ppm up to 200 ppm

The calibration circuitry acts by slightly modifying the 1 Hz clock period from time to time. When
the period is modified, depending on the sign of the correction, the 1 Hz clock period increases
or reduces by around 4 ms. The period interval between 2 correction events is programmable in
order to cover the possible crystal oscillator clock variations.

The inaccuracy of a crystal oscillator at typical room temperature (20 ppm at 20-25 degrees
Celsius) can be compensated if a reference clock/signal is used to measure such inaccuracy.
This kind of calibration operation can be set up during the final product manufacturing by means
of measurement equipment embedding such a reference clock. The correction of value must be
programmed into the RTC Mode Register (RTC_MR), and this value is kept as long as the cir-
cuitry is powered (backup area). Removing the backup power supply cancels this calibration.
This room temperature calibration can be further processed by means of the networking capabil-
ity of the target application.

To ease the comparison of the inherent crystal accuracy with the reference clock/signal during
manufacturing, an internal prescaled 32.768KHz clock derivative signal can be assigned to drive
RTC output. To accommodate the measure, several clock frequencies can be selected among 1
Hz, 32 Hz, 64 Hz, 512 Hz.

In any event, this adjustment does not take into account the temperature variation.

The frequency drift (up to -200 ppm) due to temperature variation can be compensated using a
reference time if the application can access such a reference. If a reference time cannot be
used, a temperature sensor can be placed close to the crystal oscillator in order to get the oper-
ating temperature of the crystal oscillator. Once obtained, the temperature may be converted
using a lookup table (describing the accuracy/temperature curve of the crystal oscillator used)
and RTC_MR configured accordingly. The calibration can be performed on-the-fly. This adjust-
ment method is not based on a measurement of the crystal frequency/drift and therefore can be
improved by means of the networking capability of the target application.

If no crystal frequency adjustment has been done during manufacturing, it is still possible to do
it. In the case where a reference time of the day can be obtained through LAN/WAN network, it
is possible to calculate the drift of the application crystal oscillator by comparing the values read
on RTC Time Register (RTC_TIMR) and programming the HIGHPPM and CORRECTION bit-
fields on RTC_MR according to the difference measured between the reference time and those

of RTC_TIMR.
EE— ©

155.8

278

ATMEL

Waveform Generation

Waveforms can be generated by the RTC in order to take advantage of the RTC inherent pres-
calers while the RTC is the only powered circuitry (low power mode of operation, backup mode)
or in any active modes. Going into backup or low power operating modes does not affect the
waveform generation outputs.

The RTC outputs (RTCOUTO and RTCOUT1) can have a source driver selected among 7
possibilities.

The first selection choice sticks the associated output at 0. (This is the reset value and it can be
used at any time to disable the waveform generation.)

Selection choices 1 to 4 respectively select 1Hz, 32Hz, 64Hz and 512Hz.

32Hz or 64Hz can drive, for example, a TN LCD backplane signal while 1Hz can be used to
drive a blinking character like “:” for basic time display (hour, minute) on TN LCDs.

Selection choice 5 provides a toggling signal when the RTC alarm is reached.

Selection choice 6 provides a copy of the alarm flag, so the associated output is set high (logical
1) when an alarm occurs and immediately cleared when software clears the alarm interrupt
source.

Selection choice 7 provides a 1Hz periodic high pulse of 15 us duration that can be used to drive
external devices for power consumption reduction or any other purpose.

PIO lines associated to RTC outputs are automatically selecting these waveforms as soon as
RTC_MR register corresponding fields OUTO and OUT1 differ from 0.

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

Figure 15-3. Waveform Generation

N\

SAMA4S Series [Preliminary]

—» RTCOUT1

4L

RTC_MR(OUT1)

101 _’ N 101
1THz —>»|1 1 Hz
32Hz —>»|2 32 Hz
64Hz —>»|3 64 Hz
—» RTCOUTO
512Hz —>» |4 512 Hz
toggle_alarm —>» |5 toggle_alarm
flag_alarm —>» |6 flag_alarm
pulse —>» |7 pulse
RTC_MR(OUTO)
alarm match alarm match
event 1 event 2
flag_alarm

| RTC_SCCR(ALRCLR) |

toggle_alarm

RTC_SCCR(ALRCLR)

pulse /

H Thigh / |

| Tperiod I

Tperiod

» <

ATMEL

11100B-ATARM-31-Jul-12

279

ATMEL

15.6 Real-Time Clock (RTC) User Interface

Table 15-1. Register Mapping
Offset Register Name Access Reset
0x00 Control Register RTC_CR Read-write 0x0
0x04 Mode Register RTC_MR Read-write 0x0
0x08 Time Register RTC_TIMR Read-write 0x0
0x0C Calendar Register RTC_CALR Read-write 0x01A11020
0x10 Time Alarm Register RTC_TIMALR Read-write 0x0
0x14 Calendar Alarm Register RTC_CALALR Read-write 0x01010000
0x18 Status Register RTC_SR Read-only 0x0
0x1C Status Clear Command Register RTC_SCCR Write-only -
0x20 Interrupt Enable Register RTC_IER Write-only -
0x24 Interrupt Disable Register RTC_IDR Write-only -
0x28 Interrupt Mask Register RTC_IMR Read-only 0x0
0x2C Valid Entry Register RTC_VER Read-only 0x0

0x30-0xC4 Reserved Register - - -
0xC8-0xF8 Reserved Register - - -

OxFC Reserved Register - - -

Note: If an offset is not listed in the table it must be considered as reserved.

20 SAMAS Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

15.6.1 RTC Control Register

Name: RTC_CR

Address: 0x400E1460

Access: Read-write
31 30 29 28 27 26 25 24

I I I I R S —]
23 22 21 20 19 18 17 16

| - | - | - | - | - | - | CALEVSEL |
15 14 13 12 11 10 9 8

| - | - | - | - | - | - | TIMEVSEL |
7 6 5 4 3 2 1 0

| — | — | — | — | — | — | uPDCAL UPDTIM |

» UPDTIM: Update Request Time Register
0 = No effect.

1 = Stops the RTC time counting.

Time counting consists of second, minute and hour counters. Time counters can be programmed once this bit is set and
acknowledged by the bit ACKUPD of the Status Register.

 UPDCAL: Update Request Calendar Register

0 = No effect.

1 = Stops the RTC calendar counting.

Calendar counting consists of day, date, month, year and century counters. Calendar counters can be programmed once

this bit is set.

 TIMEVSEL: Time Event Selection
The event that generates the flag TIMEV in RTC_SR (Status Register) depends on the value of TIMEVSEL.

Value Name Description
0 MINUTE Minute change
1 HOUR Hour change
2 MIDNIGHT Every day at midnight
3 NOON Every day at noon
» CALEVSEL: Calendar Event Selection

The event that generates the flag CALEV in RTC_SR depends on the value of CALEVSEL

Value Name Description
0 WEEK Week change (every Monday at time 00:00:00)
1 MONTH Month change (every 01 of each month at time 00:00:00)
2 YEAR Year change (every January 1 at time 00:00:00)
3 —

11100B-ATARM-31-Jul-12

ATMEL

281

15.6.2 RTC Mode Register

Name: RTC_MR

Address: 0x400E1464

Access: Read-write
31 30 29 28 27 26 25 24

| - | - [TPERIOD | _ | THIGH |
23 22 21 20 19 18 17 16

| - | ouUT1 | — | ouUTO |
15 14 13 12 11 10 9 8

[HIGHPPM | CORRECTION |
7 6 5 4 3 2 1 0

| — | — | — NEGPPM — — PERSIAN HRMOD |

« HRMOD: 12-/24-hour Mode
0 = 24-hour mode is selected.

1 =12-hour mode is selected.

* PERSIAN: PERSIAN Calendar

0 = Gregorian Calendar.

1 = Persian Calendar.

» NEGPPM: NEGative PPM Correction

0 = positive correction (the divider will be slightly lower than 32768).
1 = negative correction (the divider will be slightly higher than 32768).
Refer to CORRECTION and HIGHPPM field descriptions.

*+ CORRECTION:

0 = No correction

1..127 = The slow clock will be corrected according to the formula given below in HIGHPPM description.
» HIGHPPM: HIGH PPM Correction

0 = lower range ppm correction with accurate correction.

1 = higher range ppm correction with accurate correction.

If the absolute value of the correction to be applied is lower than 30ppm, it is recommended to clear HIGHPPM. HIGHPPM
set to 1 is recommended for 30 ppm correction and above.

Formula:

If HIGHPPM = 0, then the clock frequency correction range is from 1.5 ppm up to 98 ppm. The RTC accuracy is less
than 1 ppm for a range correction from 1.5 ppm up to 30 ppm..

The correction field must be programmed according to the required correction in ppm, the formula is as follows:

3906

CORRECTION = —/——— -
20 x ppm

222 SAMAS Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

The value obtained must be rounded to the nearest integer prior to being programmed into CORRECTION field.

If HIGHPPM = 1, then the clock frequency correction range is from 30.5 ppm up to 1950 ppm. The RTC accuracy is
less than 1 ppm for a range correction from 30.5 ppm up to 90 ppm.

The correction field must be programmed according to the required correction in ppm, the formula is as follows:

CORRECTION = 3906 _

ppm

The value obtained must be rounded to the nearest integer prior to be programmed into CORRECTION field.

If NEGPPM is set to 1, the ppm correction is negative.

e OUTO: RTCOUTO Output Source Selection

Value Name Description
0 NO_WAVE no waveform, stuck at ‘0’
1 FREQ1HZ 1 Hz square wave
2 FREQ32HZ 32 Hz square wave
3 FREQ64HZ 64 Hz square wave
4 FREQ512HZ 512 Hz square wave
5 ALARM_TOGGLE output toggles when alarm flag rises
6 ALARM_FLAG output is a copy of the alarm flag
7 PROG_PULSE duty cycle programmable pulse

» OUT1: RTCOUT1 Output Source Selection

Value Name Description
0 NO_WAVE no waveform, stuck at ‘0’
1 FREQ1HZ 1 Hz square wave
2 FREQ32HZ 32 Hz square wave
3 FREQ64HZ 64 Hz square wave
4 FREQ512HZ 512 Hz square wave
5 ALARM_TOGGLE output toggles when alarm flag rises
6 ALARM_FLAG output is a copy of the alarm flag
7 PROG_PULSE duty cycle programmable pulse

11100B-ATARM-31-Jul-12

ATMEL

283

ATMEL

e THIGH: High Duration of the Output Pulse

Value Name Description
0 H_31MS 31.2ms
1 H_16MS 15.6 ms
2 H_4MS 3.91 ms
3 H_976US 976 s
4 H_488US 488 pus
5 H_122US 122 ps
6 H_30US 30.5 ps
7 H_15US 15.2 us

» TPERIOD: Period of the Output Pulse

Value Name Description
0 P_1S 1 second
1 P_500MS 500 ms
2 P_250MS 250 ms
3 P_125MS 125 ms

284

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

15.6.3 RTC Time Register
Name: RTC_TIMR
Address: 0x400E1468
Access: Read-write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
| - | Awvpm | HOUR
15 14 13 12 11 10 9 8
| — | MIN
7 6 5 4 3 2 1 0
| — | SEC

* SEC: Current Second

The range that can be setis 0 - 59 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

e MIN: Current Minute

The range that can be set is 0 - 59 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

¢ HOUR: Current Hour

The range that can be setis 1 - 12 (BCD) in 12-hour mode or 0 - 23 (BCD) in 24-hour mode.

« AMPM: Ante Meridiem Post Meridiem Indicator

This bit is the AM/PM indicator in 12-hour mode.

0=AM.
1=PM.

All non-significant bits read zero.

11100B-ATARM-31-Jul-12

ATMEL

285

15.6.4 RTC Calendar Register

Name: RTC_CALR

Address: 0x400E146C

Access: Read-write
31 30 29 28 27 26 25 24

| - | - | DATE |
23 22 21 20 19 18 17 16

| DAY MONTH |
15 14 13 12 11 10 9 8

| YEAR |
7 6 5 4 3 2 1 0

| - | CENT |

» CENT: Current Century
The range that can be set is 19 - 20 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.
* YEAR: Current Year
The range that can be set is 00 - 99 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

* MONTH: Current Month

The range that can be set is 01 - 12 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

« DAY: Current Day in Current Week

The range that can be setis 1 - 7 (BCD).

The coding of the number (which number represents which day) is user-defined as it has no effect on the date counter.
» DATE: Current Day in Current Month

The range that can be set is 01 - 31 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

All non-significant bits read zero.

286 SAMAS Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

15.6.5 RTC Time Alarm Register

Name: RTC_TIMALR
Address: 0x400E1470
Access: Read-write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
| HOUREN | Ampm | HOUR
15 14 13 12 11 10 9 8
[MINEN | MIN
7 6 5 4 3 2 1 0
[SECEN | SEC

» SEC: Second Alarm
This field is the alarm field corresponding to the BCD-coded second counter.

» SECEN: Second Alarm Enable
0 = The second-matching alarm is disabled.
1 = The second-matching alarm is enabled.

* MIN: Minute Alarm
This field is the alarm field corresponding to the BCD-coded minute counter.

* MINEN: Minute Alarm Enable
0 = The minute-matching alarm is disabled.
1 = The minute-matching alarm is enabled.

* HOUR: Hour Alarm
This field is the alarm field corresponding to the BCD-coded hour counter.

« AMPM: AM/PM Indicator
This field is the alarm field corresponding to the BCD-coded hour counter.

« HOUREN: Hour Alarm Enable
0 = The hour-matching alarm is disabled.

1 = The hour-matching alarm is enabled.

ATMEL

11100B-ATARM-31-Jul-12

287

15.6.6 RTC Calendar Alarm Register

Name: RTC_CALALR

Address: 0x400E1474

Access: Read-write
31 30 29 28 27 26 25 24

| DATEEN | - | DATE |
23 22 21 20 19 18 17 16

[MTHEN | — | — | MONTH |
15 14 13 12 11 10 9 8

| - | - | - | - | - | - | - | - |
7 6 5 4 3 2 1 0

* MONTH: Month Alarm
This field is the alarm field corresponding to the BCD-coded month counter.

* MTHEN: Month Alarm Enable
0 = The month-matching alarm is disabled.

1 = The month-matching alarm is enabled.

+ DATE: Date Alarm
This field is the alarm field corresponding to the BCD-coded date counter.

» DATEEN: Date Alarm Enable
0 = The date-matching alarm is disabled.

1 = The date-matching alarm is enabled.

288 SAMAS Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

15.6.7 RTC Status Register

Name: RTC_SR

Address: 0x400E1478

Access: Read-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| — | — | mErRR [cAalev | TIMEV | SEC | AlARM | Ackupp |

 ACKUPD: Acknowledge for Update
0 (FREERUN) = Time and calendar registers cannot be updated.

1 (UPDATE) = Time and calendar registers can be updated.

* ALARM: Alarm Flag

0 (NO_ALARMEVENT) = No alarm matching condition occurred.

1 (ALARMEVENT) = An alarm matching condition has occurred.

» SEC: Second Event

0 (NO_SECEVENT) = No second event has occurred since the last clear.

1 (SECEVENT) = At least one second event has occurred since the last clear.

e TIMEV: Time Event

0 (NO_TIMEVENT) = No time event has occurred since the last clear.

1 (TIMEVENT) = At least one time event has occurred since the last clear.

The time event is selected in the TIMEVSEL field in RTC_CR (Control Register) and can be any one of the following
events: minute change, hour change, noon, midnight (day change).

» CALEV: Calendar Event

0 (NO_CALEVENT) = No calendar event has occurred since the last clear.

1 (CALEVENT) = At least one calendar event has occurred since the last clear.

The calendar event is selected in the CALEVSEL field in RTC_CR and can be any one of the following events: week
change, month change and year change.

e TDERR: Time and/or Date Free Running Error

0 (CORRECT) = The internal free running counters are carrying valid values since the last read of RTC_SR.

1 (ERR_TIMEDATE) = The internal free running counters have been corrupted (invalid date or time, non-BCD values)
since the last read and/or they are still invalid.

AImEl@ 289

11100B-ATARM-31-Jul-12

15.6.8 RTC Status Clear Command Register

Name: RTC_SCCR

Address: 0x400E147C

Access: Write-only
31 30 29 28 27 26 25 24

| - | - | - | - | - | - | - | - |
23 22 21 20 19 18 17 16

| - | - | - | - | - | - | - | - |
15 14 13 12 11 10 9 8

| - | - | - | - | - | - | - | - |
7 6 5 4 3 2 1 0

| — | — | TDERRCLR [cAlclR | TiMCLlR | sSecclR | ALRCLR | ACKCLR |

» ACKCLR: Acknowledge Clear
0 = No effect.

1 = Clears corresponding status flag in the Status Register (RTC_SR).

ALRCLR: Alarm Clear
0 = No effect.

1 = Clears corresponding status flag in the Status Register (RTC_SR).

* SECCLR: Second Clear
0 = No effect.
1 = Clears corresponding status flag in the Status Register (RTC_SR).

TIMCLR: Time Clear
0 = No effect.

1 = Clears corresponding status flag in the Status Register (RTC_SR).

e CALCLR: Calendar Clear
0 = No effect.

1 = Clears corresponding status flag in the Status Register (RTC_SR).

TDERRCLR: Time and/or Date Free Running Error Clear
0 = No effect.

1 = Clears corresponding status flag in the Status Register (RTC_SR).

200 SAMAS Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

15.6.9 RTC Interrupt Enable Register

Name: RTC_IER

Address: 0x400E1480

Access: Write-only
31 30 29 28 27 26 25 24

| - | - | - | - | - | - | - | - |
23 22 21 20 19 18 17 16

| - | - | - | - | - | - | - | - |
15 14 13 12 11 10 9 8

| - | - | - | - | - | - | - | - |
7 6 5 4 3 2 1 0

| — | — | TDERREN [cAlEN | TMEN | SEcCceN | ALREN | ACKEN |

 ACKEN: Acknowledge Update Interrupt Enable
0 = No effect.

1 = The acknowledge for update interrupt is enabled.

ALREN: Alarm Interrupt Enable
0 = No effect.

1 = The alarm interrupt is enabled.

e SECEN: Second Event Interrupt Enable
0 = No effect.

1 = The second periodic interrupt is enabled.

TIMEN: Time Event Interrupt Enable
0 = No effect.

1 = The selected time event interrupt is enabled.

» CALEN: Calendar Event Interrupt Enable
0 = No effect.

» 1 =The selected calendar event interrupt is enabled.

TDERREN: Time and/or Date Error Interrupt Enable
0 = No effect.

» 1 =The time and date error interrupt is enabled.

11100B-ATARM-31-Jul-12

ATMEL

291

15.6.10 RTC Interrupt Disable Register

Name: RTC_IDR

Address: 0x400E1484

Access: Write-only
31 30 29 28 27 26 25 24

| - | - | - | - | - | - | - | - |
23 22 21 20 19 18 17 16

| - | - | - | - | - | - | - | - |
15 14 13 12 11 10 9 8

| - | - | - | - | - | - | - | - |
7 6 5 4 3 2 1 0

| — | — | ToERRDIS [caAlDis | TimMDis | secbis | ALRDIS | Ackbis |

ACKDIS: Acknowledge Update Interrupt Disable
0 = No effect.

1 = The acknowledge for update interrupt is disabled.

ALRDIS: Alarm Interrupt Disable
0 = No effect.

1 = The alarm interrupt is disabled.

SECDIS: Second Event Interrupt Disable
0 = No effect.

1 = The second periodic interrupt is disabled.

TIMDIS: Time Event Interrupt Disable
0 = No effect.

1 = The selected time event interrupt is disabled.

CALDIS: Calendar Event Interrupt Disable
0 = No effect.

1 = The selected calendar event interrupt is disabled.

TDERRDIS: Time and/or Date Error Interrupt Disable
0 = No effect.

e 1 =The time and date error interrupt is disabled.

202 SAMAS Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

15.6.11 RTC Interrupt Mask Register

Name: RTC_IMR

Address: 0x400E1488

Access: Read-only
31 30 29 28 27 26 25 24

I I R B R - - —]
23 22 21 20 19 18 17 16

I I N B R - - —]
15 14 13 12 11 10 9 8

S R I B R - - —
7 6 5 4 3 2 1 0

| — | — | — | CAL | TIM SEC ALR ACK |

» ACK: Acknowledge Update Interrupt Mask

0 = The acknowledge for update interrupt is disabled.

1 = The acknowledge for update interrupt is enabled.

* ALR: Alarm Interrupt Mask
0 = The alarm interrupt is disabled.

1 = The alarm interrupt is enabled.

e SEC: Second Event Interrupt Mask
0 = The second periodic interrupt is disabled.

1 = The second periodic interrupt is enabled.
e TIM: Time Event Interrupt Mask
0 = The selected time event interrupt is disabled.

1 = The selected time event interrupt is enabled.

CAL: Calendar Event Interrupt Mask

0 = The selected calendar event interrupt is disabled.

1 = The selected calendar event interrupt is enabled.

11100B-ATARM-31-Jul-12

ATMEL

293

15.6.12 RTC Valid Entry Register

Name: RTC_VER

Address: 0x400E148C

Access: Read-only
31 30 29 28 27 26 25 24

. - r - r - r -+ - - ¢ - [- |
23 22 21 20 19 18 17 16

. - r - r - -+ - ;r - ¢ - [- |
15 14 13 12 11 10 9 8

| - | - | - | - | - | - | - - |
7 6 5 4 3 2 1 0

| - | - | - | - | NVCALALR | NvTIMALR [Nveal | NvTiv |

* NVTIM: Non-valid Time
0 = No invalid data has been detected in RTC_TIMR (Time Register).

1 =RTC_TIMR has contained invalid data since it was last programmed.

NVCAL: Non-valid Calendar
0 = No invalid data has been detected in RTC_CALR (Calendar Register).

1 = RTC_CALR has contained invalid data since it was last programmed.

NVTIMALR: Non-valid Time Alarm
0 = No invalid data has been detected in RTC_TIMALR (Time Alarm Register).

1 =RTC_TIMALR has contained invalid data since it was last programmed.

NVCALALR: Non-valid Calendar Alarm
0 = No invalid data has been detected in RTC_CALALR (Calendar Alarm Register).

1 =RTC_CALALR has contained invalid data since it was last programmed.

204 SAMAS Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

16. Watchdog Timer (WDT)

16.1 Description

The Watchdog Timer (WDT) can be used to prevent system lock-up if the software becomes
trapped in a deadlock. It features a 12-bit down counter that allows a watchdog period of up to
16 seconds (slow clock at 32.768 kHz). It can generate a general reset or a processor reset
only. In addition, it can be stopped while the processor is in debug mode or idle mode.

16.2 Embedded Characteristics
« 16-bit key-protected only-once-Programmable Counter
» Windowed, prevents the processor to be in a dead-lock on the watchdog access.

AImEl@ 295

11100B-ATARM-31-Jul-12

ATMEL

16.3 Block Diagram

Figure 16-1. Watchdog Timer Block Diagram

write WDT_MR
WDT_MR
WDT_CR Wbv
|WDRSTT | reload rr l
¢ \ 1 0 ;
12-bit Down
Counter
WDT_MR reload
WDD Current |
Value < 1/128 SLCK
y v
<=WDD
WDT_MR
1 WDRSTEN
=0
=| N\ ‘ > wdt_fault
1_/ N (to Reset Controller)
\ set

[woune] ————5 wa it

set reset r -
WDERRI

read WDT_SR reset WDFIEN

or
reset WDT_MR

206 SAMAS Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

16.4 Functional Description

The Watchdog Timer can be used to prevent system lock-up if the software becomes trapped in
a deadlock. It is supplied with VDDCORE. It restarts with initial values on processor reset.

The Watchdog is built around a 12-bit down counter, which is loaded with the value defined in
the field WDV of the Mode Register (WDT_MR). The Watchdog Timer uses the Slow Clock
divided by 128 to establish the maximum Watchdog period to be 16 seconds (with a typical Slow
Clock of 32.768 kHz).

After a Processor Reset, the value of WDV is 0xFFF, corresponding to the maximum value of
the counter with the external reset generation enabled (field WDRSTEN at 1 after a Backup
Reset). This means that a default Watchdog is running at reset, i.e., at power-up. The user must
either disable it (by setting the WDDIS bit in WDT_MR) if he does not expect to use it or must
reprogram it to meet the maximum Watchdog period the application requires.

The Watchdog Mode Register (WDT_MR) can be written only once. Only a processor reset
resets it. Writing the WDT_MR register reloads the timer with the newly programmed mode
parameters.

In normal operation, the user reloads the Watchdog at regular intervals before the timer under-
flow occurs, by writing the Control Register (WDT_CR) with the bit WDRSTT to 1. The
Watchdog counter is then immediately reloaded from WDT_MR and restarted, and the Slow
Clock 128 divider is reset and restarted. The WDT_CR register is write-protected. As a result,
writing WDT_CR without the correct hard-coded key has no effect. If an underflow does occur,
the “wdt_fault” signal to the Reset Controller is asserted if the bit WDRSTEN is set in the Mode
Register (WDT_MR). Moreover, the bit WDUNF is set in the Watchdog Status Register
(WDT_SR).

To prevent a software deadlock that continuously triggers the Watchdog, the reload of the
Watchdog must occur while the Watchdog counter is within a window between 0 and WDD,
WDD is defined in the WatchDog Mode Register WDT_MR.

Any attempt to restart the Watchdog while the Watchdog counter is between WDV and WDD
results in a Watchdog error, even if the Watchdog is disabled. The bit WDERR is updated in the
WDT_SR and the “wdt_fault” signal to the Reset Controller is asserted.

Note that this feature can be disabled by programming a WDD value greater than or equal to the
WDV value. In such a configuration, restarting the Watchdog Timer is permitted in the whole
range [0; WDV] and does not generate an error. This is the default configuration on reset (the
WDD and WDV values are equal).

The status bits WDUNF (Watchdog Underflow) and WDERR (Watchdog Error) trigger an inter-
rupt, provided the bit WDFIEN is set in the mode register. The signal “wdt_fault” to the reset
controller causes a Watchdog reset if the WDRSTEN bit is set as already explained in the reset
controller programmer Datasheet. In that case, the processor and the Watchdog Timer are
reset, and the WDERR and WDUNF flags are reset.

If a reset is generated or if WDT_SR is read, the status bits are reset, the interrupt is cleared,
and the “wdt_fault” signal to the reset controller is deasserted.

Writing the WDT_MR reloads and restarts the down counter.

While the processor is in debug state or in idle mode, the counter may be stopped depending on
the value programmed for the bits WDIDLEHLT and WDDBGHLT in the WDT_MR.

AImEl@ 297

11100B-ATARM-31-Jul-12

ATMEL

Figure 16-2. Watchdog Behavior
Watchdog Error

Watchdog Underflow —
if WDRSTEN is 1
FFF
Normal behavior if WDRSTEN is 0
WDV \
Forbidden
Window oo

w| N N SN

WDT_CR =WDRSTT

o Watchdog
Fault

206 SAMAS Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

16.5 Watchdog Timer (WDT) User Interface

Table 16-1. Register Mapping

Offset Register Name Access Reset
0x00 Control Register WDT_CR Write-only -

0x04 Mode Register WDT_MR Read-write Once Ox3FFF_2FFF
0x08 Status Register WDT_SR Read-only 0x0000_0000

AImEl@ 299

11100B-ATARM-31-Jul-12

ATMEL

16.5.1 Watchdog Timer Control Register

Name: WDT_CR

Address: 0x400E1450

Access: Write-only
31 30 29 28 27 26 25 24

| KEY |
23 22 21 20 19 18 17 16

- T - T - — T - - — T -]
15 14 13 12 11 10 9 8

- T - T - SR - S
7 6 5 4 3 2 1 0

- T - T - — T - - = worsTT]

« WDRSTT: Watchdog Restart
0: No effect.

1. Restarts the Watchdog.

 KEY: Password

Should be written at value 0xA5. Writing any other value in this field aborts the write operation.

300

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

16.5.2 Watchdog Timer Mode Register

Name: WDT_MR
Address: 0x400E1454
Access: Read-write Once

31 30 29 28 27 26 25 24
| | | WDIDLEHLT WDDBGHLT WDD

23 22 21 20 19 18 17 16
| WDD

15 14 13 12 11 10 9 8
[wDDIS WDRPROC WDRSTEN WDFIEN WDV

7 6 5 4 3 2 1 0
| WDV |
 WDV: Watchdog Counter Value
Defines the value loaded in the 12-bit Watchdog Counter.
* WDFIEN: Watchdog Fault Interrupt Enable
0: A Watchdog fault (underflow or error) has no effect on interrupt.
1: A Watchdog fault (underflow or error) asserts interrupt.
« WDRSTEN: Watchdog Reset Enable
0: A Watchdog fault (underflow or error) has no effect on the resets.
1: A Watchdog fault (underflow or error) triggers a Watchdog reset.
« WDRPROC: Watchdog Reset Processor
0: If WDRSTEN is 1, a Watchdog fault (underflow or error) activates all resets.
1: If WDRSTEN is 1, a Watchdog fault (underflow or error) activates the processor reset.
 WDD: Watchdog Delta Value
Defines the permitted range for reloading the Watchdog Timer.
If the Watchdog Timer value is less than or equal to WDD, writing WDT_CR with WDRSTT = 1 restarts the timer.
If the Watchdog Timer value is greater than WDD, writing WDT_CR with WDRSTT = 1 causes a Watchdog error.
« WDDBGHLT: Watchdog Debug Halt
0: The Watchdog runs when the processor is in debug state.
1: The Watchdog stops when the processor is in debug state.
 WDIDLEHLT: Watchdog Idle Halt
0: The Watchdog runs when the system is in idle mode.
1: The Watchdog stops when the system is in idle state.
« WDDIS: Watchdog Disable
0: Enables the Watchdog Timer.
1: Disables the Watchdog Timer.

ATMEL 301
Y 5

11100B-ATARM-31-Jul-12

ATMEL

16.5.3 Watchdog Timer Status Register

Name: WDT_SR

Address: 0x400E1458

Access: Read-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | WDERR | WDUNF |

WDUNF: Watchdog Underflow
: No Watchdog underflow occurred since the last read of WDT_SR.

(@]

1. At least one Watchdog underflow occurred since the last read of WDT_SR.

WDERR: Watchdog Error
: No Watchdog error occurred since the last read of WDT_SR.

o

1. At least one Watchdog error occurred since the last read of WDT_SR.

302 SAMAS Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

17. Supply Controller (SUPC)

17.1 Description

The Supply Controller (SUPC) controls the supply voltage of the Core of the system and man-
ages the Backup Low Power Mode. In this mode, the current consumption is reduced to a few
microamps for Backup power retention. Exit from this mode is possible on multiple wake-up
sources including events on WKUP pins, or a Clock alarm. The SUPC also generates the Slow
Clock by selecting either the Low Power RC oscillator or the Low Power Crystal oscillator.

17.2 Embedded Characteristics

« Manages the Core Power Supply VDDCORE and the Backup Low Power Mode by
Controlling the Embedded Voltage Regulator

» Generates the Slow Clock SLCK, by Selecting Either the 22-42 kHz Low Power RC Oscillator
or the 32 kHz Low Power Crystal Oscillator

» Supports Multiple Wake Up Sources, for Exit from Backup Low Power Mode
— Force Wake Up Pin, with Programmable Debouncing
— 16 Wake Up Inputs, with Programmable Debouncing
— Real Time Clock Alarm
— Real Time Timer Alarm

— Supply Monitor Detection on VDDIO, with Programmable Scan Period and Voltage
Threshold

* A Supply Monitor Detection on VDDIO or a Brownout Detection on VDDCORE can Trigger a
Core Reset

« Embeds:
— One 22 to 42 kHz Low Power RC Oscillator
— One 32 kHz Low Power Crystal Oscillator
— One Zero-Power Power-On Reset Cell
— One Software Programmable Supply Monitor, on VDDIO Located in Backup Section
— One Brownout Detector on VDDCORE Located in the Core

AImEl@ 303

11100B-ATARM-31-Jul-12

ATMEL

17.3 Block Diagram

Figure 17-1. Supply Controller Block Diagram

VDDIO VDDOUT :
[] i
1
1
1
vr_on 1
VI mode Software Controlled 1
= Voltage Regulator D VDDIN 1
1
1
VDDIO 1
Supply 1
Controller I
PIOA/B/C !
ON Input/Output Buffers PIOX 1
Supply 1
Monitor out 1
(Backup) 1
-1 - Analog 1
WKUPO - WKUP15 [J > e Comparator (_l 1
General Purpose ADC Analog @ D ADx 1
Backup Registers = Circui 1
ircuitry — 1
[] aovrer
rtc_nreset T 1
SLCK RTC — DAC Analog 1
—> rtc_alarm Circuitry D DACX 1
1
VDDIO 1
rtt_nreset 1
SLCK—> RTT rtt_alarm :
32k_xtal usB oo !
gstaEXIaRen Transceivers | I DDM 1
1
XTALSEL vddcore_nreset 1
XIN32 Xtal 32 kHz 1
XOUT32 Oscillator bod_core_on Brownout _| I‘. [— .:
Jcore_brown_out Detector
—= (Core) VDDCORE
Embedded
32 kHz RC o0sc32k_rc_en
Oscillator — <> SRAM ||
Backup Power Supply vddcore_nreset Peripherals |
L.)
Reset pron_:_nreset Matrix
Controller —> Perlph_nreset Peripheral
NRST D —> ice_nreset > Bridge
VAN Cortex-M |
Processor
FSTTO - FSTT15 |__JI >
SLCK —>»
Embedded <_> _—
12/8/4MHz || Flash
RC Main Clock
Oscillator MAINCK Power
XIN Management Master Clock
3-20MHz |] Controller MCK
XOUT XTAL Oscillator
MAINCK PLLACK
= PLLA
sLCK Wat_chdog
VDDIO L‘I Timer
MAINCK PLLBCK
> PLLB
Core Power Supply

FSTTO - FSTT15 are possible Fast Startup Sources, generated by WKUPO-WKUP15 Pins,
but are not physical pins.

304 SAMAS Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

17.4 Supply Controller Functional Description

17.4.1 Supply Controller Overview

11100B-ATARM-31-Jul-12

The device can be divided into two power supply areas:

« The VDDIO Power Supply: including the Supply Controller, a part of the Reset Controller, the
Slow Clock switch, the General Purpose Backup Registers, the Supply Monitor and the Clock
which includes the Real Time Timer and the Real Time Clock

» The Core Power Supply: including the other part of the Reset Controller, the Brownout
Detector, the Processor, the SRAM memory, the FLASH memory and the Peripherals

The Supply Controller (SUPC) controls the supply voltage of the core power supply. The SUPC
intervenes when the VDDIO power supply rises (when the system is starting) or when the
Backup Low Power Mode is entered.

The SUPC also integrates the Slow Clock generator which is based on a 32 kHz crystal oscilla-
tor and an embedded 32 kHz RC oscillator. The Slow Clock defaults to the RC oscillator, but the
software can enable the crystal oscillator and select it as the Slow Clock source.

The Supply Controller and the VDDIO power supply have a reset circuitry based on a zero-
power power-on reset cell. The zero-power power-on reset allows the SUPC to start properly as
soon as the VDDIO voltage becomes valid.

At startup of the system, once the voltage VDDIO is valid and the embedded 32 kHz RC oscilla-
tor is stabilized, the SUPC starts up the core by sequentially enabling the internal Voltage
Regulator, waiting that the core voltage VDDCORE is valid, then releasing the reset signal of the
core “vddcore_nreset” signal.

Once the system has started, the user can program a supply monitor and/or a brownout detec-
tor. If the supply monitor detects a voltage on VDDIO that is too low, the SUPC can assert the
reset signal of the core “vddcore_nreset” signal until VDDIO is valid. Likewise, if the brownout
detector detects a core voltage VDDCORE that is too low, the SUPC can assert the reset signal
“vddcore_nreset” until VDDCORE is valid.

When the Backup Low Power Mode is entered, the SUPC sequentially asserts the reset signal
of the core power supply “vddcore_nreset” and disables the voltage regulator, in order to supply
only the VDDIO power supply. In this mode the current consumption is reduced to a few micro-
amps for Backup part retention. Exit from this mode is possible on multiple wake-up sources
including an event on WKUP pins, or a Clock alarm. To exit this mode, the SUPC operates in the
same way as system startup.

AImEl@ 305

ATMEL

17.4.2 Slow Clock Generator
The Supply Controller embeds a slow clock generator that is supplied with the VDDIO power
supply. As soon as the VDDIO is supplied, both the crystal oscillator and the embedded RC
oscillator are powered up, but only the embedded RC oscillator is enabled. This allows the slow
clock to be valid in a short time (about 100 ps).

The user can select the crystal oscillator to be the source of the slow clock, as it provides a more
accurate frequency. The command is made by writing the Supply Controller Control Register
(SUPC_CR) with the XTALSEL bit at 1.This results in a sequence which first configures the PIO
lines multiplexed with XIN32 and XOUT32 to be driven by the oscillator, then enables the crystal
oscillator, then counts a number of slow RC oscillator clock periods to cover the startup time of
the crystal oscillator (refer to electrical characteristics for details of 32KHz crystal oscillator
startup time), then switches the slow clock on the output of the crystal oscillator and then dis-
ables the RC oscillator to save power. The switching time may vary according to the slow RC
oscillator clock frequency range. The switch of the slow clock source is glitch free. The OSCSEL
bit of the Supply Controller Status Register (SUPC_SR) allows knowing when the switch
sequence is done.

Coming back on the RC oscillator is only possible by shutting down the VDDIO power supply.

If the user does not need the crystal oscillator, the XIN32 and XOUT32 pins should be left
unconnected.

The user can also set the crystal oscillator in bypass mode instead of connecting a crystal. In
this case, the user has to provide the external clock signal on XIN32. The input characteristics of
the XIN32 pin are given in the product electrical characteristics section. In order to set the
bypass mode, the OSCBYPASS bit of the Supply Controller Mode Register (SUPC_MR) needs
to be set at 1.

17.4.3 Voltage Regulator Control/Backup Low Power Mode
The Supply Controller can be used to control the embedded 1.8V voltage regulator.

The voltage regulator automatically adapts its quiescent current depending on the required load
current. Please refer to the electrical characteristics section.

The programmer can switch off the voltage regulator, and thus put the device in Backup mode,
by writing the Supply Controller Control Register (SUPC_CR) with the VROFF bit at 1.

This can be done also by using WFE (Wait for Event) Cortex-M processor instruction with the
deep mode bit set to 1.

The Backup mode can also be entered by executing the WFI (Wait for Interrupt) or WFE (Wait for
Event) Cortex-M Processor instructions. To select the Backup mode entry mechanism, two
options are available, depending on the SLEEPONEXIT bit in the Cortex-M processor System
Control register:
 Sleep-now: if the SLEEPONEXIT bit is cleared, the device enters Backup mode as soon as
the WFI or WFE instruction is executed.
 Sleep-on-exit: if the SLEEPONEXIT bit is set when the WFI instruction is executed, the
device enters Backup mode as soon as it exits the lowest priority ISR.
This asserts the vddcore_nreset signal after the write resynchronization time which lasts, in the
worse case, two slow clock cycles. Once the vddcore_nreset signal is asserted, the processor
and the peripherals are stopped one slow clock cycle before the core power supply shuts off.

306 SAMAS Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

When the user does not use the internal voltage regulator and wants to supply VDDCORE by an
external supply, it is possible to disable the voltage regulator. Note that it is different from the
Backup mode. Depending on the application, disabling the voltage regulator can reduce power
consumption as the voltage regulator input (VDDIN) is shared with the ADC and DAC. This is
done through ONREG bit in SUPC_MR.

17.4.4 Supply Monitor

11100B-ATARM-31-Jul-12

The Supply Controller embeds a supply monitor which is located in the VDDIO Power Supply
and which monitors VDDIO power supply.

The supply monitor can be used to prevent the processor from falling into an unpredictable state
if the Main power supply drops below a certain level.

The threshold of the supply monitor is programmable. It can be selected from 1.6V to 3.4V. This
threshold is programmed in the SMTH field of the Supply Controller Supply Monitor Mode Regis-
ter (SUPC_SMMR).

The supply monitor can also be enabled during one slow clock period on every one of either 32,
256 or 2048 slow clock periods, according to the choice of the user. This can be configured by
programming the SMSMPL field in SUPC_SMMR.

Enabling the supply monitor for such reduced times allows to divide the typical supply monitor
power consumption respectively by factors of 32, 256 or 2048, if the user does not need a con-
tinuous monitoring of the VDDIO power supply.

A supply monitor detection can either generate a reset of the core power supply or a wake up of
the core power supply. Generating a core reset when a supply monitor detection occurs is
enabled by writing the SMRSTEN bit to 1 in SUPC_SMMR.

Waking up the core power supply when a supply monitor detection occurs can be enabled by
programming the SMEN bit to 1 in the Supply Controller Wake Up Mode Register
(SUPC_WUMR).

The Supply Controller provides two status bits in the Supply Controller Status Register for the
supply monitor which allows to determine whether the last wake up was due to the supply
monitor:

* The SMOS bit provides real time information, which is updated at each measurement cycle
or updated at each Slow Clock cycle, if the measurement is continuous.

« The SMS bit provides saved information and shows a supply monitor detection has occurred
since the last read of SUPC_SR.

The SMS bit can generate an interrupt if the SMIEN bit is set to 1 in the Supply Controller Supply
Monitor Mode Register (SUPC_SMMR).

AImEl@ 307

ATMEL

Figure 17-2. Supply Monitor Status Bit and Associated Interrupt

Continuous Sampling (SMSMPL = 1)

T T [& Periodicsamping [|

Supply Monitor ON

3.3V

|
Threshold r\

l Read SUPC_SR

SMS and SUPC interrupt

17.45 Power Supply Reset

17.45.1 Raising the Power Supply
As soon as the voltage VDDIO rises, the RC oscillator is powered up and the zero-power power-
on reset cell maintains its output low as long as VDDIO has not reached its target voltage. Dur-
ing this time, the Supply Controller is entirely reset. When the VDDIO voltage becomes valid and
zero-power power-on reset signal is released, a counter is started for 5 slow clock cycles. This is
the time it takes for the 32 kHz RC oscillator to stabilize.

After this time, the voltage regulator is enabled. The core power supply rises and the brownout
detector provides the bodcore_in signal as soon as the core voltage VDDCORE is valid. This
results in releasing the vddcore_nreset signal to the Reset Controller after the bodcore_in signal
has been confirmed as being valid for at least one slow clock cycle.

308 SAMAS Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

Figure 17-3. Raising the VDDIO Power Supply

7 x Slow Clock Cycles Ton Voltage 3 x Slow Clock 3 x Slow Clock 6.5 x Slow Clock
Regulator Cycles Cycles Cycles

T I

Fast RC mu”““““mm““““]: :IJ“““-I.I-I."

Oscillator output
1] R

(i
(|
L
(|
(|
Il
NRST I | Il
(|
(|
It
[
Il
[

Zero-Power POR
Backup Power Supply Ram—

Zero-Power Power-On
Reset Cell output A

22 - 42 kHz RC / |I|I|I|I|||

Oscillator output

vr_on

Core Power Supply

bodcore_in

vddcore_nreset

LT

periph_nreset

proc_nreset

Note: After “proc_nreset” rising, the core starts fecthing instructions from Flash at 4 MHz.

17.4.6 Core Reset
The Supply Controller manages the vddcore_nreset signal to the Reset Controller, as described
previously in Section 17.4.5 "Power Supply Reset”. The vddcore_nreset signal is normally
asserted before shutting down the core power supply and released as soon as the core power
supply is correctly regulated.

There are two additional sources which can be programmed to activate vddcore_nreset:

* A supply monitor detection
* A brownout detection

17.4.6.1 Supply Monitor Reset
The supply monitor is capable of generating a reset of the system. This can be enabled by set-
ting the SMRSTEN bit in the Supply Controller Supply Monitor Mode Register (SUPC_SMMR).

If SMRSTEN is set and if a supply monitor detection occurs, the vddcore_nreset signal is imme-
diately activated for a minimum of 1 slow clock cycle.

AImEl@ 309

11100B-ATARM-31-Jul-12

ATMEL

17.4.6.2 Brownout Detector Reset
The brownout detector provides the bodcore_in signal to the SUPC which indicates that the volt-
age regulation is operating as programmed. If this signal is lost for longer than 1 slow clock
period while the voltage regulator is enabled, the Supply Controller can assert vddcore_nreset.
This feature is enabled by writing the bit, BODRSTEN (Brownout Detector Reset Enable) to 1 in
the Supply Controller Mode Register (SUPC_MR).

If BODRSTEN is set and the voltage regulation is lost (output voltage of the regulator too low),
the vddcore_nreset signal is asserted for a minimum of 1 slow clock cycle and then released if
bodcore_in has been reactivated. The BODRSTS bit is set in the Supply Controller Status Reg-
ister (SUPC_SR) so that the user can know the source of the last reset.

Until bodcore_in is deactivated, the vddcore_nreset signal remains active.
17.4.7 Wake Up Sources

The wake up events allow the device to exit backup mode. When a wake up event is detected,
the Supply Controller performs a sequence which automatically reenables the core power

supply.

Figure 17-4. Wake Up Sources

—
sm_out)

—
rtc_alarm ___ ——————— | /

—
rtt_alarm |

—
RTCOUTO
: S
Low/Hig
Level Detect Debouncer hd

WKUPTO LPDBC Core
RTCOUTO Supply
LPDBCERO) [N -
Low/High - > LPDBCSO Restart

s
— [wkupeno | [wiupiso |
L

Debouncer

Low/High WKUPDBC
e I *
I SLCK WKUPS
WKUPT1 [wkupent | [wkupist | L l
I Debouncer L 4
——>]
Low/High
WKUP1 I_—_II Level Detect
1
1
1
: WKUPT15 [wkupents | [wiupisis |
1
1 I_

Low/High
WKUP15 D— Level Detect

3.0 SAMAS Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

17.4.7.1 Wake Up Inputs

The wake up inputs, WKUPO to WKUP15, can be programmed to perform a wake up of the core
power supply. Each input can be enabled by writing to 1 the corresponding bit, WKUPENO to
WKUPEN 15, in the Wake Up Inputs Register (SUPC_WUIR). The wake up level can be
selected with the corresponding polarity bit, WKUPPLO to WKUPPL15, also located in
SUPC_WUIR.

All the resulting signals are wired-ORed to trigger a debounce counter, which can be pro-
grammed with the WKUPDBC field in the Supply Controller Wake Up Mode Register
(SUPC_WUMR). The WKUPDBC field can select a debouncing period of 3, 32, 512, 4,096 or
32,768 slow clock cycles. This corresponds respectively to about 100 us, about 1 ms, about
16 ms, about 128 ms and about 1 second (for a typical slow clock frequency of 32 kHz). Pro-
gramming WKUPDBC to 0x0 selects an immediate wake up, i.e., an enabled WKUP pin must be
active according to its polarity during a minimum of one slow clock period to wake up the core
power supply.

If an enabled WKUP pin is asserted for a time longer than the debouncing period, a wake up of
the core power supply is started and the signals, WKUPO to WKUP15 as shown in Figure 17-4,
are latched in the Supply Controller Status Register (SUPC_SR). This allows the user to identify
the source of the wake up, however, if a new wake up condition occurs, the primary information
is lost. No new wake up can be detected since the primary wake up condition has disappeared.

17.4.7.2 Low Power Debouncer Inputs

11100B-ATARM-31-Jul-12

It is possible to generate a waveform (RTCOUTO and RTCOUT1) in all modes (including backup
mode). It can be useful to control an external sensor and/or tampering function without waking
up the processor. Please refer to the RTC section.

Two separate debouncers are embedded for WKUPO and WKUP1 inputs.

The WKUPO and/or WKUPL1 inputs can be programmed to perform a wake up of the core power
supply with a debouncing done by RTCOUTO. This can be enabled by setting LPDBCO bit
and/or LPDBCL1 bit in SUPC_WUMR.

In this mode of operation, WKUPO and/or WKUP1 must not be configured to also act as
debouncing source for the WKUPDBC counter (WKUPENO and/or WKUPEN1 must be cleared
in SUPC_WUIR). Refer to Figure 17-4.

This mode of operation requires the RTC Output (RTCOUTO) to be configured to generate a
duty cycle programmable pulse (i.e. OUTO = 0x7 in RTC_MR) in order to create the sampling
points of both debouncers. The sampling point is the falling edge of the RTCOUTO waveform.

Figure 17-5 shows an example of an application where two tamper switches are used.
RTCOUTOO powers the external pull-up used by the tampers.

AImEl@ 311

312

ATMEL

Figure 17-5. Low Power Debouncer (Push-to-Make switch, pull-up resistors)

AT91SAM
J-l ” < RTOOUTO
Pull-Up
Resistor
i »| WKUPO
~ "> AlUp
Resistor
GND WKUWPL
_\O L
GND
GND

Figure 17-6. Low Power Debouncer (Push-to-Break switch, pull-down resistors)

AT91SAM
J-l ” RTOOUTO
<_ —_—
»| WKUPO
<_ —_—
WKUWP1
Pull-Down J—
Resistors GND
GND GND

The debouncing parameters can be adjusted and are shared (except the wake up input polarity)
by both debouncers. The number of successive identical samples to wake up the core can be
configured from 2 up to 8 in the LPDBC field of SUPC_WUMR. The period of time between 2
samples can be configured by programming the TPERIOD field in the RTC_MR register.

Power parameters can be adjusted by modifying the period of time in the THIGH field in
RTC_MR.

The wake up polarity of the inputs can be independently configured by writing WKUPTO and
WKUPT1 fields in SUPC_WUMR.

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

In order to determine which wake up pin triggers the core wake up or simply which debouncer
triggers an event, a status flag is associated for each low power debouncer. These 2 flags can
be read in the SUPC_SR.

A debounce event can perform an immediate clear (0 delay) on first half the general purpose
backup registers (GPBR). The LPDBCCLR bit must be setto 1 in SUPC_MR.

17.4.7.3 Clock Alarms

The RTC and the RTT alarms can generate a wake up of the core power supply. This can be
enabled by writing respectively, the bits RTCEN and RTTEN to 1 in the Supply Controller Wake
Up Mode Register (SUPC_WUMR).

The Supply Controller does not provide any status as the information is available in the User
Interface of either the Real Time Timer or the Real Time Clock.

17.4.7.4 Supply Monitor Detection

The supply monitor can generate a wake-up of the core power supply. See Section 17.4.4 "Sup-
ply Monitor”.

AImEl@ 313

11100B-ATARM-31-Jul-12

ATMEL

17.5 Supply Controller (SUPC) User Interface
The User Interface of the Supply Controller is a part of the System Controller User Interface.

1751 System Controller (SYSC) User Interface

Table 17-1. System Controller Registers

Offset System Controller Peripheral Name
0x00-0x0c Reset Controller RSTC
0x10-0x2C Supply Controller SUPC
0x30-0x3C Real Time Timer RTT
0x50-0x5C Watchdog Tiler WDT
0x60-0x7C Real Time Clock RTC
0x90-0xDC General Purpose Backup Register GPBR

17.5.2 Supply Controller (SUPC) User Interface

Table 17-2. Register Mapping

Offset Register Name Access Reset
0x00 Supply Controller Control Register SUPC_CR Write-only N/A
0x04 Supply Controller Supply Monitor Mode Register SUPC_SMMR Read-write 0x0000_0000
0x08 Supply Controller Mode Register SUPC_MR Read-write 0x0000_5A00
0x0C Supply Controller Wake Up Mode Register SUPC_WUMR Read-write 0x0000_0000
0x10 Supply Controller Wake Up Inputs Register SUPC_WUIR Read-write 0x0000_0000
0x14 Supply Controller Status Register SUPC_SR Read-only 0x0000_0800
0x18 Reserved

314 SAMAS Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

17.5.3 Supply Controller Control Register
Name: SUPC_CR

Address: 0x400E1410

Access: Write-only
31 30 29 28 27 26 25 24

| KEY |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I I - |
7 6 5 4 3 2 1 0

| - | - | - | - | XTALSEL | VROFF | - | - |

* VROFF: Voltage Regulator Off
0 (NO_EFFECT) = no effect.

1 (STOP_VREG) = if KEY is correct, asserts vddcore_nreset and stops the voltage regulator.

» XTALSEL: Crystal Oscillator Select
0 (NO_EFFECT) = no effect.
1 (CRYSTAL_SEL) = if KEY is correct, switches the slow clock on the crystal oscillator output.

» KEY: Password
Should be written to value OxA5. Writing any other value in this field aborts the write operation.

AImEl@ 315

11100B-ATARM-31-Jul-12

1754 Supply Controller Supply Monitor Mode Register

Name: SUPC_SMMR

Address: 0x400E1414

Access: Read-write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| - | - | SMIEN | SMRSTEN | - | SMSMPL |
7 6 5 4 3 2 1 0

I - I - I - I - I SMTH |

e SMTH: Supply Monitor Threshold
Please refer to Electrical chapter on Table 42-6 "Threshold Selection” (DC Characteristics).

* SMSMPL: Supply Monitor Sampling Period

Value Name Description
0x0 SMD Supply Monitor disabled
0x1 CSM Continuous Supply Monitor
0x2 32SLCK Supply Monitor enabled one SLCK period every 32 SLCK periods
0x3 256SLCK Supply Monitor enabled one SLCK period every 256 SLCK periods
0x4 2048SLCK Supply Monitor enabled one SLCK period every 2,048 SLCK periods
0x5-0x7 Reserved Reserved

« SMRSTEN: Supply Monitor Reset Enable
0 (NOT_ENABLE) = the core reset signal “vddcore_nreset” is not affected when a supply monitor detection occurs.

1 (ENABLE) = the core reset signal, vddcore_nreset is asserted when a supply monitor detection occurs.

e SMIEN: Supply Monitor Interrupt Enable

0 (NOT_ENABLE) = the SUPC interrupt signal is not affected when a supply monitor detection occurs.

1 (ENABLE) = the SUPC interrupt signal is asserted when a supply monitor detection occurs.

3.6 SAMAS Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

1755 Supply Controller Mode Register
Name: SUPC_MR

Address: 0x400E1418

Access: Read-write
31 30 29 28 27 26 25 24

| KEY |
23 22 21 20 19 18 17 16

| — | — | - | OSCBYPASS | — | - | - | - |
15 14 13 12 11 10 9 8

| - | ONREG | BODDIS | BODRSTEN | - | - | - | - |

7 6 5 4 3 2 1 0

« BODRSTEN: Brownout Detector Reset Enable
0 (NOT_ENABLE) = the core reset signal “vddcore_nreset” is not affected when a brownout detection occurs.

1 (ENABLE) = the core reset signal, vddcore_nreset is asserted when a brownout detection occurs.
+ BODDIS: Brownout Detector Disable

0 (ENABLE) = the core brownout detector is enabled.

1 (DISABLE) = the core brownout detector is disabled.

» ONREG: Voltage Regulator enable

0 (ONREG_UNUSED) = Voltage Regulator is not used

1 (ONREG_USED) = Voltage Regulator is used

*+ OSCBYPASS: Oscillator Bypass

0 (NO_EFFECT) = no effect. Clock selection depends on XTALSEL value.

1 (BYPASS) = the 32-KHz XTAL oscillator is selected and is put in bypass mode.

» KEY: Password Key
Should be written to value 0xA5. Writing any other value in this field aborts the write operation.

AImEl@ 317

11100B-ATARM-31-Jul-12

17.5.6 Supply Controller Wake Up Mode Register
Name: SUPC_WUMR

Address: 0x400E141C

Access: Read-write
31 30 29 28 27 26 25 24

— 1 - 1T - T - T - T - - —]
23 22 21 20 19 18 17 16

I - I - I - I - I - I LPDBC |
15 14 13 12 11 10 9 8

| - | WKUPDBC | - | - | - | - |
7 6 5 4 3 2 1 0

| LPDBCCLR | LPDBCEN1 | LPDBCENO | - | RTCEN | RTTEN | SMEN | - |

e SMEN: Supply Monitor Wake Up Enable
0 (NOT_ENABLE) = the supply monitor detection has no wake up effect.

1 (ENABLE) = the supply monitor detection forces the wake up of the core power supply.

 RTTEN: Real Time Timer Wake Up Enable

0 (NOT_ENABLE) =the RTT alarm signal has no wake up effect.

1 (ENABLE) = the RTT alarm signal forces the wake up of the core power supply.

» RTCEN: Real Time Clock Wake Up Enable

0 (NOT_ENABLE) = the RTC alarm signal has no wake up effect.

1 (ENABLE) = the RTC alarm signal forces the wake up of the core power supply.

 LPDBCENO: Low power Debouncer ENable WKUPO

0 (NOT_ENABLE) = the WKUPO input pin is not connected with low power debouncer.

1 (ENABLE) = the WKUPO input pin is connected with low power debouncer and can force a core wake up.
 LPDBCENL1: Low power Debouncer ENable WKUP1

0 (NOT_ENABLE) = the WKUP1linput pin is not connected with low power debouncer.

1 (ENABLE) = the WKUP1 input pin is connected with low power debouncer and can force a core wake up.
 LPDBCCLR: Low power Debouncer Clear

0 (NOT_ENABLE) = a low power debounce event does not create an immediate clear on first half GPBR registers.

1 (ENABLE) = a low power debounce event on WKUPO or WKUP1 generates an immediate clear on first half GPBR
registers.

» WKUPDBC: Wake Up Inputs Debouncer Period

318 SAMAS Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

Value Name Description
0 IMMEDIATE Immediate, no debouncing, detected active at least on one Slow Clock edge.
1 3 _SCLK WKUPXx shall be in its active state for at least 3 SLCK periods
2 32_SCLK WKUPXx shall be in its active state for at least 32 SLCK periods
3 512_SCLK WKUPXx shall be in its active state for at least 512 SLCK periods
4 4096_SCLK WKUPXx shall be in its active state for at least 4,096 SLCK periods
5 32768_SCLK WKUPXx shall be in its active state for at least 32,768 SLCK periods
6 Reserved Reserved
7 Reserved Reserved

* LPDBC: Low Power DeBounCer Period

Value Name Description
0 DISABLE Disable the low power debouncer.
1 2_RTCOUTO WKUPO/1 in its active state for at least 2 RTCOUTO periods
2 3_RTCOUTO WKUPO/1 in its active state for at least 3 RTCOUTO periods
3 4 RTCOUTO WKUPO/1 in its active state for at least 4 RTCOUTO periods
4 5 RTCOUTO WKUPO/1 in its active state for at least 5 RTCOUTO periods
5 6_RTCOUTO WKUPO/1 in its active state for at least 6 RTCOUTO periods
6 7_RTCOUTO WKUPO/1 in its active state for at least 7 RTCOUTO periods
7 8 RTCOUTO WKUPO/1 in its active state for at least 8 RTCOUTO periods

11100B-ATARM-31-Jul-12

ATMEL

319

ATMEL

17.5.7 System Controller Wake Up Inputs Register
Name: SUPC_WUIR

Address: 0x400E1420

Access: Read-write
31 30 29 28 27 26 25 24

| WKUPT15 | WKUPT14 | WKUPT13 | WKUPT12 | WKUPT11 | WKUPT10 | WKUPT9 | WKUPTS8 |
23 22 21 20 19 18 17 16

| WKUPT7 | WKUPT6 | WKUPT5 | WKUPT4 | WKUPT3 | WKUPT2 | WKUPT1 | WKUPTO |
15 14 13 12 11 10 9 8

| WKUPEN15 | WKUPEN14 | WKUPEN13 | WKUPEN12 | WKUPEN11 | WKUPEN10 | WKUPEN9 | WKUPENS |

7 6 5 4 3 2 1 0
| WKUPEN7 | WKUPENG | WKUPEN5 | WKUPEN4 | WKUPEN3 | WKUPEN2 | WKUPEN1 | WKUPENO |

« WKUPENO - WKUPEN15: Wake Up Input Enable 0 to 15
0 (DISABLE) = the corresponding wake-up input has no wake up effect.

1 (ENABLE) = the corresponding wake-up input forces the wake up of the core power supply.
« WKUPTO - WKUPT15: Wake Up Input Type O to 15

0 (LOW) = a low level for a period defined by WKUPDBC on the corresponding wake-up input forces the wake up of the
core power supply.

1 (HIGH) = a high level for a period defined by WKUPDBC on the corresponding wake-up input forces the wake up of the
core power supply.

3220 SAMAS Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

17.5.8 Supply Controller Status Register
Name: SUPC_SR

Address: 0x400E1424

Access: Read-write
31 30 29 28 27 26 25 24

| WKUPIS15 | WKUPIS14 | WKUPIS13 | WKUPIS12 | WKUPIS11 | WKUPIS10 | WKUPIS9 | WKUPISS8 |
23 22 21 20 19 18 17 16

| WKUPIS7 | WKUPIS6 | WKUPIS5 | WKUPIS4 | WKUPIS3 | WKUPIS2 | WKUPIS1 | WKUPISO |
15 14 13 12 11 10 9 8

| - | LPDBCS1 | LPDBCSO0 | - | - | — | — | _ |
7 6 5 4 3 2 1 0

| OSCSEL | SMOS | SMS | SMRSTS | BODRSTS | SMWS | WKUPS | - |

Note: Because of the asynchronism between the Slow Clock (SCLK) and the System Clock (MCK), the status register flag reset is
taken into account only 2 slow clock cycles after the read of the SUPC_SR.

 WKUPS: WKUP Wake Up Status

0 (NO) = no wake up due to the assertion of the WKUP pins has occurred since the last read of SUPC_SR.

1 (PRESENT) = at least one wake up due to the assertion of the WKUP pins has occurred since the last read of SUPC_SR.

« SMWS: Supply Monitor Detection Wake Up Status
0 (NO) = no wake up due to a supply monitor detection has occurred since the last read of SUPC_SR.

1 (PRESENT) = at least one wake up due to a supply monitor detection has occurred since the last read of SUPC_SR.

« BODRSTS: Brownout Detector Reset Status

0 (NO) = no core brownout rising edge event has been detected since the last read of the SUPC_SR.

1 (PRESENT) = at least one brownout output rising edge event has been detected since the last read of the SUPC_SR.

When the voltage remains below the defined threshold, there is no rising edge event at the output of the brownout detec-
tion cell. The rising edge event occurs only when there is a voltage transition below the threshold.

* SMRSTS: Supply Monitor Reset Status

0 (NO) = no supply monitor detection has generated a core reset since the last read of the SUPC_SR.

1 (PRESENT) = at least one supply monitor detection has generated a core reset since the last read of the SUPC_SR.

* SMS: Supply Monitor Status

0 (NO) = no supply monitor detection since the last read of SUPC_SR.

1 (PRESENT) = at least one supply monitor detection since the last read of SUPC_SR.

* SMOS: Supply Monitor Output Status

0 (HIGH) = the supply monitor detected VDDIO higher than its threshold at its last measurement.

1 (LOW) = the supply monitor detected VDDIO lower than its threshold at its last measurement.

11100B-ATARM-31-Jul-12

ATMEL

321

ATMEL

* OSCSEL: 32-kHz Oscillator Selection Status
0 (RC) = the slow clock, SLCK is generated by the embedded 32-kHz RC oscillator.

1 (CRYST) = the slow clock, SLCK is generated by the 32-kHz crystal oscillator.

 LPDBCSO0: Low Power Debouncer Wake Up Status on WKUPO

0 (NO) = no wake up due to the assertion of the WKUPO pin has occurred since the last read of SUPC_SR.

1 (PRESENT) = at least one wake up due to the assertion of the WKUPO pin has occurred since the last read of SUPC_SR.
 LPDBCS1: Low Power Debouncer Wake Up Status on WKUP1

0 (NO) = no wake up due to the assertion of the WKUP1 pin has occurred since the last read of SUPC_SR.

1 (PRESENT) = at least one wake up due to the assertion of the WKUP1 pin has occurred since the last read of SUPC_SR.

* WKUPIS0-WKUPIS15: WKUP Input Status 0 to 15

0 (DIS) = the corresponding wake-up input is disabled, or was inactive at the time the debouncer triggered a wake up
event.

1 (EN) = the corresponding wake-up input was active at the time the debouncer triggered a wake up event.

322 SAMAS Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

18. General Purpose Backup Registers (GPBR)

18.1 Description
The System Controller embeds Eight general-purpose backup registers.

18.2 Embedded Characteristics
« Eight 32-bit General Purpose Backup Registers

18.3 General Purpose Backup Registers (GPBR) User Interface

Table 18-1. Register Mapping

Offset Register Name Access Reset
0x0 General Purpose Backup Register 0 SYS_GPBRO Read-write -
0x1C General Purpose Backup Register 7 SYS_GPBR7 Read-write -

AImEl@ 323

11100B-ATARM-31-Jul-12

18.3.1 General Purpose Backup Register x
Name: SYS_GPBRx

Address: 0x400E1490

Access: Read-write
31 30 29 28 27 26 25 24

| GPBR_VALUE |
23 22 21 20 19 18 17 16

| GPBR_VALUE |
15 14 13 12 11 10 9 8

| GPBR_VALUE |
7 6 5 4 3 2 1 0

| GPBR_VALUE |

» GPBR_VALUE: Value of GPBR x

3224 SAMAS Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

19. Enhanced Embedded Flash Controller (EEFC)

19.1 Description
The Enhanced Embedded Flash Controller (EEFC) ensures the interface of the Flash block with
the 32-bit internal bus.

Its 128-bit or 64-bit wide memory interface increases performance. It also manages the pro-
gramming, erasing, locking and unlocking sequences of the Flash using a full set of commands.
One of the commands returns the embedded Flash descriptor definition that informs the system
about the Flash organization, thus making the software generic.

19.2 Embedded Characteristics
« Interface of the Flash Block with the 32-bit Internal Bus

« Increases Performance in Thumb2 Mode with 128-bit or -64 bit Wide Memory Interface up to
100 MHz

» Code loops optimization

» 128 Lock Bits, Each Protecting a Lock Region
* GPNVMx General-purpose GPNVM Bits

* One-by-one Lock Bit Programming

« Commands Protected by a Keyword

* Erases the Entire Flash

« Erases by Plane

« Erase by Sector

« Erase by Pages

* Possibility of Erasing before Programming
 Locking and Unlocking Operations

» Consecutive Programming and Locking Operations
* Possibility to read the Calibration Bits

AImEl@ 325

11100B-ATARM-31-Jul-12

ATMEL

19.3 Product Dependencies

19.3.1 Power Management
The Enhanced Embedded Flash Controller (EEFC) is continuously clocked. The Power Man-
agement Controller has no effect on its behavior.

19.3.2 Interrupt Sources

The Enhanced Embedded Flash Controller (EEFC) interrupt line is connected to the Nested
Vectored Interrupt Controller (NVIC). Using the Enhanced Embedded Flash Controller (EEFC)

interrupt requires the NVIC to be programmed first. The EEFC interrupt is generated only on
FRDY bit rising.

Table 19-1. Peripheral IDs

Instance ID

EFC 6

3226 SAMAS Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

19.4 Functional Description

19.4.1 Embedded Flash Organization
The embedded Flash interfaces directly with the 32-bit internal bus. The embedded Flash is
composed of;
+ One memory plane organized in several pages of the same size.
» Two 128-bit or 64-bit read buffers used for code read optimization.
* One 128-bit or 64-bit read buffer used for data read optimization.

« One write buffer that manages page programming. The write buffer size is equal to the page
size. This buffer is write-only and accessible all along the 1 MByte address space, so that
each word can be written to its final address.

« Several lock bits used to protect write/erase operation on several pages (lock region). A lock
bit is associated with a lock region composed of several pages in the memory plane.

« Several bits that may be set and cleared through the Enhanced Embedded Flash Controller
(EEFC) interface, called General Purpose Non Volatile Memory bits (GPNVM bits).
The embedded Flash size, the page size, the lock regions organization and GPNVM bits defini-
tion are described in the product definition section. The Enhanced Embedded Flash Controller
(EEFC) returns a descriptor of the Flash controlled after a get descriptor command issued by the
application (see “Getting Embedded Flash Descriptor” on page 333).

Figure 19-1. Embedded Flash Organization

Memory Plane

Start Address Lo D
Lock Region 0 - Lock Bit 0
Page (mil) -----------------
Lock Region 1 - Lock Bit 1
Lock Region (n-1) =< Lock Bit (n-1)
Start Address + Flash size -1 Page (L)

AImEl@ 327

11100B-ATARM-31-Jul-12

19.4.2

194.21

19.4.2.2

328

ATMEL

Read Operations

An optimized controller manages embedded Flash reads, thus increasing performance when the
processor is running in Thumb2 mode by means of the 128- or 64- bit wide memory interface.

The Flash memory is accessible through 8-, 16- and 32-bit reads.

As the Flash block size is smaller than the address space reserved for the internal memory area,
the embedded Flash wraps around the address space and appears to be repeated within it.

The read operations can be performed with or without wait states. Wait states must be pro-
grammed in the field FWS (Flash Read Wait State) in the Flash Mode Register (EEFC_FMR).
Defining FWS to be 0 enables the single-cycle access of the embedded Flash. Refer to the Elec-
trical Characteristics for more details.

128-bit or 64-bit Access Mode

By default the read accesses of the Flash are performed through a 128-bit wide memory inter-
face. It enables better system performance especially when 2 or 3 wait state needed.

For systems requiring only 1 wait state, or to privilege current consumption rather than perfor-
mance, the user can select a 64-bit wide memory access via the FAM bit in the Flash Mode
Register (EEFC_FMR)

Please refer to the electrical characteristics section of the product datasheet for more details.

Code Read Optimization

This feature is enabled if the EEFC_FMR register bit SCOD is cleared.
A system of 2 x 128-bit or 2 x 64-bit buffers is added in order to optimize sequential Code Fetch.

Note: Immediate consecutive code read accesses are not mandatory to benefit from this optimization.

The sequential code read optimization is enabled by default. If the bit SCODIS in Flash Mode
Register (EEFC_FMR) is set to 1, these buffers are disabled and the sequential code read is not
optimized anymore.

Another system of 2 x 128-hit or 2 x 64-bit buffers is added in order to optimize loop code fetch.
When a backward jump is inserted in the code, the pipeline of the sequential optimization is bro-
ken, and it becomes inefficient. In this case the loop code read optimization takes over from the
sequential code read optimization to avoid insertion of wait states. The loop code read optimiza-
tion is enabled by default. If in Flash Mode Register (EEFC_FMR), the bit CLOE is reset to 0 or
the bit SCODIS is set to 1, these buffers are disabled and the loop code read is not optimized
anymore.

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

Figure 19-2. Code Read Optimization for FWS =0

wserco ||| L L1 L L1 [L L[|
== N SO S S SO SO S S

@Byte 0 @Byte 4 @Byte 8 @Byte 12 @Byte 16 @Byte 20 @Byte 24 @Byte 28 @Byte 32

Flash Access X Bytes 0-15 X Bytes 16-31 X X X Bytes 32-47 X X X

Buffer 0 (128bits) X XXX X Bytes 0-15 X Bytes 32-47
Buffer 1 (128bits) X XXX X Bytes 16-31
Data To ARM XXX X Bytes 0-3 X Bytes 47 X Bytes 8-11 X Bytes 12-15 X Bytes 16-19 XBytes 20-23 X Bytes 24-27 X Bytes 28-31

Note: When FWS is equal to 0O, all the accesses are performed in a single-cycle access.

Figure 19-3. Code Read Optimization for FWS = 3

s 1 1ttt 111111117

@Byte 0 8 @12 @16 @20 @24 @28 @32 @36 @40 @44 @48 @52
Flash Access X Bytes 0-15 X Bytes 16-31 X Bytes 32-47 X Bytes 48-63
Buffer 0 (128bits) XXX X Bytes 0-15 X Bytes 32-47
Buffer 1 (128bits) XXX X Bytes 16-31

Data To ARM X XXX 4-7 X 8-11 X12-15 X16-19X 20-23X 24-27X 28-31X32-35X 36-39X 40-43X 44-47X48-51

Note: When FWS is included between 1 and 3, in case of sequential reads, the first access takes (FWS+1) cycles, the other ones only
1 cycle.

19.4.2.3 Code Loops Optimization

The Code Loops optimization is enabled when the CLOE bit of the EEFC_FMR register is set
atl.

Figure 19-4 below illustrates the Code Loops optimization.

When this feature is enabled, if inner loop body instructions L, to L,, lay from the 128-bit flash
memory cell My, to the memory cell My, after recognition of a first backward branch, the two first
flash memory cells My, and My, targeted by this branch are cached for fast access from the pro-
cessor at the next loop iterations.

AImEl@ 329

11100B-ATARM-31-Jul-12

ATMEL

Afterwards, combining the sequential prefetch (described in Section 19.4.2.2 "Code Read Opti-
mization”) through the loop body with the fast read access to the loop entry cache, the whole
loop can be iterated with no wait-state.

Figure 19-4. Code Loops Optimization

Backward address jump

Flash Memory |
128-bit words

1
I
I
Mo I My, Mgo M
! | I ! 1
I I [I |
| | vl [u]s | s [toe [Ls [b [t [W |] |
_______________ T T 1
I I I
By B, B, B, | B, Bs Bs B, . ' P, P, P, P, 1 P, Ps Ps P, |
) y
2x128-bit loop entry 2x128-bit prefetch ”
cache buffer
My, Branch Cache 0 Ly Loop Entry instruction Mpo Prefetch Buffer 0
My, Branch Cache 1 L, Loop End instruction Mp; Prefetch Buffer 1

19.4.2.4 Data Read Optimization

The organization of the Flash in 128 bits (or 64 bits) is associated with two 128-bit (or 64-bit)
prefetch buffers and one 128-bit (or 64-bit) data read buffer, thus providing maximum system
performance. This buffer is added in order to store the requested data plus all the data contained
in the 128-bit (64-bit) aligned data. This speeds up sequential data reads if, for example, FWS is
equal to 1 (see Figure 19-5). The data read optimization is enabled by default. If the bit SCODIS
in Flash Mode Register (EEFC_FMR) is set to 1, this buffer is disabled and the data read is not
optimized anymore.

Note: No consecutive data read accesses are mandatory to benefit from this optimization.

Figure 19-5. Data Read Optimization for FWS = 1

wserco | L[L] L L L L L L L L L L
(0= N N SN N S N S S S

@Byte 0 @4 @8 @12 @16 @20 @24 @28 @32 @ 36
Flash Access xxx X Bytes0-15 X X Bytes 16-31 X X Bytes 32-47
Buffer (128bits) X XXX X Bytes 0-15 X Bytes 16-31

Data To ARM X XXX YovesosX 47 X 811 X 1215 X X16-19X 20-23 X 24-27 X 28-31 X X32-35

330 SAMAS Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

19.4.3

11100B-ATARM-31-Jul-12

Flash Commands

The Enhanced Embedded Flash Controller (EEFC) offers a set of commands such as program-
ming the memory Flash, locking and unlocking lock regions, consecutive programming and
locking and full Flash erasing, etc.

Table 19-2. Set of Commands

Command Value Mnemonic
Get Flash Descriptor 0x00 GETD
Write page 0x01 WP
Write page and lock 0x02 WPL
Erase page and write page 0x03 EWP
Erase page and write page then lock 0x04 EWPL
Erase all 0x05 EA
Erase Pages 0x07 EPA
Set Lock Bit 0x08 SLB
Clear Lock Bit 0x09 CLB
Get Lock Bit O0x0A GLB
Set GPNVM Bit 0x0B SGPB
Clear GPNVM Bit 0x0C CGPB
Get GPNVM Bit 0x0D GGPB
Start Read Unique Identifier Ox0E STUI
Stop Read Unique Identifier OxOF SPUI
Get CALIB Bit 0x10 GCALB
Erase Sector 0x11 ES
Write User Signature 0x12 wWus
Erase User Signature 0x13 EUS
Start Read User Signature 0x14 STUS
Stop Read User Signature 0x15 SPUS

In order to perform one of these commands, the Flash Command Register (EEFC_FCR) has to
be written with the correct command using the FCMD field. As soon as the EEFC_FCR register
is written, the FRDY flag and the FVALUE field in the EEFC_FRR register are automatically
cleared. Once the current command is achieved, then the FRDY flag is automatically set. If an
interrupt has been enabled by setting the FRDY bit in EEFC_FMR, the corresponding interrupt
line of the NVIC is activated. (Note that this is true for all commands except for the STUI Com-
mand. The FRDY flag is not set when the STUI command is achieved.)

All the commands are protected by the same keyword, which has to be written in the 8 highest
bits of the EEFC_FCR register.

Writing EEFC_FCR with data that does not contain the correct key and/or with an invalid com-
mand has no effect on the whole memory plane, but the FCMDE flag is set in the EEFC_FSR
register. This flag is automatically cleared by a read access to the EEFC_FSR register.

AImEl@ 331

ATMEL

When the current command writes or erases a page in a locked region, the command has no
effect on the whole memory plane, but the FLOCKE flag is set in the EEFC_FSR register. This
flag is automatically cleared by a read access to the EEFC_FSR register.

Figure 19-6. Command State Chart

Read Status: MC_FSR

A

Check if FRDY flag Set

lves

Write FCMD and PAGENB in Flash Command Register

Y

Read Status: MC_FSR

A

No

Check if FRDY flag Set

Check if FLOCKE flag Set Locking region violation

Check if FCMDE flag Set

lNo

Command Successfull

Bad keyword violation

332 SAMAS Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

19.4.3.1 Getting Embedded Flash Descriptor
This command allows the system to learn about the Flash organization. The system can take full
advantage of this information. For instance, a device could be replaced by one with more Flash
capacity, and so the software is able to adapt itself to the new configuration.
To get the embedded Flash descriptor, the application writes the GETD command in the
EEFC_FCR register. The first word of the descriptor can be read by the software application in
the EEFC_FRR register as soon as the FRDY flag in the EEFC_FSR register rises. The next
reads of the EEFC_FRR register provide the following word of the descriptor. If extra read oper-
ations to the EEFC_FRR register are done after the last word of the descriptor has been
returned, then the EEFC_FRR register value is 0 until the next valid command.
Table 19-3. Flash Descriptor Definition
Symbol Word Index Description
FL_ID 0 Flash Interface Description
FL_SIZE 1 Flash size in bytes
FL_PAGE_SIZE 2 Page size in bytes
FL_NB_PLANE 3 Number of planes.
FL_PLANEJO] 4 Number of bytes in the first plane.
FL_PLANE[FL_NB_PLANE-1] 4+ FL_NB_PLANE -1 Number of bytes in the last plane.
Number of lock bits. A bit is associated
FL NB LOCK 4+FL NB PLANE with a Iock'reglon. A lock bit is usgd to
- - - - prevent write or erase operations in the
lock region.
FL_LOCK]O0] 4+ FL_NB_PLANE + 1 Number of bytes in the first lock region.
19.4.3.2 Write Commands

11100B-ATARM-31-Jul-12

Several commands can be used to program the Flash.

Flash technology requires that an erase be done before programming. The full memory plane
can be erased at the same time, or several pages can be erased at the same time (refer to Fig-
ure 19-7, "Example of Partial Page Programming"”, and the paragraph below the figure.). Also, a
page erase can be automatically done before a page write using EWP or EWPL commands.

After programming, the page (the whole lock region) can be locked to prevent miscellaneous
write or erase sequences. The lock bit can be automatically set after page programming using
WPL or EWPL commands.

Data to be written are stored in an internal latch buffer. The size of the latch buffer corresponds
to the page size. The latch buffer wraps around within the internal memory area address space
and is repeated as many times as the number of pages within this address space.

Note: Writing of 8-bit and 16-bit data is not allowed and may lead to unpredictable data corruption.

Write operations are performed in a number of wait states equal to the number of wait states for
read operations.

AImEl@ 333

ATMEL

Data are written to the latch buffer before the programming command is written to the Flash
Command Register EEFC_FCR. The sequence is as follows:
» Write the full page, at any page address, within the internal memory area address space.

* Programming starts as soon as the page number and the programming command are written
to the Flash Command Register. The FRDY bit in the Flash Programming Status Register
(EEFC_FSR) is automatically cleared.

* When programming is completed, the FRDY bit in the Flash Programming Status Register
(EEFC_FSR) rises. If an interrupt has been enabled by setting the bit FRDY in EEFC_FMR,
the corresponding interrupt line of the NVIC is activated.

Two errors can be detected in the EEFC_FSR register after a programming sequence:

« Command Error: a bad keyword has been written in the EEFC_FCR register.

* Lock Error: the page to be programmed belongs to a locked region. A command must be
previously run to unlock the corresponding region.

« Flash Error: at the end of the programming, the WriteVerify test of the Flash memory has
failed.

By using the WP command, a page can be programmed in several steps if it has been erased
before (see Figure 19-7 below).

Figure 19-7. Example of Partial Page Programming

32-pit wide 32-pit wide 32-pit wide
—> > >
FF FF FF FF FF FF FF FF FF FF FF FF
X words FF FF FF FF FE FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF CA FE CA FE CA FE CA FE
X words FE FF FF FF CA FE CA FE CA FE CA FE
FF FF FF FF CA FE CA FE | _CA FE CA FE _ |
FF FF FF FF FF FF FF FF DE CA DE CA
Xword51 FF FF FF FF FF FF FF FF DE CA DE CA
FF FF FF FF FF FF FF FF | _DE CA_DE CA _ |
FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF
Xword51 FF FF FF FF FF FF FF FF FF_FF FF FF
Step 1. Step 2. Step 3.
Erase All Flash Programming of the second part of PageY Programming of the third part of Page Y

So Page Y erased

19.4.3.3 Erase Commands

Erase commands are allowed only on unlocked regions. Depending on the Flash memory, sev-
eral commands can be used to erase the Flash:

« Erase all memory (EA): all memory is erased. The processor must not fetch code from the
Flash memory.

 Erase pages (EPA): 4, 8, 16 or 32 pages are erased in the memory plane. The first page to
be erased is specified in the FARG[15:2] field of the MC_FCR register. The first page number
must be modulo 4, 8,16 or 32 according to the number of pages to erase at the same time.
The processor must not fetch code from the Flash memory.

33 SAMAS Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

» Erase Sector (ES): A full memory sector is erased. Sector size depends on the Flash
memory. FARG must be set with a page number that is in the sector to be erased. The
processor must not fetch code from the Flash memory.

The erase sequence is:

* Erase starts as soon as one of the erase commands and the FARG field are written in the
Flash Command Register.

— For the EPA command, the 2 lowest bits of the FARG field define the number of
pages to be erased (FARG[1:0]):

Table 19-4. FARG Field for EPA command:

FARG[1:0] Number of pages to be erased with EPA command
0 4 pages
1 8 pages
2 16 pages
3 32 pages

* When the programming completes, the FRDY bit in the Flash Programming Status Register
(EEFC_FSR) rises. If an interrupt has been enabled by setting the FRDY bit in EEFC_FMR,
the interrupt line of the NVIC is activated.

Two errors can be detected in the EEFC_FSR register after a programming sequence:

« Command Error: a bad keyword has been written in the EEFC_FCR register.

 Lock Error: at least one page to be erased belongs to a locked region. The erase command
has been refused, no page has been erased. A command must be run previously to unlock
the corresponding region.

« Flash Error: at the end of the programming, the EraseVerify test of the Flash memory has
failed.

19.4.34 Lock Bit Protection
Lock bits are associated with several pages in the embedded Flash memory plane. This defines
lock regions in the embedded Flash memory plane. They prevent writing/erasing protected
pages.
The lock sequence is:
« The Set Lock command (SLB) and a page number to be protected are written in the Flash

Command Register.

* When the locking completes, the FRDY bit in the Flash Programming Status Register
(EEFC_FSR) rises. If an interrupt has been enabled by setting the FRDY bit in EEFC_FMR,
the interrupt line of the NVIC is activated.

« If the lock bit number is greater than the total number of lock bits, then the command has no
effect. The result of the SLB command can be checked running a GLB (Get Lock Bit)
command.

One error can be detected in the EEFC_FSR register after a programming sequence:

» Command Error: a bad keyword has been written in the EEFC_FCR register.
« Flash Error: at the end of the programming, the EraseVerify or WriteVerify test of the Flash

memory has failed.
AImEl 335
. ________________[G]

11100B-ATARM-31-Jul-12

ATMEL

It is possible to clear lock bits previously set. Then the locked region can be erased or pro-
grammed. The unlock sequence is:

» The Clear Lock command (CLB) and a page number to be unprotected are written in the
Flash Command Register.

* When the unlock completes, the FRDY bit in the Flash Programming Status Register
(EEFC_FSR) rises. If an interrupt has been enabled by setting the FRDY bit in EEFC_FMR,
the interrupt line of the NVIC is activated.

« If the lock bit number is greater than the total number of lock bits, then the command has no
effect.

One error can be detected in the EEFC_FSR register after a programming sequence:

« Command Error: a bad keyword has been written in the EEFC_FCR register.

* Flash Error: at the end of the programming, the EraseVerify or WriteVerify test of the Flash
memory has failed.

The status of lock bits can be returned by the Enhanced Embedded Flash Controller (EEFC).
The Get Lock Bit status sequence is:
* The Get Lock Bit command (GLB) is written in the Flash Command Register, FARG field is
meaningless.

« Lock bits can be read by the software application in the EEFC_FRR register. The first word
read corresponds to the 32 first lock bits, next reads providing the next 32 lock bits as long as
it is meaningful. Extra reads to the EEFC_FRR register return 0.

For example, if the third bit of the first word read in the EEFC_FRR is set, then the third lock
region is locked.
One error can be detected in the EEFC_FSR register after a programming sequence:

« Command Error: a bad keyword has been written in the EEFC_FCR register.

« Flash Error: at the end of the programming, the EraseVerify or WriteVerify test of the Flash
memory has failed.

Note: Access to the Flash in read is permitted when a set, clear or get lock bit command is performed.

19.4.3.5 GPNVM Bit
GPNVM bits do not interfere with the embedded Flash memory plane. Refer to the product defi-
nition section for information on the GPNVM Bit Action.

The set GPNVM bit sequence is:
« Start the Set GPNVM Bit command (SGPB) by writing the Flash Command Register with the
SGPB command and the number of the GPNVM bit to be set.

* When the GPVNM bit is set, the bit FRDY in the Flash Programming Status Register
(EEFC_FSR) rises. If an interrupt was enabled by setting the FRDY bit in EEFC_FMR, the
interrupt line of the NVIC is activated.

* If the GPNVM bit number is greater than the total number of GPNVM bits, then the command
has no effect. The result of the SGPB command can be checked by running a GGPB (Get
GPNVM Bit) command.

One error can be detected in the EEFC_FSR register after a programming sequence:

» Command Error: a bad keyword has been written in the EEFC_FCR register.

336 SAMAS Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

» Flash Error: at the end of the programming, the EraseVerify or WriteVerify test of the Flash
memory has failed.

It is possible to clear GPNVM bits previously set. The clear GPNVM bit sequence is:
« Start the Clear GPNVM Bit command (CGPB) by writing the Flash Command Register with
CGPB and the number of the GPNVM bit to be cleared.

« When the clear completes, the FRDY bit in the Flash Programming Status Register
(EEFC_FSR) rises. If an interrupt has been enabled by setting the FRDY bit in EEFC_FMR,
the interrupt line of the NVIC is activated.

* If the GPNVM bit number is greater than the total number of GPNVM bits, then the command
has no effect.

One error can be detected in the EEFC_FSR register after a programming sequence:

« Command Error: a bad keyword has been written in the EEFC_FCR register.
* Flash Error: at the end of the programming, the EraseVerify or WriteVerify test of the Flash
memory has failed.

The status of GPNVM bits can be returned by the Enhanced Embedded Flash Controller
(EEFC). The sequence is:

« Start the Get GPNVM bit command by writing the Flash Command Register with GGPB. The
FARG field is meaningless.

* GPNVM bits can be read by the software application in the EEFC_FRR register. The first
word read corresponds to the 32 first GPNVM bits, following reads provide the next 32
GPNVM bits as long as it is meaningful. Extra reads to the EEFC_FRR register return O.

For example, if the third bit of the first word read in the EEFC_FRR is set, then the third GPNVM
bit is active.
One error can be detected in the EEFC_FSR register after a programming sequence:

« Command Error: a bad keyword has been written in the EEFC_FCR register.

Note: Access to the Flash in read is permitted when a set, clear or get GPNVM bit command is
performed.

19.4.3.6 Calibration Bit
Calibration bits do not interfere with the embedded Flash memory plane.

It is impossible to modify the calibration bits.

The status of calibration bits can be returned by the Enhanced Embedded Flash Controller
(EEFC). The sequence is:

* Issue the Get CALIB Bit command by writing the Flash Command Register with GCALB (see
Table 19-2). The FARG field is meaningless.

« Calibration bits can be read by the software application in the EEFC_FRR register. The first
word read corresponds to the 32 first calibration bits, following reads provide the next 32
calibration bits as long as it is meaningful. Extra reads to the EEFC_FRR register return 0.

AImEl@ 337

11100B-ATARM-31-Jul-12

ATMEL

The 4/8/12 MHz Fast RC oscillator is calibrated in production. This calibration can be read
through the Get CALIB Bit command. The table below shows the bit implementation for each
frequency:

RC Calibration Frequency | EEFC_FRR Bits
8 MHz output [28 - 22]
12 MHz output [38 - 32]

The RC calibration for 4 MHz is set to 1,000,000.

19.4.3.7 Security Bit Protection

When the security is enabled, access to the Flash, either through the JTAG/SWD interface or
through the Fast Flash Programming Interface, is forbidden. This ensures the confidentiality of
the code programmed in the Flash.

The security bit is GPNVMO.

Disabling the security bit can only be achieved by asserting the ERASE pin at 1, and after a full
Flash erase is performed. When the security bit is deactivated, all accesses to the Flash are
permitted.

19.4.3.8 Unique ldentifier
Each part is programmed with a 128-bit Unique Identifier. It can be used to generate keys for
example.
To read the Unique Identifier the sequence is:
» Send the Start Read unigue Identifier command (STUI) by writing the Flash Command
Register with the STUI command.

* When the Unique Identifier is ready to be read, the FRDY bit in the Flash Programming
Status Register (EEFC_FSR) falls.

» The Unique Identifier is located in the first 128 bits of the Flash memory mapping, thus, at the
address 0x00400000-0x004003FF.

« To stop the Unique Identifier mode, the user needs to send the Stop Read unique Identifier
command (SPUI) by writing the Flash Command Register with the SPUI command.

* When the Stop read Unique Identifier command (SPUI) has been performed, the FRDY bit in
the Flash Programming Status Register (EEFC_FSR) rises. If an interrupt was enabled by
setting the FRDY bit in EEFC_FMR, the interrupt line of the NVIC is activated.

Note that during the sequence, the software can not run out of Flash (or the second plane in
case of dual plane).

19.4.3.9 User Signature
Each part contains a User Signature of 512-bytes. It can be used by the user for storage. Read,
write and erase of this area is allowed.
To read the User Signature, the sequence is as follows:
« Send the Start Read User Sighature command (STUS) by writing the Flash Command
Register with the STUS command.

* When the User Signature is ready to be read, the FRDY bit in the Flash Programming Status
Register (EEFC_FSR) falls.

338 SAMAS Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

» The User Signature is located in the first 512 bytes of the Flash memory mapping, thus, at
the address 0x00400000-0x004001FF.

« To stop the User Signature mode, the user needs to send the Stop Read User Signature
command (SPUS) by writing the Flash Command Register with the SPUS command.

* When the Stop Read User Signature command (SPUI) has been performed, the FRDY bit in
the Flash Programming Status Register (EEFC_FSR) rises. If an interrupt was enabled by
setting the FRDY bit in EEFC_FMR, the interrupt line of the NVIC is activated.

Note that during the sequence, the software can not run out of Flash (or the second plane, in
case of dual plane).
One error can be detected in the EEFC_FSR register after this sequence:

« Command Error: a bad keyword has been written in the EEFC_FCR register.
To write the User Signature, the sequence is:

« Write the full page, at any page address, within the internal memory area address space.

« Send the Write User Signature command (WUS) by writing the Flash Command Register
with the WUS command.

* When programming is completed, the FRDY bit in the Flash Programming Status Register
(EEFC_FSR) rises. If an interrupt has been enabled by setting the FRDY bit in EEFC_FMR,
the corresponding interrupt line of the NVIC is activated.

Two errors can be detected in the EEFC_FSR register after this sequence:

» Command Error: a bad keyword has been written in the EEFC_FCR register.

* Flash Error: at the end of the programming, the WriteVerify test of the Flash memory has
failed.

To erase the User Signature, the sequence is:
« Send the Erase User Signature command (EUS) by writing the Flash Command Register
with the EUS command.

* When programming is completed, the FRDY bit in the Flash Programming Status Register
(EEFC_FSR) rises. If an interrupt has been enabled by setting the FRDY bit in EEFC_FMR,
the corresponding interrupt line of the NVIC is activated.

Two errors can be detected in the EEFC_FSR register after this sequence:

« Command Error: a bad keyword has been written in the EEFC_FCR register.

« Flash Error: at the end of the programming, the EraseVerify test of the Flash memory has
failed.

AImEl@ 339

11100B-ATARM-31-Jul-12

ATMEL

19.5 Enhanced Embedded Flash Controller (EEFC) User Interface

The User Interface of the Enhanced Embedded Flash Controller (EEFC) is integrated within the System Controller with the
base address of 0x400E0AOQO.

Table 19-5. Register Mapping

Offset Register Name Access Reset State
0x00 EEFC Flash Mode Register EEFC_FMR Read-write 0x0400_0000
0x04 EEFC Flash Command Register EEFC_FCR Write-only -

0x08 EEFC Flash Status Register EEFC_FSR Read-only 0x00000001
0x0C EEFC Flash Result Register EEFC_FRR Read-only 0x0
0x10 Reserved - - -

340 SAMAS Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

19.5.1 EEFC Flash Mode Register

Name: EEFC_FMR

Address: 0x400EO0A00

Access: Read-write

Offset: 0x00
31 30 29 28 27 26 25 24

I - I - I - I - I - | coe | - FAM_ |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - scop |
15 14 13 12 11 10 9 8

| - | - | - | - | FWS |
7 6 5 4 3 2 1 0

I - I I - I - I - - - FROY |

* FRDY: Ready Interrupt Enable
0: Flash Ready does not generate an interrupt.

1: Flash Ready (to accept a new command) generates an interrupt.

* FWS: Flash Wait State

This field defines the number of wait states for read and write operations:
Number of cycles for Read/Write operations = FWS+1

* SCOD: Sequential Code Optimization Disable

0: The sequential code optimization is enabled.

1. The sequential code optimization is disabled.

No Flash read should be done during change of this register.

* FAM: Flash Access Mode

0: 128-bit access in read Mode only, to enhance access speed.

1. 64-bit access in read Mode only, to enhance power consumption.

No Flash read should be done during change of this register.

* CLOE: Code Loops Optimization Enable

0: The opcode loops optimization is disabled.

1: The opcode loops optimization is enabled.

No Flash read should be done during change of this register.

ATMEL

11100B-ATARM-31-Jul-12

341

ATMEL

19.5.2 EEFC Flash Command Register

Name: EEFC_FCR

Address: 0x400E0A04

Access: Write-only

Offset: 0x04
31 30 29 28 27 26 25 24

| FKEY |
23 22 21 20 19 18 17 16

| FARG |
15 14 13 12 11 10 9 8

| FARG |
7 6 5 4 3 2 1 0

| FCMD |

* FCMD: Flash Command
This field defines the Flash commands. Refer to “Flash Commands” on page 331.

* FARG: Flash Command Argument

Erase all command Field is meaningless.

FARG must be set with a page number that is in the

Erase plane command
memory plane to be erased.

FARG must be set with a page number that is in the sector to be

Erase sector command
erased.

FARG[15:2] defines the page from which the erase will start.
This page must be modulo 4, 8, 16 or 32 according to the
Erase pages command number of pages to erase.

FARGJ1:0] defines the number of pages to be erased. Refer to
Table 19-4 on page 335

Programming command FARG defines the page number to be programmed.
Lock command FARG defines the page number to be locked.
GPNVM command FARG defines the GPNVM number.

* FKEY: Flash Writing Protection Key
This field should be written with the value 0x5A to enable the command defined by the bits of the register. If the field is writ-
ten with a different value, the write is not performed and no action is started.

32 SAMAS Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

19.5.3 EEFC Flash Status Register

Name: EEFC_FSR

Address: 0x400EO0AO08

Access: Read-only

Offset: 0x08
31 30 29 28 27 26 25 24

I - I - I - - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - - I - I - I - I - |
7 6 5 4 3 2 1 0

| - | - [- - | FLERR | FLOCKE | FCMDE | FRDY |

* FRDY: Flash Ready Status

0: The Enhanced Embedded Flash Controller (EEFC) is busy.

1: The Enhanced Embedded Flash Controller (EEFC) is ready to start a new command.

When it is set, this flags triggers an interrupt if the FRDY flag is set in the EEFC_FMR register.

This flag is automatically cleared when the Enhanced Embedded Flash Controller (EEFC) is busy.

« FCMDE: Flash Command Error Status

0: No invalid commands and no bad keywords were written in the Flash Mode Register EEFC_FMR.

1: Aninvalid command and/or a bad keyword was/were written in the Flash Mode Register EEFC_FMR.

This flag is automatically cleared when EEFC_FSR is read or EEFC_FCR is written.

e FLOCKE: Flash Lock Error Status

0: No programming/erase of at least one locked region has happened since the last read of EEFC_FSR.

1: Programming/erase of at least one locked region has happened since the last read of EEFC_FSR.

This flag is automatically cleared when EEFC_FSR is read or EEFC_FCR is written.

 FLERR: Flash Error Status

0: No Flash Memory error occurred at the end of programming (EraseVerify or WriteVerify test has passed).

1: A Flash Memory error occurred at the end of programming (EraseVerify or WriteVerify test has failed).

11100B-ATARM-31-Jul-12

ATMEL

343

ATMEL

19.54 EEFC Flash Result Register

Name: EEFC_FRR

Address: 0x400EQAQ0C

Access: Read-only

Offset: 0x0C
31 30 29 28 27 26 25 24

| FVALUE |
23 22 21 20 19 18 17 16

| FVALUE |
15 14 13 12 11 10 9 8

| FVALUE |
7 6 5 4 3 2 1 0

| FVALUE |

* FVALUE: Flash Result Value
The result of a Flash command is returned in this register. If the size of the result is greater than 32 bits, then the next
resulting value is accessible at the next register read.

344 SAMAS Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

20. Fast Flash Programming Interface (FFPI)

20.1 Description

11100B-ATARM-31-Jul-12

The Fast Flash Programming Interface (FFPI) provides parallel high-volume programming using
a standard gang programmer. The parallel interface is fully handshaked and the device is con-
sidered to be a standard EEPROM. Additionally, the parallel protocol offers an optimized access
to all the embedded Flash functionalities.

Although the Fast Flash Programming Mode is a dedicated mode for high volume programming,
this mode is not designed for in-situ programming.

AImEl@ 345

ATMEL

20.2 Parallel Fast Flash Programming

20.2.1 Device Configuration
In Fast Flash Programming Mode, the device is in a specific test mode. Only a certain set of pins
is significant. The rest of the PIOs are used as inputs with a pull-up. The crystal oscillator is in
bypass mode. Other pins must be left unconnected.

Figure 20-1. SAM4SxB/C (64/100 pins) Parallel Programming Interface

VvDDIO —>| TST
VDDIO —>| PGMENO
VDDIO —>| PGMEN1
GND —>1 pPGMEN2 «—— VDDCORE
NCMD ——{ pGMNCMD < Vbolo
RDY <«—| PGMRDY <« VDDPLL
NOE ——| PGMNOE
NVALID <—{ PGMNVALID <« GND
MODE[3:0] —>| PGMM[3:0]
DATA[7:0] <—>| PGMDI[7:0]
0-50MHz — | XIN
Table 20-1. Signal Description List
Active
Signal Name Function Type Level Comments
Power
VDDIO I/O Lines Power Supply Power
VDDCORE Core Power Supply Power
VDDPLL PLL Power Supply Power
GND Ground Ground
Clocks
XIN Main Clock Input. Input ‘ ‘ 32KHz to 50MHz
Test
TST Test Mode Select Input High Must be connected to VDDIO
PGMENO Test Mode Select Input High Must be connected to VDDIO
PGMEN1 Test Mode Select Input High Must be connected to VDDIO
PGMEN2 Test Mode Select Input Low Must be connected to GND
P1O
PGMNCMD Valid command available Input Low Pulled-up input at reset
PGMRDY (1) 33:22 :z ?;:;/y for & new command Output High Pulled-up input at reset

a6 SAMAS Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

Table 20-1. Signal Description List (Continued)

Active
Signal Name Function Type Level Comments
PGMNOE Output Enable (active high) Input Low Pulled-up input at reset
0: DATA[15:0] is in input mode .
PGMNVALID . Output Low Pulled-up input at reset
1: DATA[15:0] is in output mode
PGMM[3:0] Specifies DATA type (See Table 20-2) Input Pulled-up input at reset
PGMDI[15:0] Bi-directional data bus Input/Output Pulled-up input at reset

20.2.2 Signhal Names

11100B-ATARM-31-Jul-12

Depending on the MODE settings, DATA is latched in different internal registers.

Table 20-2. Mode Coding
MODE[3:0] Symbol Data
0000 CMDE Command Register
0001 ADDRO Address Register LSBs
0010 ADDR1
0011 ADDR2
0100 ADDR3 Address Register MSBs
0101 DATA Data Register
Default IDLE No register

When MODE is equal to CMDE, then a new command (strobed on DATA[15:0] signals) is stored

in the command register.

Table 20-3. Command Bit Coding
DATA[15:0] Symbol Command Executed

0x0011 READ Read Flash
0x0012 WP Write Page Flash
0x0022 WPL Write Page and Lock Flash
0x0032 EWP Erase Page and Write Page
0x0042 EWPL Erase Page and Write Page then Lock
0x0013 EA Erase All
0x0014 SLB Set Lock Bit
0x0024 CLB Clear Lock Bit
0x0015 GLB Get Lock Bit
0x0034 SGPB Set General Purpose NVM bit
0x0044 CGPB Clear General Purpose NVM bit
0x0025 GGPB Get General Purpose NVM bit
0x0054 SSE Set Security Bit

ATMEL

347

ATMEL

Table 20-3. Command Bit Coding (Continued)

DATA[15:0] Symbol Command Executed
0x0035 GSE Get Security Bit
0x001F WRAM Write Memory
0x001E GVE Get Version

20.2.3 Entering Programming Mode
The following algorithm puts the device in Parallel Programming Mode:

 Apply GND, VDDIO, VDDCORE and VDDPLL.

* Apply XIN clock within Tpog reser if @n external clock is available.
* Wait for Tpor_geser

« Start a read or write handshaking.

Note: After reset, the device is clocked by the internal RC oscillator. Before clearing RDY signal, if an
external clock (> 32 kHz) is connected to XIN, then the device switches on the external clock.
Else, XIN input is not considered. A higher frequency on XIN speeds up the programmer
handshake.

20.2.4 Programmer Handshaking

An handshake is defined for read and write operations. When the device is ready to start a new
operation (RDY signal set), the programmer starts the handshake by clearing the NCMD signal.
The handshaking is achieved once NCMD signal is high and RDY is high.

20.2.4.1 Write Handshaking
For details on the write handshaking sequence, refer to Figure 20-2 and Table 20-4.

Figure 20-2. SAM4SxB/C (64/100 pins) Parallel Programming Timing, Write Sequence

NCMD @) ®@
RDY ® ®

NOE

NVALID

@)

a8 SAMAS Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

Table 20-4. Write Handshake
Step Programmer Action Device Action Data I/O
1 Sets MODE and DATA signals Waits for NCMD low Input
2 Clears NCMD signal Latches MODE and DATA Input
3 Waits for RDY low Clears RDY signal Input
4 Releases MODE and DATA signals Executes command and polls NCMD high Input
5 Sets NCMD signal Executes command and polls NCMD high Input
6 Waits for RDY high Sets RDY Input
20.2.4.2 Read Handshaking

For details on the read handshaking sequence, refer to Figure 20-3 and Table 20-5.

Figure 20-3. SAM4SxB/C (64/100 pins) Parallel Programming Timing, Read Sequence

NCMD @

&)

RDY

o

NOE

® ®

NVALID

@\'_?ﬁ
® ® ©® O

DATA[7:0] >< Adress IN >< z >< Data OUT M
@

MODE[3:0] >< ADDR

.00 8. 8.00

Table 20-5. Read Handshake
Step Programmer Action Device Action DATA I/O
1 Sets MODE and DATA signals Waits for NCMD low Input
2 Clears NCMD signal Latch MODE and DATA Input
3 Waits for RDY low Clears RDY signal Input
4 Sets DATA signal in tristate Waits for NOE Low Input
5 Clears NOE signal Tristate
6 Waits for NVALID low iiilgﬁT?o?::r:?s.ompm mode and outputs Output
7 Clears NVALID signal Output
8 Reads value on DATA Bus Waits for NOE high Output

11100B-ATARM-31-Jul-12

ATMEL

349

ATMEL

Table 20-5. Read Handshake (Continued)
Step Programmer Action Device Action DATA I/O
9 Sets NOE signal Output
10 Waits for NVALID high Sets DATA bus in input mode X
11 Sets DATA in output mode Sets NVALID signal Input
12 Sets NCMD signal Waits for NCMD high Input
13 Waits for RDY high Sets RDY signal Input

20.2.5 Device Operations

20.25.1

20.2.5.2

Several commands on the Flash memory are available. These commands are summarized in
Table 20-3 on page 347. Each command is driven by the programmer through the parallel inter-
face running several read/write handshaking sequences.

When a new command is executed, the previous one is automatically achieved. Thus, chaining
a read command after a write automatically flushes the load buffer in the Flash.

In the following table:

* DATA[15:0] pertains to SAM4SxB/C (64/100 pins)

Flash Read Command

This command is used to read the contents of the Flash memory. The read command can start
at any valid address in the memory plane and is optimized for consecutive reads. Read hand-
shaking can be chained; an internal address buffer is automatically increased.

Table 20-6. Read Command

Step Handshake Sequence MODE[3:0] DATA[15:0]
1 Write handshaking CMDE READ
2 Write handshaking ADDRO Memory Address LSB
3 Write handshaking ADDR1 Memory Address
4 Read handshaking DATA *Memory Address++
5 Read handshaking DATA *Memory Address++
n Write handshaking ADDRO Memory Address LSB
n+1 Write handshaking ADDR1 Memory Address
n+2 Read handshaking DATA *Memory Address++
n+3 Read handshaking DATA *Memory Address++

Flash Write Command

This command is used to write the Flash contents.

The Flash memory plane is organized into several pages. Data to be written are stored in a load
buffer that corresponds to a Flash memory page. The load buffer is automatically flushed to the
Flash:

350 SAMAS Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

20.2.5.3

20.2.54

11100B-ATARM-31-Jul-12

» Before access to any page other than the current one
* When a new command is validated (MODE = CMDE)

The Write Page command (WP) is optimized for consecutive writes. Write handshaking can be
chained; an internal address buffer is automatically increased.

Table 20-7. Write Command

Step Handshake Sequence MODE[3:0] DATA[15:0]
1 Write handshaking CMDE WP or WPL or EWP or EWPL
2 Write handshaking ADDRO Memory Address LSB
3 Write handshaking ADDR1 Memory Address
4 Write handshaking DATA *Memory Address++
5 Write handshaking DATA *Memory Address++
n Write handshaking ADDRO Memory Address LSB
n+1 Write handshaking ADDR1 Memory Address
n+2 Write handshaking DATA *Memory Address++
n+3 Write handshaking DATA *Memory Address++

The Flash command Write Page and Lock (WPL) is equivalent to the Flash Write Command.
However, the lock bit is automatically set at the end of the Flash write operation. As a lock region
is composed of several pages, the programmer writes to the first pages of the lock region using
Flash write commands and writes to the last page of the lock region using a Flash write and lock
command.

The Flash command Erase Page and Write (EWP) is equivalent to the Flash Write Command.
However, before programming the load buffer, the page is erased.

The Flash command Erase Page and Write the Lock (EWPL) combines EWP and WPL
commands.

Flash Full Erase Command

This command is used to erase the Flash memory planes.

All lock regions must be unlocked before the Full Erase command by using the CLB command.
Otherwise, the erase command is aborted and no page is erased.

Table 20-8. Full Erase Command

Step Handshake Sequence MODE[3:0] DATA[15:0]
1 Write handshaking CMDE EA
2 Write handshaking DATA 0

Flash Lock Commands

Lock bits can be set using WPL or EWPL commands. They can also be set by using the Set
Lock command (SLB). With this command, several lock bits can be activated. A Bit Mask is pro-
vided as argument to the command. When bit 0 of the bit mask is set, then the first lock bit is

activated.
Y)

20.2.55

20.2.5.6

352

ATMEL

In the same way, the Clear Lock command (CLB) is used to clear lock bits.

Table 20-9. Set and Clear Lock Bit Command
Step Handshake Sequence MODE]3:0] DATA[15:0]
1 Write handshaking CMDE SLB or CLB
2 Write handshaking DATA Bit Mask

Lock bits can be read using the Get Lock Bit command (GLB). The n™ lock bit is active when the
bit n of the bit mask is set..

Table 20-10. Get Lock Bit Command

Step Handshake Sequence MODE[3:0] DATA[15:0]
1 Write handshaking CMDE GLB
Lock Bit Mask Status
2 Read handshaking DATA 0 = Lock bit is cleared
1 = Lock bit is set

Flash General-purpose NVM Commands

General-purpose NVM bits (GP NVM bits) can be set using the Set GPNVM command (SGPB).
This command also activates GP NVM bits. A bit mask is provided as argument to the com-
mand. When bit 0 of the bit mask is set, then the first GP NVM bit is activated.

In the same way, the Clear GPNVM command (CGPB) is used to clear general-purpose NVM
bits. The general-purpose NVM bit is deactivated when the corresponding bit in the pattern value
issetto 1.

Table 20-11. Set/Clear GP NVM Command

Step Handshake Sequence MODE[3:0] DATA[15:0]
1 Write handshaking CMDE SGPB or CGPB
2 Write handshaking DATA GP NVM bit pattern value

General-purpose NVM bits can be read using the Get GPNVM Bit command (GGPB). The n'
GP NVM bit is active when bit n of the bit mask is set..

Table 20-12. Get GP NVM Bit Command

Step Handshake Sequence MODEJ3:0] DATA[15:0]
1 Write handshaking CMDE GGPB
GP NVM Bit Mask Status
2 Read handshaking DATA 0 = GP NVM bit is cleared
1 =GP NVM hitis set

Flash Security Bit Command
A security bit can be set using the Set Security Bit command (SSE). Once the security bit is
active, the Fast Flash programming is disabled. No other command can be run. An event on the
Erase pin can erase the security bit once the contents of the Flash have been erased.

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

Table 20-13. Set Security Bit Command

Step Handshake Sequence MODE[3:0] DATA[15:0]
1 Write handshaking CMDE SSE
2 Write handshaking DATA 0

Once the security bit is set, it is not possible to access FFPI. The only way to erase the security
bit is to erase the Flash.

In order to erase the Flash, the user must perform the following:

» Power-off the chip

* Power-on the chip with TST =0

« Assert Erase during a period of more than 220 ms

» Power-off the chip
Then it is possible to return to FFPI mode and check that Flash is erased.

20.2.5.7 Memory Write Command
This command is used to perform a write access to any memory location.

The Memory Write command (WRAM) is optimized for consecutive writes. Write handshaking
can be chained; an internal address buffer is automatically increased.

Table 20-14. Write Command

Step Handshake Sequence MODE[3:0] DATA[15:0]

1 Write handshaking CMDE WRAM

2 Write handshaking ADDRO Memory Address LSB
3 Write handshaking ADDR1 Memory Address

4 Write handshaking DATA *Memory Address++
5 Write handshaking DATA *Memory Address++
n Write handshaking ADDRO Memory Address LSB
n+1 Write handshaking ADDR1 Memory Address

n+2 Write handshaking DATA *Memory Address++
n+3 Write handshaking DATA *Memory Address++

11100B-ATARM-31-Jul-12

ATMEL

353

ATMEL

20.2.5.8 Get Version Command
The Get Version (GVE) command retrieves the version of the FFPI interface.

Table 20-15. Get Version Command

Step Handshake Sequence MODE[3:0] DATA[15:0]
1 Write handshaking CMDE GVE
2 Write handshaking DATA Version

354 SAMAS Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

21. Cortex M Cache Controller (CMCC) (ONLY FOR SAM4SD32/SD16/SA16)

21.1 Description

The Cortex M Cache Controller (CMCC) is a 4-Way set associative unified cache controller. It
integrates a controller, tag directory, data memory, metadata memory and a configuration
interface.

21.2 Embedded Characteristics
 Physically addressed and physically tagged
« L1 data cache set to 2 Kbytes
L1 cache line size set to 16 Bytes
« L1 cache integrates 32 bus master interface
« Unified Direct mapped cache architecture
* Unified 4-Way set associative cache architecture
» Write through cache operations, read allocate
* Round Robin victim selection policy
< Event Monitoring, with one programmable 32-bit counter
« Configuration registers accessible through Cortex M Private Peripheral Bus
« Cache Interface includes cache maintenance operations registers

AImEl@ 355

11100B-ATARM-31-Jul-12

ATMEL

21.3 Block Diagram

Figure 21-1. Block Diagram

Cortex M Memory Interface Bus

Cortex M Interface

Cache METADATA RAM
Controller
RAM
Interface DATA RAM
Cortex M Registers
PPB Interface TAG RAM

Memory Interface

System Memory Bus

356 SAMAS Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

21.4 Functional Description

21.4.1 Cache Operation

On reset, the cache controller data entries are all invalidated and the cache is disabled. The
cache is transparent to processor operations. The cache controller is activated through the use
of its configuration registers. The configuration interface is memory mapped in the private
peripheral bus.

Use the following sequence to enable the cache controller.
1. Verify that the cache controller is disabled, reading the value of the CSTS (cache sta-
tus) field of the CMCC_SR register.

2. Enable the cache controller, writing one to CEN (cache enable) field of the
CMCC_CTRL register.

21.4.2 Cache Maintenance

If the contents seen by the cache has changed, the user needs to invalidate the cache entries. It
can be done line by line or for all cache entries.

21.4.2.1 Cache Invalidate by Line Operation
When an invalidate by line command is issued the cache controller resets the valid bit informa-
tion of the decoded cache line. As the line is no longer valid the replacement counter points to
that line.

Use the following sequence to invalidate one line of cache.

1. Disable the cache controller, writing O to the CEN field of the CMCC_CTRL register.
2. Check CSTS field of the CMCC_SR to verify that the cache is successfully disabled.

3. Perform an invalidate by line writing the bit set {index, way} in the CMCC_MAINT1
register.

4. Enable the cache controller, writing 1 to the CEN field of the CMCC_CTRL register.

21.4.2.2 Cache Invalidate All Operation
To invalidate all cache entries:

Write 1 to the INVALL field of the CMCC_MAINTO register.

21.4.3 Cache Performance Monitoring

The Cortex M cache controller includes a programmable 32-bit monitor counter. The monitor can
be configured to count the number of clock cycles, the number of data hits or the number of
instruction hits.

Use the following sequence to activate the counter

1. Configure the monitor counter, writing the MODE field of the CMCC_CFG register.
2. Enable the counter, writing one to the MENABLE field of the CMCC_MEN register.

3. If required, reset the counter, writing one to the SWRST field of the CMCC_MCTRL
register.

4. Check the value of the monitor counter, reading EVENT_CNT field of the CMCC_SR.

AImEl@ 357

11100B-ATARM-31-Jul-12

ATMEL

21.5 Cortex M Cache Controller (CMCC) User Interface

Table 21-1. Register Mapping

Offset Register Name Access Reset
0x00 Cache Type Register CMCC_TYPE Read-only -
0x04 Cache Configuration Register CMCC_CFG Read-write 0x00000000
0x08 Cache Control Register CMCC_CTRL Write-only 0x00000000
0x0C Cache Status Register CMCC_SR Read-only 0x00000000
0x10 - Ox1C Reserved - - -
0x20 Cache Maintenance Register O CMCC_MAINTO | Write-only -
0x24 Cache Maintenance Register 1 CMCC_MAINT1 | Write-only -
0x28 Cache Monitor Configuration Register CMCC_MCFG Read-write 0x00000000
0x2C Cache Monitor Enable Register CMCC_MEN Read-write 0x00000000
0x30 Cache Monitor Control Register CMCC_MCTRL Write-only -
0x34 Cache Monitor Status Register CMCC_MSR Read-only 0x00000000
0xXX - OxFC Reserved - - -

58 SAMAS Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

2151 Cache Controller Type Register
Name: CMCC_TYPE

Address: 0x4007C000

Access: Read-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| - | | CLSIZE | CSIZE |
7 6 5 4 3 2 1 0

| LCKDOWN | WAYNUM RRP LRUP | RANDP GCLK AP |

* AP: Access Port Access Allowed
0: Access Port Access is disabled.

1: Access Port Access is enabled.

* GCLK: Dynamic Clock Gating Supported

0: Cache controller does not support clock gating.
1: Cache controller uses dynamic clock gating.

* RANDP: Random Selection Policy Supported
0: Random victim selection is not supported.

1: Random victim selection is supported.

* LRUP: Least Recently Used Policy Supported
0: Least Recently Used Policy is not supported.

1: Least Recently Used Policy is supported.
 RRP: Random Selection Policy Supported

0: Random Selection Policy is not supported.

1: Random Selection Policy is supported.

« WAYNUM: Number of Way

Value Name Description
0 DMAPPED Direct Mapped Cache
1 ARCH2WAY 2-WAY set associative
2 ARCH4WAY 4-WAY set associative
3 ARCH8SWAY 8-WAY set associative

AImEl@ 359

11100B-ATARM-31-Jul-12

ATMEL

LCKDOWN: Lock Down Supported
: Lock Down is not supported.

o

1: Lock Down is supported.

CSIZE: Cache Size

Value Name Description
0 CSIZE_1KB Cache Size 1 KBytes
1 CSIZE_2KB Cache Size 2 KBytes
2 CSIZE_4KB Cache Size 4 KBytes
3 CSIZE_8KB Cache Size 8 KBytes

* CLSIZE: Cache Size

Value Name Description
0 CLSIZE_1KB 4 bytes
1 CLSIZE_2KB 8 bytes
2 CLSIZE_4KB 16 bytes
3 CLSIZE_8KB 32 bytes

30 SAMAS Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

21.5.2 Cache Controller Configuration Register
Name: CMCC_CFG

Address: 0x4007C004

Access: Read-write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

I - I - I - I - I - I - I - | GCLKDIS |

e GCLKDIS: Disable Clock Gating

0: Clock gating is activated.

1: Clock gating is disabled.

2153 Cache Controller Control Register

Name: CMCC_CTRL

Address: 0x4007C008

Access: Write-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

- T - 1 - T - 1 = T = T = T o]

 CEN: Cache Controller Enable
0: When set to 0 this field disables the cache controller.

1: When set to 1 this field enables the cache controller.

AImEl@ 361

11100B-ATARM-31-Jul-12

2154 Cache Controller Status Register
Name: CMCC_SR

Address: 0x4007C00C

Access: Write-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | - | csts |

e CSTS: Cache Controller Status
0: When read as 0, this field indicates that the cache controller is disabled.

1: When read as 1, this field indicates that the cache controller is enabled.

32 SAMAS Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

2155 Cache Controller Maintenance Register 0
Name: CMCC_MAINTO
Address: 0x4007C020
Access: Write-only
31 30 29 28 27 26 25 24
- T - T - SR - S
23 22 21 20 19 18 17 16
- T - T - — T - - — T -
15 14 13 12 11 10 9 8
- T - T - SR - S
7 4 2 1 0
| — | _ | — - | — - - | INVALL

* INVALL: Cache Controller Invalidate All

0: No effect.

1: When set to one, this field invalidates all cache entries.

11100B-ATARM-31-Jul-12

ATMEL

363

A IIIIEI% O

21.5.6 Cache Controller Maintenance Register 1
Name: CMCC_MAINT1

Address: 0x4007C024

Access: Write-only
31 30 29 28 27 26 25 24

I WAY I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| INDEX | - | - | - | - |

* INDEX: Invalidate Index
This field indicates the cache line that is being invalidated.

* WAY: Invalidate Way

Value Name Description

0 WAY0 Way 0 is s_elec_tlon for
index invalidation

1 WAY1 Way 1_ is sglec_tlon for
index invalidation

2 WAY2 Way 2_ is s_elec_tlon for
index invalidation

3 WAY3 Way 3 is sglegtlon for
index invalidation

364 SAMAS Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

21.5.7 Cache Controller Monitor Configuration Register

Name: CMCC_MCFG

Address: 0x4007C028

Access: Write-only
31 30 29 28 27 26 25 24

- T - T - 1T - T = - S
23 22 21 20 19 18 17 16

- T - T - T - T - - — T -]
15 14 13 12 11 10 9 8

- T - T - 1T - T = - S
7 6 5 4 3 2 1 0

MODE

» MODE: Cache Controller Monitor Counter Mode

Value Name Description
0 CYCLE_COUNT cycle counter
1 IHIT_COUNT instruction hit counter
2 DHIT_COUNT data hit counter

11100B-ATARM-31-Jul-12

ATMEL

365

ATMEL

21.5.8 Cache Controller Monitor Enable Register

Name: CMCC_MEN

Address: 0x4007C02C

Access: Write-only

Reset: 0x00002000
31 30 29 28 27 26 25 24

- T - T - T - T - - — T -]
23 22 21 20 19 18 17 16

- T - T - T - T - - — T -]
15 14 13 12 11 10 9 8

- T - T - T - T - - — T -]
7 6 5 4 3 2 1 0

| - | - | - | - | - - - | MENABLE |

« MENABLE: Cache Controller Monitor Enable
0: When set to 0, the monitor counter is disabled.

1: When set to 1, the monitor counter is activated.

366

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

21.5.9 Cache Controller Monitor Control Register
Name: CMCC_MCTRL
Address: 0x4007C030
Access: Write-only
Reset: 0x00002000
31 30 29 28 27 26 25 24
- T - - — T - - — T -]
23 22 21 20 19 18 17 16
I - — T - - — T -]
15 14 13 12 11 10 9 8
- T - - — T - - — T -]
7 6 5 4 3 2 1 0
- T - - — T - - -] swesT_]

« SWRST: Monitor
0: No effect.

1: When set to 1 this field resets the event counter register.

11100B-ATARM-31-Jul-12

ATMEL

367

21.5.10 Cache Controller Monitor Status Register
Name: CMCC_MSR

Address: 0x4007C034

Access: Write-only

Reset: 0x00002000
31 30 29 28 27 26 25 24

| EVENT_CNT |
23 22 21 20 19 18 17 16

| EVENT_CNT |
15 14 13 12 11 10 9 8

| EVENT_CNT |
7 6 5 4 3 2 1 0

| EVENT_CNT |

« EVENT_CNT: Monitor Event Counter

368 SAMAS Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

22. Cyclic Redundancy Check Calculation Unit (CRCCU)

22.1 Description

The Cyclic Redundancy Check Calculation Unit (CRCCU) has its own DMA which functions as a
Master with the Bus Matrix.

22.2 Embedded Characteristics
 32-bit cyclic redundancy check automatic calculation
* CRC calculation between two addresses of the memory

AImEl@ 369

11100B-ATARM-31-Jul-12

ATMEL

22.3 CRCCU Block Diagram

Figure 22-1. Block Diagram

Atmel Host

Context FSM

HRDATA | <iizzi:::;7
AHB Interface

HTRANS
T HSIZE
l AHB-Layer
< o
External
Bus Interface Flash AHB SRAM

370 SAMAS Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

22.4 Product Dependencies

224.1

22.4.2

22.5

2251

225.2

11100B-ATARM-31-Jul-12

Power Management

The CRCCU is clocked through the Power Management Controller (PMC), the programmer
must first configure the CRCCU in the PMC to enable the CRCCU clock.

Interrupt Source

The CRCCU has an interrupt line connected to the Interrupt Controller. Handling the CRCCU
interrupt requires programming the Interrupt Controller before configuring the CRCCU.

CRCCU Functional Description

CRC Calculation Unit description

The CRCCU integrates a dedicated Cyclic Redundancy Check (CRC) engine. When configured
and activated, this CRC engine performs a checksum computation on a Memory Area. CRC
computation is performed from the LSB to MSB bit. Three different polynomials are available
CCITT802.3, CASTAGNOLI and CCITT16, see the bitfield description, “PTYPE: Primitive Poly-
nomial” on page 387, for details.

CRC Calculation Unit Operation

The CRCCU has a DMA controller that supports programmable CRC memory checks. When
enabled, the DMA channel reads a programmable amount of data and computes CRC on the fly.

The CRCCU is controlled by two registers, TR_ADDR and TR_CTRL which need to be mapped
in the internal SRAM. The addresses of these two registers are pointed at by the
CRCCU_DSCR register.

Table 22-1. CRCCU Descriptor Memory Mapping

CRCCU Address SRAM Memory
CRCCU_DSCR+0x0 - TR_ADDR
CRCCU_DSCR+0x4 - TR_CTRL
CRCCU_DSCR+0x8 > Reserved
CRCCU_DSCR+0xC - Reserved
CRCCU_DSCR+0x10 > TR_CRC

TR_ADDR defines the start address of memory area targeted for CRC calculation.

TR_CTRL defines the buffer transfer size, the transfer width (byte, halfword, word) and the
transfer-completed interrupt enable.

To start the CRCCU, the user needs to set the CRC enable bit (ENABLE) in the CRCCU Mode
Register (CRCCU_MR), then configure it and finally set the DMA enable bit (DMAEN) in the
CRCCU DMA Enable Register (CRCCU_DMA_EN).

When the CRCCU is enabled, the CRCCU reads the predefined amount of data (defined in
TR_CTRL) located at TR_ADDR start address and computes the checksum.

The CRCCU_SR register contains the temporary CRC value.

AImEl@ 371

372

ATMEL

The BTSIZE field located in the TR_CTRL register (located in memory), is automatically decre-
mented if its value is different from zero. Once the value of the BTSIZE field is equal to zero, the
CRCCU is disabled by hardware. In this case, the relevant CRCCU DMA Status Register bit,
DMASR, is automatically cleared.

If the COMPARE field of the CRCCU_MR register is set to true, the TR_CRC (Transfer Refer-
ence Register) is compared with the last CRC computed. If a mismatch occurs, an error flag is
set and an interrupt is raised (if unmasked).

The CRCCU accesses the memory by single access (TRWIDTH size) in order not to limit the
bandwidth usage of the system, but the DIVIDER field of the CRCCU Mode Register can be
used to lower it by dividing the frequency of the single accesses.

In order to compute the CRC for a memory size larger than 256 Kbytes or for non-contiguous
memory area, it is possible to re-enable the CRCCU on the new memory area and the CRC will
be updated accordingly. Use the RESET field of the CRCCU_CR register to reset the CRCCU
Status Register to its default value (OXFFFF_FFFF).

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

22.6 Transfer Control Registers Memory Mapping

Table 22-2. Transfer Control Register Memory Mapping

Offset Register Name Access
CRCCU_DSCR + 0x0 CRCCU Transfer Address Register TR_ADDR Read-write
CRCCU_DSCR + 0x4 CRCCU Transfer Control Register TR_CTRL Read-write
CRCCU_DSCR + 0xC - 0x10 Reserved
CRCCU_DSCR+0x10 CRCCU Transfer Reference Register TR_CRC Read-write

Note: These Registers are memory mapped.

11100B-ATARM-31-Jul-12

ATMEL

373

22.6.1 Transfer Address Register
Name: TR_ADDR

Access: Read-write

Reset: 0x00000000

31 30 29 28 27 26 25 24

| ADDR |
23 22 21 20 19 18 17 16

| ADDR |
15 14 13 12 11 10 9 8

| ADDR |
7 6 5 4 3 2 1 0

| ADDR |

 ADDR: Transfer Address

sz SAMAS Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

22.6.2 Transfer Control Register
Name: TR_CTRL

Access: Read-write

Reset: 0x00000000

31 30 29 28 27 26 25 24

| - | - | - | - | IEN | - | TRWIDTH |
23 22 21 20 19 18 17 16

r - r - r - r - r - 1 - [- - |
15 14 13 12 11 10 9 8

| BTSIZE |
7 6 5 4 3 2 1 0

| BTSIZE |

 BTSIZE: Buffer Transfer Size

* TRWIDTH: Transfer Width Register

TRWIDTH Single Transfer Size
00 BYTE
01 HALFWORD
10 WORD

» |IEN: Context Done Interrupt Enable
When set to zero, the transfer done status bit is set at the end of the transfer.

AImEl@ 375

11100B-ATARM-31-Jul-12

22.6.3 Transfer Reference Register
Name: TR_CRC

Access: Read-write

Reset: 0x00000000

31 30 29 28 27 26 25 24
| REFCRC

23 22 21 20 19 18 17 16
| REFCRC

15 14 13 12 11 10 9 8
| REFCRC

7 6 5 4 3 2 1 0
| REFCRC

* REFCRC: Reference CRC
When Compare mode is enabled, the checksum is compared with that register.

376 SAMAS Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

22.7 Cyclic Redundancy Check Calculation Unit (CRCCU) User Interface

Table 22-3. Register Mapping
Offset Register Name Access Reset

0x00000000 CRCCU Descriptor Base Register CRCCU_DSCR Read-write 0x00000000
0x00000004 Reserved
0x00000008 CRCCU DMA Enable Register CRCCU_DMA_EN Write-only 0x00000000
0x0000000C CRCCU DMA Disable Register CRCCU_DMA_DIS Write-only 0x00000000
0x00000010 CRCCU DMA Status Register CRCCU_DMA_SR Read-only 0x00000000
0x00000014 CRCCU DMA Interrupt Enable Register CRCCU_DMA_IER Write-only 0x00000000
0x00000018 CRCCU DMA Interrupt Disable Register CRCCU_DMA_IDR Write-only 0x00000000
0x0000001C CRCCU DMA Interrupt Mask Register CRCCU_DMA_IMR Read-only 0x00000000
0x00000020 CRCCU DMA Interrupt Status Register CRCCU_DMA_ISR Read-only 0x00000000

0x0024-0x0030 |Reserved
0x00000034 CRCCU Control Register CRCCU_CR Write-only 0x00000000
0x00000038 CRCCU Mode Register CRCCU_MR Read-write 0x00000000
0x0000003C CRCCU Status Register CRCCU_SR Read-only OXFFFFFFFF
0x00000040 CRCCU Interrupt Enable Register CRCCU_IER Write-only 0x00000000
0x00000044 CRCCU Interrupt Disable Register CRCCU_IDR Write-only 0x00000000
0x00000048 CRCCU Interrupt Mask Register CRCCU_IMR Read-only 0x00000000
0x0000004C CRCCU Interrupt Status Register CRCCU_ISR Read-only 0x00000000

11100B-ATARM-31-Jul-12

ATMEL

377

ATMEL

22.7.1 CRCCU Descriptor Base Address Register
Name: CRCCU_DSCR

Address:0x40044000
Access: Read-write

Reset: 0x00000000

31 30 29 28 27 26 25 24

| DSCR |
23 22 21 20 19 18 17 16

| DSCR |
15 14 13 12 11 10 9 8

| DSCR | - |
7 6 5 4 3 2 1 0

» DSCR: Descriptor Base Address
DSCR needs to be aligned with 512-byte boundaries.

szs. SAMAS Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

22.7.2 CRCCU DMA Enable Register
Name: CRCCU_DMA_EN

Address:0x40044008
Access: Write-only

Reset: 0x00000000

31 30 29 28 27 26 25 24

. - - - - [- [- | N
73 22 21 20 19 18 17 16

. - r - - - [- [- | N
15 12 13 2 11 10 9 8

. - r - ¢ - - [- [- | N
7 6 5) 3 2 1 0

. - r - ¢ - - [- [- | - | DMAEN |

« DMAEN: DMA Enable Register
Write one to enable the CRCCU DMA channel.

AImEl@ 379

11100B-ATARM-31-Jul-12

22.7.3

Name:

CRCCU DMA Disable Register
CRCCU_DMA _DIS

Address:0x4004400C

Access: Write-only

ATMEL

Reset: 0x00000000

31 30 29 28 27 26 25 24
T T S — : S
23 22 21 20 19 18 17 16
I I S — : S
15 14 13 12 11 10 9 8
T T S — : S
7 6 5 4 3 2 1 0
T T — S — : —_ T owos]

* DMADIS: DMA Disable Register

Write one to disable the DMA channel

380

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

22.7.4

Address:0x40044010

Access: Read-only

CRCCU DMA Status Register
Name: CRCCU_DMA_SR

Reset: 0x00000000

31 30 29 28 27 26 25 24
T T S — : S
23 22 21 20 19 18 17 16
I I S — : S
15 14 13 12 11 10 9 8
T T S — : S
7 6 5 4 3 2 1 0
T T — S — : S L

» DMASR: DMA Status Register

When set to one, this bit indicates that DMA Channel is enabled.

11100B-ATARM-31-Jul-12

ATMEL

381

ATMEL

22.7.5 CRCCU DMA Interrupt Enable Register
Name: CRCCU_DMA_IER

Address:0x40044014
Access: Write-only

Reset: 0x00000000

31 30 29 28 27 26 25 24

. - - - - [- [- | N
73 22 21 20 19 18 17 16

. - r - - - [- [- | N
15 12 13 2 11 10 9 8

. - r - ¢ - - [- [- | N
7 6 5) 3 2 1 0

. - r - ¢ - - [- [- | - | DwAER |

* DMAIER: Interrupt Enable register
Set bit to one to enable the interrupt.

2 SAMAS Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

22.7.6

Address:0x40044018

Access: Write-only

CRCCU DMA Interrupt Disable Register
Name: CRCCU_DMA_IDR

Reset: 0x00000000

31 30 29 28 27 26 25 24
T T S — : S
23 22 21 20 19 18 17 16
I I S — : S
15 14 13 12 11 10 9 8
T T S — : S
7 6 5 4 3 2 1 0
T T — S — : S

* DMAIDR: Interrupt Disable register

Set to one to disable the interrupt.

11100B-ATARM-31-Jul-12

ATMEL

383

22.7.7 CRCCU DMA Interrupt Mask Register
Name: CRCCU_DMA_IMR

Address:0x4004401C
Access: Write-only

Reset: 0x00000000

ATMEL

31 30 29 28 27 26 25 24
T T T T _ : S
23 22 21 20 19 18 17 16
I I N R : S
15 14 13 12 11 10 9 8
I I R R : S
7 6 5 4 3 2 1 0
1T 1 T T _— : —_ T _ovA]

* DMAIMR: Interrupt Mask Register
0: Buffer Transfer Completed interrupt is disabled.

1: Buffer Transfer Completed interrupt is enabled.

84 SAMAS Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

22.7.8
Name:

Address:0x40044020

Access: Read-only

CRCCU DMA Interrupt Status Register
CRCCU_DMA_ISR

Reset: 0x00000000

31 30 29 28 27 26 25 24
T T S — : S
23 22 21 20 19 18 17 16
I I S — : S
15 14 13 12 11 10 9 8
T T S — : S
7 6 5 4 3 2 1 0
T T — S — : S

* DMAISR: Interrupt Status register

When DMAISR is set, DMA buffer transfer has terminated. This flag is reset after read.

11100B-ATARM-31-Jul-12

ATMEL

385

A IIIIEI% O

22.7.9 CRCCU Control Register
Name: CRCCU_CR

Address:0x40044034
Access: Write-only

Reset: 0x00000000

31 30 29 28 27 26 25 24

. - - - - [- [- | - [-
73 22 21 20 19 18 17 16

. - r - - - [- [- | - [-
15 12 13 2 11 10 9 8

. - r - ¢ - - [- [- | - [-
7 6 5) 3 2 1 0

. - r - ¢ - - [- [- | - | RESET

* RESET: CRC Computation Reset
When set to one, this bit resets the CRCCU_SR register to OXFFFF FFFF.

86 SAMAS Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

22.7.10 CRCCU Mode Register
Name: CRCCU_MR

Address:0x40044038
Access: Read Write

Reset: 0x00000000

31 30 29 28 27 26 25 24

. - r - r - r - r - r - 1 - [-]
23 22 21 20 19 18 17 16

. - r - r - r - r - r - 1 - [- /]
15 14 13 12 11 10 9 8

. - r - r - r - r - r - 1 - [- /]
7 6 5 4 3 2 1 0

| DIVIDER | PTYPE | COMPARE | ENABLE |

« ENABLE: CRC Enable

» COMPARE: CRC Compare

If set to one, this bit indicates that the CRCCU DMA will compare the CRC computed on the data stream with the value
stored.

in the TR_CRC reference register. If a mismatch occurs, the ERRISR bit in the CRCCU_ISR register is set.

* PTYPE: Primitive Polynomial

Value Name Description

0 CCITT8023 Polynom 0x04C11DB7
1 CASTAGNOLI Polynom Ox1EDC6F41
2 CCITT16 Polynom 0x1021

» DIVIDER: Request Divider
CRCCU DMA performs successive transfers. It is possible to reduce the bandwidth drained by the CRCCU DMA by pro-
gramming the DIVIDER field. The transfer request frequency is divided by 2*(DIVIDER+1).

AImEl@ 387

11100B-ATARM-31-Jul-12

22.7.11 CRCCU Status Register
Name: CRCCU_SR

Address:0x4004403C
Access: Read-only

Reset: 0x00000000

31 30 29 28 27 26 25 24

| CRC |
23 22 21 20 19 18 17 16

| CRC |
15 14 13 12 11 10 9 8

| CRC |
7 6 5 4 3 2 1 0

| CRC |

* CRC: Cyclic Redundancy Check Value
This register can not be read if the COMPARE field of the CRC_MR register is set to true.

88 SAMAS Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

22.7.12
Name: CRCCU_IER

Address:0x40044040
Access: Write-only

Reset: 0x00000000

CRCCU Interrupt Enable Register

31 30 29 28 27 26 25 24
I : S : — 1]
23 22 21 20 19 18 17 16
I : — 1 : — T]
15 14 13 12 11 10 9 8
I - — T : — T]
7 6 5 4 3 2 1 0
| - [- — - [- - — [ERREER |

* ERRIER: CRC Error Interrupt Enable

11100B-ATARM-31-Jul-12

ATMEL

389

ATMEL

22.7.13 CRCCU Interrupt Disable Register
Name: CRCCU_IDR

Address:0x40044044
Access: Write-only

Reset: 0x00000000

31 30 29 28 27 26 25 24

. - - - - [- [- | N
73 22 21 20 19 18 17 16

. - r - - - [- [- | N
15 12 13 2 11 10 9 8

. - r - ¢ - - [- [- | N
7 6 5) 3 2 1 0

. - r - ¢ - - [- [- | - | ERRDR |

* ERRIDR: CRC Error Interrupt Disable

300 SAMAS Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

22.7.14 CRCCU Interrupt Mask Register
Name: CRCCU_IMR

Address:0x40044048
Access: Write-only

Reset: 0x00000000

31 30 29 28 27 26 25 24

. - - - - [- [- | N
73 22 21 20 19 18 17 16

. - r - - - [- [- | N
15 12 13 2 11 10 9 8

. - r - ¢ - - [- [- | N
7 6 5) 3 2 1 0

. - r - ¢ - - [- [- | - | ERRIMR |

* ERRIMR: CRC Error Interrupt Mask

AImEl@ 391

11100B-ATARM-31-Jul-12

22.7.15 CRCCU Interrupt Status Register

Name: CRCCU_ISR
Address:0x4004404C
Access: Read-only

Reset: 0x00000000

ATMEL

31 30 29 28 27 26 25 24
I : S : — 1]
23 22 21 20 19 18 17 16
I : — 1 : — T]
15 14 13 12 11 10 9 8
I - — T : — T]
7 6 5 4 3 2 1 0

| - [- — - [- - — [ERRISR

» ERRISR: CRC Error Interrupt Status

322 SAMAS Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

23. SAM4S Boot Program

23.1 Description

The SAM-BA Boot Program integrates an array of programs permitting download and/or upload
into the different memories of the product.

23.2 Hardware and Software Constraints

* SAM-BA Boot uses the first 2048 bytes of the SRAM for variables and stacks. The remaining
available size can be used for user's code.

* USB Requirements:
— External Crystal or External Clock® with frequency of:
11,289 MHz

12,000 MHz
16,000 MHz
18,432 MHz

* UARTO requirements: None
Note: 1. Must be 2500 ppm and 1.2V Square Wave Signal.

Table 23-1. Pins Driven during Boot Program Execution

Peripheral Pin PIO Line
UARTO URXDO PA9
UARTO UTXDO PAL10

23.3 Flow Diagram
The Boot Program implements the algorithm in Figure 23-1.

Figure 23-1. Boot Program Algorithm Flow Diagram

No

Device
Setup

Character # received
from UARTO?

USB Enumeration
Successful ?

Yes

[Run SAM-BA Monitor| [Run sAm-BA Monitor|

The SAM-BA Boot program seeks to detect a source clock either from the embedded main oscil-
lator with external crystal (main oscillator enabled) or from a supported frequency signal applied
to the XIN pin (Main oscillator in bypass mode).

AImEl@ 393

11100B-ATARM-31-Jul-12

ATMEL

If a clock is found from the two possible sources above, the boot program checks to verify that
the frequency is one of the supported external frequencies. If the frequency is one of the sup-
ported external frequencies, USB activation is allowed, else (no clock or frequency other than
one of the supported external frequencies), the internal 12 MHz RC oscillator is used as main
clock and USB clock is not allowed due to frequency drift of the 12 MHz RC oscillator.

23.4 Device Initialization

394

Initialization follows the steps described below:

1. Stack setup

2. Setup the Embedded Flash Controller

3. External Clock detection (crystal or external clock on XIN)

4. If external crystal or clock with supported frequency, allow USB activation
5. Else, does not allow USB activation and use internal 12 MHz RC oscillator
6. Main oscillator frequency detection if no external clock detected

7. Switch Master Clock on Main Oscillator

8. C variable initialization

9. PLLA setup: PLLA is initialized to generate a 48 MHz clock

10. Disable the Watchdog

11. Initialization of UARTO (115200 bauds, 8, N, 1)

12. Initialization of the USB Device Port (in case USB activation allowed)

13. Wait for one of the following events

a. Check if USB device enumeration has occurred
b. Check if characters have been received in UARTO
14. Jump to SAM-BA Monitor (see Section 23.5 "SAM-BA Monitor”)

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

23.5 SAM-BA Monitor
The SAM-BA boot principle:

Once the communication interface is identified, to run in an infinite loop waiting for different com-
mands as shown in Table 23-2.

Table 23-2. Commands Available through the SAM-BA Boot
Command Action Argument(s) Example
N Set Normal Mode No argument N#
T Set Terminal Mode No argument T#
(0] Write a Byte Address, Value# 0200001,CA#
0 Read a Byte Address,# 0200001 ,#
H Write a Half Word Address, Value# H200002,CAFE#
h Read a Half Word Address,# h200002,#
W Write a Word Address, Value# W200000,CAFEDECA#
w Read a Word Address,# w200000,#
S Send a File Address,# S200000,#
R Receive a File Address, NbOfBytes# R200000,1234+#
G Go Address# G200200#
\% Display Version No argument V#

* Mode commands:
— Normal mode configures SAM-BA Monitor to send/receive data in binary format,
— Terminal mode configures SAM-BA Monitor to send/receive data in ascii format.
* Write commands: Write a byte (O), a halfword (H) or a word (W) to the target.
— Address: Address in hexadecimal.
— Value: Byte, halfword or word to write in hexadecimal.
— Output: >,
« Read commands: Read a byte (0), a halfword (h) or a word (w) from the target.
— Address: Address in hexadecimal
— Output: The byte, halfword or word read in hexadecimal following by ‘>’
« Send a file (S): Send a file to a specified address
— Address: Address in hexadecimal
— Output: >,

Note: There is a time-out on this command which is reached when the prompt >’ appears before the
end of the command execution.

» Receive a file (R): Receive data into a file from a specified address

— Address: Address in hexadecimal
— NbOfBytes: Number of bytes in hexadecimal to receive

— Output: >’
AImEl@ 395

11100B-ATARM-31-Jul-12

2351

23.5.2

396

ATMEL

* Go (G): Jump to a specified address and execute the code
— Address: Address to jump in hexadecimal
— Output: >’

« Get Version (V): Return the SAM-BA boot version
— Output: >’

UARTO Serial Port

Communication is performed through the UARTO initialized to 115200 Baud, 8, n, 1.

The Send and Receive File commands use the Xmodem protocol to communicate. Any terminal
performing this protocol can be used to send the application file to the target. The size of the
binary file to send depends on the SRAM size embedded in the product. In all cases, the size of
the binary file must be lower than the SRAM size because the Xmodem protocol requires some
SRAM memory to work. See, Section 23.2 "Hardware and Software Constraints”

Xmodem Protocol

The Xmodem protocol supported is the 128-byte length block. This protocol uses a two-charac-
ter CRC-16 to guarantee detection of a maximum bit error.

Xmodem protocol with CRC is accurate provided both sender and receiver report successful
transmission. Each block of the transfer looks like:

<SOH><blk #><255-blk #><--128 data bytes--><checksum> in which:

— <SOH> = 01 hex

— <blk #> = binary number, starts at 01, increments by 1, and wraps OFFH to 00H (not
to 01)

— <255-blk #> = 1's complement of the blk#.
— <checksum> = 2 bytes CRC16
Figure 23-2 shows a transmission using this protocol.

Figure 23-2. Xmodem Transfer Example

Host Device

Cc

<

SOH 01 FE Data[128] CRC CRC

-

ACK

<

SOH 02 FD Data[128] CRC CRC

ACK

<

SOH 03 FC Data[100] CRC CRC

ACK

<
<

EOT

A\

ACK

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

23.5.3 USB Device Port

The device uses the USB communication device class (CDC) drivers to take advantage of the
installed PC RS-232 software to talk over the USB. The CDC class is implemented in all
releases of Windows®, from Windows 98SE to Windows XP. The CDC document, available at
www.usbh.org, describes a way to implement devices such as ISDN modems and virtual COM
ports.

The Vendor ID (VID) is Atmel’s vendor ID OxO3EB. The product ID (PID) is 0x6124. These refer-
ences are used by the host operating system to mount the correct driver. On Windows systems,
the INF files contain the correspondence between vendor ID and product ID.

For More details about VID/PID for End Product/Systems, please refer to the Vendor ID form
available from the USB Implementers Forum:
http://www.usb.org/developers/vendor/VID_Only_Form_withCCAuth_102407b.pdf

"Unauthorized use of assigned or unassigned USB Vendor ID Numbers and associated Product
ID Numbers is strictly prohibited."

Atmel provides an INF example to see the device as a new serial port and also provides another
custom driver used by the SAM-BA application: atm6124.sys. Refer to the document “USB Basic
Application”, literature number 6123, for more details.

23.5.3.1 Enumeration Process

11100B-ATARM-31-Jul-12

The USB protocol is a master/slave protocol. This is the host that starts the enumeration send-
ing requests to the device through the control endpoint. The device handles standard requests
as defined in the USB Specification.

Table 23-3. Handled Standard Requests

Request Definition

GET_DESCRIPTOR Returns the current device configuration value.
SET_ADDRESS Sets the device address for all future device access.
SET_CONFIGURATION Sets the device configuration.
GET_CONFIGURATION Returns the current device configuration value.
GET_STATUS Returns status for the specified recipient.
SET_FEATURE Set or Enable a specific feature.

CLEAR_FEATURE Clear or Disable a specific feature.

The device also handles some class requests defined in the CDC class.

Table 23-4. Handled Class Requests

Request Definition

Configures DTE rate, stop bits, parity and number of

SET_LINE_CODING character bits.

Requests current DTE rate, stop bits, parity and number

GET_LINE_CODING of character bits.

SET_CONTROL_LINE_STATE RS-232 signal used to tell the DCE device the DTE

device is now present.

Unhandled requests are STALLed.

AImEl@ 397

ATMEL

23.5.3.2 Communication Endpoints
There are two communication endpoints and endpoint 0 is used for the enumeration process.
Endpoint 1 is a 64-byte Bulk OUT endpoint and endpoint 2 is a 64-byte Bulk IN endpoint. SAM-
BA Boot commands are sent by the host through endpoint 1. If required, the message is split by
the host into several data payloads by the host driver.

If the command requires a response, the host can send IN transactions to pick up the response.
2354 In Application Programming (IAP) Feature
The IAP feature is a function located in ROM that can be called by any software application.

When called, this function sends the desired FLASH command to the EEFC and waits for the
Flash to be ready (looping while the FRDY bit is not set in the MC_FSR register).

Since this function is executed from ROM, this allows Flash programming (such as sector write)
to be done by code running in Flash.

The IAP function entry point is retrieved by reading the NMI vector in ROM (0x00800008).
This function takes one argument in parameter: the command to be sent to the EEFC.
This function returns the value of the MC_FSR register.

IAP software code example:

(unsigned int) (*IAP_Function)(unsigned |ong);
void main (void){

unsi gned | ong Fl ashSect or Num = 200; //
unsigned long flash_cnd = O;
unsi gned long flash_status = O;

unsi gned |l ong EFCIlndex = 0; // 0: EEFCO, 1: EEFCL

/* Initialize the function pointer (retrieve function address from NM
vector) */

| AP_Function = ((unsigned long) (*)(unsigned [ong)) 0x00800008;
/* Send your data to the sector here */
/* build the command to send to EEFC */

flash_cnmd = (Ox5A << 24) | (FlashSectorNum << 8) | AT91C MC FCNVD_EWP;
/* Call the I AP function with appropriate command */

flash_status = | AP_Function (EFC ndex, flash_cnd);

38 SAMAS Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

24. Bus Matrix (MATRIX)

24.1 Description

The Bus Matrix (MATRIX) implements a multi-layer AHB that enables parallel access paths
between multiple AHB masters and slaves in a system, which increases the overall bandwidth.
Bus Matrix interconnects 4 AHB Masters to 5 AHB Slaves. The normal latency to connect a
master to a slave is one cycle except for the default master of the accessed slave which is con-
nected directly (zero cycle latency).

The Bus Matrix user interface also provides a Chip Configuration User Interface with Registers
that allow to support application specific features.

24.2 Embedded Characteristics

24.2.1 Matrix Masters

The Bus Matrix manages 4 masters, which means that each master can perform an access con-
currently with others, to an available slave.

Each master has its own decoder, which is defined specifically for each master. In order to sim-
plify the addressing, all the masters have the same decodings.

Table 24-1. List of Bus Matrix Masters

Master O Cortex-M4 Instruction/Data
Master 1 Cortex-M4 System

Master 2 Peripheral DMA Controller (PDC)
Master 3 CRC Calculation Unit

24.2.2 Matrix Slaves

The Bus Matrix manages 5 slaves. Each slave has its own arbiter, allowing a different arbitration
per slave.

Table 24-2. List of Bus Matrix Slaves

Slave 0 Internal SRAM

Slave 1 Internal ROM

Slave 2 Internal Flash

Slave 3 External Bus Interface
Slave 4 Peripheral Bridge

AImEl@ 399

11100B-ATARM-31-Jul-12

ATMEL

24.2.3 Master to Slave Access
All the Masters can normally access all the Slaves. However, some paths do not make sense,
for example allowing access from the Cortex-M4 S Bus to the Internal ROM. Thus, these paths
are forbidden or simply not wired, and shown as “-” in the following table

Table 24-3. Master to Slave Access

Masters 0 1 2 3
0 Internal SRAM - X X
1 Internal ROM X - X
2 Internal Flash X - - X
3 External Bus Interface - X
4 Peripheral Bridge - X X -

24.3 Memory Mapping
Bus Matrix provides one decoder for every AHB Master Interface. The decoder offers each AHB
Master several memory mappings. In fact, depending on the product, each memory area may be
assigned to several slaves. Booting at the same address while using different AHB slaves (i.e.
internal ROM or internal Flash) becomes possible.

24.4 Special Bus Granting Techniques
The Bus Matrix provides some speculative bus granting techniques in order to anticipate access
requests from some masters. This mechanism allows to reduce latency at first accesses of a
burst or single transfer. The bus granting mechanism allows to set a default master for every
slave.

At the end of the current access, if no other request is pending, the slave remains connected to
its associated default master. A slave can be associated with three kinds of default masters: no
default master, last access master and fixed default master.

2441 No Default Master
At the end of the current access, if no other request is pending, the slave is disconnected from
all masters. No Default Master suits low power mode.

24.4.2 Last Access Master
At the end of the current access, if no other request is pending, the slave remains connected to
the last master that performed an access request.

24.4.3 Fixed Default Master
At the end of the current access, if no other request is pending, the slave connects to its fixed
default master. Unlike last access master, the fixed master doesn’t change unless the user mod-
ifies it by a software action (field FIXED_DEFMSTR of the related MATRIX_SCFGQG).

a0 SAMA4S Series [Preliminary] ———

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

245 Arbitration

To change from one kind of default master to another, the Bus Matrix user interface provides the
Slave Configuration Registers, one for each slave, that allow to set a default master for each
slave. The Slave Configuration Register contains two fields:

DEFMSTR_TYPE and FIXED_DEFMSTR. The 2-bit DEFMSTR_TYPE field allows to choose
the default master type (no default, last access master, fixed default master) whereas the 4-bit
FIXED_DEFMSTR field allows to choose a fixed default master provided that DEFMSTR_TYPE
is set to fixed default master. Please refer to the Bus Matrix user interface description.

The Bus Matrix provides an arbitration mechanism that allows to reduce latency when conflict
cases occur, basically when two or more masters try to access the same slave at the same time.
One arbiter per AHB slave is provided, allowing to arbitrate each slave differently.

The Bus Matrix provides to the user the possibility to choose between 2 arbitration types, and
this for each slave:

1. Round-Robin Arbitration (the default)

2. Fixed Priority Arbitration
This choice is given through the field ARBT of the Slave Configuration Registers
(MATRIX_SCFG).

Each algorithm may be complemented by selecting a default master configuration for each
slave.

When a re-arbitration has to be done, it is realized only under some specific conditions detailed
in the following paragraph.

245.1 Arbitration Rules

Each arbiter has the ability to arbitrate between two or more different master’s requests. In order
to avoid burst breaking and also to provide the maximum throughput for slave interfaces, arbitra-
tion may only take place during the following cycles:

1. Idle Cycles: when a slave is not connected to any master or is connected to a master
which is not currently accessing it.

2. Single Cycles: when a slave is currently doing a single access.

3. End of Burst Cycles: when the current cycle is the last cycle of a burst transfer. For
defined length burst, predicted end of burst matches the size of the transfer but is man-
aged differently for undefined length burst (See Section 24.5.1.1 “Undefined Length
Burst Arbitration” on page 401%).

4. Slot Cycle Limit: when the slot cycle counter has reached the limit value indicating that
the current master access is too long and must be broken (See Section 24.5.1.2 “Slot
Cycle Limit Arbitration” on page 402).

245.1.1 Undefined Length Burst Arbitration

11100B-ATARM-31-Jul-12

In order to avoid too long slave handling during undefined length bursts (INCR), the Bus Matrix
provides specific logic in order to re-arbitrate before the end of the INCR transfer.

AImEl@ 401

ATMEL

A predicted end of burst is used for defined length burst transfer, which is selected between the
following:

1. Infinite: no predicted end of burst is generated and therefore INCR burst transfer will
never be broken.

2. Four beat bursts: predicted end of burst is generated at the end of each four beat
boundary inside INCR transfer.

3. Eight beat bursts: predicted end of burst is generated at the end of each eight beat
boundary inside INCR transfer.

4. Sixteen beat bursts: predicted end of burst is generated at the end of each sixteen beat
boundary inside INCR transfer.
This selection can be done through the field ULBT of the Master Configuration Registers
(MATRIX_MCFG).

245.1.2 Slot Cycle Limit Arbitration
The Bus Matrix contains specific logic to break too long accesses such as very long bursts on a
very slow slave (e.g. an external low speed memory). At the beginning of the burst access, a
counter is loaded with the value previously written in the SLOT_CYCLE field of the related Slave
Configuration Register (MATRIX_SCFG) and decreased at each clock cycle. When the counter
reaches zero, the arbiter has the ability to re-arbitrate at the end of the current byte, half word or
word transfer.

245.2 Round-Robin Arbitration
This algorithm allows the Bus Matrix arbiters to dispatch the requests from different masters to
the same slave in a round-robin manner. If two or more master’s requests arise at the same
time, the master with the lowest number is first serviced then the others are serviced in a round-
robin manner.

There are three round-robin algorithm implemented:

* Round-Robin arbitration without default master
* Round-Robin arbitration with last access master
* Round-Robin arbitration with fixed default master

24521 Round-Robin arbitration without default master
This is the main algorithm used by Bus Matrix arbiters. It allows the Bus Matrix to dispatch
requests from different masters to the same slave in a pure round-robin manner. At the end of
the current access, if no other request is pending, the slave is disconnected from all masters.
This configuration incurs one latency cycle for the first access of a burst. Arbitration without
default master can be used for masters that perform significant bursts.

245.2.2 Round-Robin arbitration with last access master
This is a biased round-robin algorithm used by Bus Matrix arbiters. It allows the Bus Matrix to
remove the one latency cycle for the last master that accessed the slave. In fact, at the end of
the current transfer, if no other master request is pending, the slave remains connected to the
last master that performs the access. Other non privileged masters will still get one latency cycle
if they want to access the same slave. This technique can be used for masters that mainly per-
form single accesses.

a2 SAMA4S Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

245.2.3 Round-Robin arbitration with fixed default master

This is another biased round-robin algorithm, it allows the Bus Matrix arbiters to remove the one
latency cycle for the fixed default master per slave. At the end of the current access, the slave
remains connected to its fixed default master. Every request attempted by this fixed default mas-
ter will not cause any latency whereas other non privileged masters will still get one latency
cycle. This technique can be used for masters that mainly perform single accesses.

2453 Fixed Priority Arbitration

This algorithm allows the Bus Matrix arbiters to dispatch the requests from different masters to
the same slave by using the fixed priority defined by the user. If two or more master’'s requests
are active at the same time, the master with the highest priority number is serviced first. If two or
more master’s requests with the same priority are active at the same time, the master with the
highest number is serviced first.

For each slave, the priority of each master may be defined through the Priority Registers for
Slaves (MATRIX_PRAS and MATRIX_PRBS).

24.6 System I/O Configuration

The System 1/0O Configuration register (CCFG_SYSIO) allows to configure some I/O lines in
System 1/0O mode (such as JTAG, ERASE, USB, etc...) or as general purpose I/O lines. Enabling
or disabling the corresponding I/O lines in peripheral mode or in PIO mode (PIO_PER or
P1O_PDR registers) in the P1O controller as no effect. However, the direction (input or output),
pull-up, pull-down and other mode control is still managed by the PIO controller.

24.7 Write Protect Registers

11100B-ATARM-31-Jul-12

To prevent any single software error that may corrupt MATRIX behavior, the entire MATRIX
address space from address offset 0x000 to Ox1FC can be write-protected by setting the
WPEN bit in the MATRIX Write Protect Mode Register (MATRIX_WPMR).

If a write access to anywhere in the MATRIX address space from address offset 0x000 to Ox1FC
is detected, then the WPVS flag in the MATRIX Write Protect Status Register (MATRIX_WPSR)
is set and the field WPVSRC indicates in which register the write access has been attempted.

The WPVS flag is reset by writing the MATRIX Write Protect Mode Register (MATRIX_WPMR)
with the appropriate access key WPKEY.

AImEl@ 403

ATMEL

24.8 Bus Matrix (MATRIX) User Interface

Table 24-4. Register Mapping

Offset Register Name Access Reset
0x0000 Master Configuration Register 0 MATRIX_MCFGO Read-write 0x00000000
0x0004 Master Configuration Register 1 MATRIX_MCFG1 Read-write 0x00000000
0x0008 Master Configuration Register 2 MATRIX_MCFG2 Read-write 0x00000000
0x000C Master Configuration Register 3 MATRIX_MCFG3 Read-write 0x00000000

0x0010 - 0x003C | Reserved - - -
0x0040 Slave Configuration Register 0 MATRIX_SCFGO Read-write 0x00010010
0x0044 Slave Configuration Register 1 MATRIX_SCFG1 Read-write 0x00050010
0x0048 Slave Configuration Register 2 MATRIX_SCFG2 Read-write 0x00000010
0x004C Slave Configuration Register 3 MATRIX_SCFG3 Read-write 0x00000010
0x0050 Slave Configuration Register 4 MATRIX_SCFG4 Read-write 0x00000010

0x0054 - 0x007C | Reserved - - -
0x0080 Priority Register A for Slave 0 MATRIX_PRASO Read-write 0x00000000
0x0084 Reserved - - -
0x0088 Priority Register A for Slave 1 MATRIX_PRAS1 Read-write 0x00000000
0x008C Reserved - - -
0x0090 Priority Register A for Slave 2 MATRIX_PRAS2 Read-write 0x00000000
0x0094 Reserved - - -
0x0098 Priority Register A for Slave 3 MATRIX_PRAS3 Read-write 0x00000000
0x009C Reserved - - -
0x00A0 Priority Register A for Slave 4 MATRIX_PRAS4 Read-write 0x00000000

0x00A4 - 0x0110 | Reserved - - -
0x0114 System 1/O Configuration register CCFG_SYSIO Read/Write 0x00000000
0x0118 Reserved - - -
0x011C SMC Chip Select NAND Flash Assignment CCFG_SMCNFCS Read/Write 0x00000000

Register

0x0120 - 0x010C | Reserved - - -
Ox1E4 Write Protect Mode Register MATRIX_WPMR Read-write 0x0
Ox1E8 Write Protect Status Register MATRIX_WPSR Read-only 0x0

0x0110 - Ox01FC

Reserved

a4 SAMAS Series [Preliminary] m-——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

24.8.1 Bus Matrix Master Configuration Registers

Name: MATRIX_MCFGO0..MATRIX_MCFG3

Address: 0x400E0200

Access: Read-write
31 30 29 28 27 26 25 24

- 1T - T = G - - —]
23 22 21 20 19 18 17 16

- T -1 - - - - —]
15 14 13 12 11 10 9 8

1T - T = T - - - — 1
7 6 5 4 3 2 1 0

- | - - | - ULBT |

» ULBT: Undefined Length Burst Type

0: Infinite Length Burst

No predicted end of burst is generated and therefore INCR bursts coming from this master cannot be broken.

1: Single Access

The undefined length burst is treated as a succession of single access allowing rearbitration at each beat of the INCR

burst.

2: Four Beat Burst

The undefined length burst is split into a 4-beat bursts allowing rearbitration at each 4-beat burst end.

3: Eight Beat Burst

The undefined length burst is split into 8-beat bursts allowing rearbitration at each 8-beat burst end.

4: Sixteen Beat Burst

The undefined length burst is split into 16-beat bursts allowing rearbitration at each 16-beat burst end.

11100B-ATARM-31-Jul-12

ATMEL

405

ATMEL

24.8.2 Bus Matrix Slave Configuration Registers
Name: MATRIX_SCFGO0..MATRIX_SCFG4

Address: 0x400E0240

Access: Read-write
31 30 29 28 27 26 25 24

I - I - I - I - - - I ARBT |
23 22 21 20 19 18 17 16

| - | - | - | FIXED_DEFMSTR | DEFMSTR_TYPE |
15 14 13 12 11 10 9 8

I I R R : SR —]
7 6 5 4 3 2 1 0

| SLOT_CYCLE |

e SLOT_CYCLE: Maximum Number of Allowed Cycles for a Burst
When the SLOT_CYCLE limit is reach for a burst it may be broken by another master trying to access this slave.

This limit has been placed to avoid locking very slow slaves when very long bursts are used.

This limit should not be very small though. An unreasonable small value will break every burst and the Bus Matrix will
spend its time to arbitrate without performing any data transfer. 16 cycles is a reasonable value for SLOT_CYCLE.

« DEFMSTR_TYPE: Default Master Type
0: No Default Master

At the end of current slave access, if no other master request is pending, the slave is disconnected from all masters.
This results in having a one cycle latency for the first access of a burst transfer or for a single access.
1: Last Default Master

At the end of current slave access, if no other master request is pending, the slave stays connected to the last master hav-
ing accessed it.

This results in not having the one cycle latency when the last master re-tries access on the slave again.
2: Fixed Default Master

At the end of the current slave access, if no other master request is pending, the slave connects to the fixed master the
number that has been written in the FIXED_DEFMSTR field.

This results in not having the one cycle latency when the fixed master re-tries access on the slave again.

* FIXED_DEFMSTR: Fixed Default Master
This is the number of the Default Master for this slave. Only used if DEFMSTR_TYPE is 2. Specifying the number of a mas-
ter which is not connected to the selected slave is equivalent to setting DEFMSTR_TYPE to 0.

* ARBT: Arbitration Type
0: Round-Robin Arbitration

1: Fixed Priority Arbitration
2: Reserved

3: Reserved

a6 SAMAS Series [Preliminary] m————

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

24.8.3 Bus Matrix Priority Registers For Slaves
Name: MATRIX_PRASO0..MATRIX_PRAS4

Address: Ox400E0280 [0], 0x400E0288 [1], 0x400E0290 [2], 0x400E0298 [3], 0x400E02AO [4]

Access: Read-write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I M4PR |
15 14 13 12 11 10 9 8

| — [- | M3PR [- [- [M2PR |
7 6 5 4 3 2 1 0

[_ [- [M1PR [- [- [MOPR |

* MxPR: Master x Priority
Fixed priority of Master x for accessing the selected slave. The higher the number, the higher the priority.

AImEl@ 407

11100B-ATARM-31-Jul-12

24.8.4 System 1/O Configuration Register

Name: CCFG_SYSIO
Address: 0x400E0314
Access Read-write
Reset: 0x0000_0000
31 30 29 28 27 26 25 24
—— 1 - T =T =T - SR IR R
23 22 21 20 19 18 17 16
—— 1 - T =T =T - SR IR R
15 14 13 12 11 10 9 8
| - | - | - | SYSI012 | SYSIO11 SYSIO10 | - | -
7 6 5 4 3 2 1 0
| SYSIO7 | SYSIO6 | SYSIO5 | SYSIO4 | - - | - | -

SYSIO4: PB4 or TDI Assighment
0 = TDI function selected.
1 = PB4 function selected.

* SYSIO5: PB5 or TDO/TRACESWO Assignment
0 = TDO/TRACESWO function selected.
1 = PB5 function selected.

SYSIO6: PB6 or TMS/SWDIO Assignment
0 = TMS/SWDIO function selected.
1 = PB6 function selected.

SYSIO7: PB7 or TCK/SWCLK Assignment
0 = TCK/SWCLK function selected.
1 = PB7 function selected.

SYSIO10: PB10 or DDM Assignment
0 = DDM function selected.
1 = PB10 function selected.

SYSIO11: PB11 or DDP Assignment
0 = DDP function selected.
1 = PB11 function selected.

SYSIO12: PB12 or ERASE Assignment
0 = ERASE function selected.
1 = PB12 function selected.

a8 SAMAS Series [Preliminary] m————

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

24.8.5 SMC NAND Flash Chip select Configuration Register

Name: CCFG_SMCNFCS

Address: 0x400E031C

Type: Read-write

Reset: 0x0000_0000
31 30 29 28 27 26 25 24

I . I . I - I . I . I - I - I . |
23 22 21 20 19 18 17 16

I . I - I - I . I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

[_ [- | — | - | SMC_NFCS3 | SMC_NFCS2 | SMC_NFCS1 | SMC_NFCSO |

* SMC_NFCS0: SMC NAND Flash Chip Select 0 Assignment
0 = NCSO is not assigned to a NAND Flash (NANDOE and NANWE not used for NCSO0)
1 =NCSO is assigned to a NAND Flash (NANDOE and NANWE used for NCS0)

« SMC_NFCS1: SMC NAND Flash Chip Select 1 Assignment
0 = NCS1 is not assigned to a NAND Flash (NANDOE and NANWE not used for NCS1)
1 =NCS1 is assigned to a NAND Flash (NANDOE and NANWE used for NCS1)

* SMC_NFCS2: SMC NAND Flash Chip Select 2 Assighment
0 = NCS2 is not assigned to a NAND Flash (NANDOE and NANWE not used for NCS2)
1 =NCS2 is assigned to a NAND Flash (NANDOE and NANWE used for NCS2)

SMC_NFCS3: SMC NAND Flash Chip Select 3 Assignment
0 = NCS3 is not assigned to a NAND Flash (NANDOE and NANWE not used for NCS3)
1 = NCS3 is assigned to a NAND Flash (NANDOE and NANWE used for NCS3)

AImEl@ 409

11100B-ATARM-31-Jul-12

24.8.6 Write Protect Mode Register
Name: MATRIX_WPMR

Address: Ox400E03E4

Access: Read-write
31 30 29 28 27 26 25 24

| WPKEY |
23 22 21 20 19 18 17 16

| WPKEY |
15 14 13 12 11 10 9 8

| WPKEY |
7 6 5 4 3 2 1 0

I - I - I - I - I - I - I - WPEN |

For more details on MATRIX_WPMR, refer to Section 24.7 “Write Protect Registers” on page 403.

* WPEN: Write Protect ENable
0 = Disables the Write Protect if WPKEY corresponds to 0x4D4154 (“MAT” in ASCII).

1 = Enables the Write Protect if WPKEY corresponds to 0x4D4154 (“MAT" in ASCII).
Protects the entire MATRIX address space from address offset 0x000 to Ox1FC.

* WPKEY: Write Protect KEY (Write-only)
Should be written at value 0x4D4154 (“MAT” in ASCII). Writing any other value in this field aborts the write operation of the
WPEN bit. Always reads as 0.

s0 SAMAS Series [Preliminary] ———

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

24.8.7 Write Protect Status Register
Name: MATRIX_WPSR

Address: 0x400E03ES8

Access: Read-only
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

| WPVSRC |
15 14 13 12 11 10 9 8

| WPVSRC |
7 6 5 4 3 2 1 0

I - I - I - I - I - I - I - wevs |

For more details on MATRIX_WPSR, refer to Section 24.7 “Write Protect Registers” on page 403.

* WPVS: Write Protect Violation Status
0: No Write Protect Violation has occurred since the last write of MATRIX_WPMR.

1: At least one Write Protect Violation has occurred since the last write of MATRIX_WPMR.
 WPVSRC: Write Protect Violation Source

Should be written at value 0x4D4154 (“MAT” in ASCII). Writing any other value in this field aborts the write operation of the
WPEN bit. Always reads as 0.

AImEl@ 411

11100B-ATARM-31-Jul-12

ATMEL

a2 SAMAS Series [Preliminary] -——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

25. Static Memory Controller (SMC)

25.1 Description

The External Bus Interface is designed to ensure the successful data transfer between several
external devices and the Cortex-M4 based device. The External Bus Interface of the SAM4S
consists of a Static Memory Controller (SMC).

This SMC is capable of handling several types of external memory and peripheral devices, such
as SRAM, PSRAM, PROM, EPROM, EEPROM, LCD Module, NOR Flash and NAND Flash.

The Static Memory Controller (SMC) generates the signals that control the access to the exter-
nal memory devices or peripheral devices. It has 4 Chip Selects, a 24-bit address bus, and an 8-
bit data bus. Separate read and write control signals allow for direct memory and peripheral
interfacing. Read and write signal waveforms are fully adjustable.

The SMC can manage wait requests from external devices to extend the current access. The
SMC is provided with an automatic slow clock mode. In slow clock mode, it switches from user-
programmed waveforms to slow-rate specific waveforms on read and write signals. The SMC
supports asynchronous burst read in page mode access for page size up to 32 bytes.

The External Data Bus can be scrambled/unscrambled by means of user keys.

25.2 Embedded Characteristics

11100B-ATARM-31-Jul-12

» 16-Mbyte Address Space per Chip Select

* 8- bit Data Bus

« Word, Halfword, Byte Transfers

» Byte Write or Byte Select Lines

* Programmable Setup, Pulse And Hold Time for Read Signals per Chip Select

« Programmable Setup, Pulse And Hold Time for Write Signals per Chip Select

* Programmable Data Float Time per Chip Select

« Compliant with LCD Module

« External Wait Request

» Automatic Switch to Slow Clock Mode

« Asynchronous Read in Page Mode Supported: Page Size Ranges from 4 to 32 Bytes
* NAND Flash additional logic supporting NAND Flash with Multiplexed Data/Address buses
» Hardware Configurable number of chip select from 1 to 4

« Programmable timing on a per chip select basis

AImEl@ 413

25.3 1/O Lines Description

Table 25-1. 1/O Line Description

Name Description Type Active Level
NCS[3:0] Static Memory Controller Chip Select Lines Output Low
NRD Read Signal Output Low
NWE Write Enable Signal Output Low
A[23:0] Address Bus Output

D[7:0] Data Bus I/0

NWAIT External Wait Signal Input Low
NANDCS NAND Flash Chip Select Line Output Low
NANDOE NAND Flash Output Enable Output Low
NANDWE NAND Flash Write Enable Output Low

a4 SAMAS Series [Preliminary] m-——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

25.4 Product Dependencies

25.4.1 I/O Lines

The pins used for interfacing the Static Memory Controller are multiplexed with the PIO lines.
The programmer must first program the PI1O controller to assign the Static Memory Controller
pins to their peripheral function. If I/O Lines of the SMC are not used by the application, they can
be used for other purposes by the PIO Controller.

25.4.2 Power Management

The SMC is clocked through the Power Management Controller (PMC), thus the programmer
must first configure the PMC to enable the SMC clock.

25.5 External Memory Mapping
The SMC provides up to 24 address lines, A[23:0]. This allows each chip select line to address
up to 16 Mbytes of memory.

If the physical memory device connected on one chip select is smaller than 16 Mbytes, it wraps
around and appears to be repeated within this space. The SMC correctly handles any valid
access to the memory device within the page (see Figure 25-1).

Figure 25-1. Memory Connections for Four External Devices

NCS[0] - NCS[3]
NRD
A[23:0]
D[7:0]
NCS3 I Memory Enable
NCS2
I Memory Enable
NCS1 I Memory Enable
NCSO
Memory Enable
Output Enable
Write Enable _—
24 A[23:0] [
8 D[7:0] _—

AImEl@ 415

11100B-ATARM-31-Jul-12

ATMEL

25.6 Connection to External Devices

25.6.1 Data Bus Width
The data bus width is 8 bits.

Figure 25-2 shows how to connect a 512K x 8-bit memory on NCS2.

Figure 25-2. Memory Connection for an 8-bit Data Bus

D[7:0] D[7:0]
A[18:0] A[18:0]
S\
NWE Write Enable
NRD Output Enable
NCY2] Memory Enable

256.1.1 NAND Flash Support
The SMC integrates circuitry that interfaces to NAND Flash devices.

The NAND Flash logic is driven by the Static Memory Controller. It depends on the programming
of the SMC_NFCSx field in the CCFG_SMCNFCS Register on the Bus Matrix User Interface.
For details on this register, refer to the Bus Matrix User Interface section. Access to an external
NAND Flash device via the address space reserved to the chip select programmed.

The user can connect up to 4 NAND Flash devices with separated chip select.

The NAND Flash logic drives the read and write command signals of the SMC on the NANDOE
and NANDWE signals when the NCSx programmed is active. NANDOE and NANDWE are dis-
abled as soon as the transfer address fails to lie in the NCSx programmed address space.

Figure 25-3. NAND Flash Signal Multiplexing on SMC Pins

SMC
NAND Flash Logic
NCSx (activated if SMC_NFCSx=1)* » \ N\ NANDOE
(-)] > NANDOE
NRD > /_J
{\ NANDWE | NANDWE
NWE > / 4

* in CCFG_SMCNFCS Matrix register

s6 SAMAS Series [Preliminary] ms—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

11100B-ATARM-31-Jul-12

Note that when NAND Flash logic is activated, (SMCNFCSx=1), NWE pin cannot be used i PIO
Mode but only in peripheral mode (NWE function). If NWE function is not used for other external
memories (SRAM, LCD), it must be configured in one of the following modes.

 PIO Input with pull-up enabled (default state after reset)
* PIO Output set at level 1

The address latch enable and command latch enable signals on the NAND Flash device are
driven by address bits A22 and A21of the address bus. Any bit of the address bus can also be
used for this purpose. The command, address or data words on the data bus of the NAND Flash
device use their own addresses within the NCSx address space (configured by
CCFG_SMCNFCS Register on the Bus Matrix User Interface). The chip enable (CE) signal of
the device and the ready/busy (R/B) signals are connected to PIO lines. The CE signal then
remains asserted even when NCS3 is not selected, preventing the device from returning to
standby mode. The NANDCS output signal should be used in accordance with the external
NAND Flash device type.

Two types of CE behavior exist depending on the NAND flash device:

« Standard NAND Flash devices require that the CE pin remains asserted Low continuously
during the read busy period to prevent the device from returning to standby mode. Since the
Static Memory Controller (SMC) asserts the NCSx signal High, it is necessary to connect the
CE pin of the NAND Flash device to a GPIO line, in order to hold it low during the busy period
preceding data read out.

« This restriction has been removed for “CE don’t care” NAND Flash devices. The NCSx signal
can be directly connected to the CE pin of the NAND Flash device.

Figure 25-4 illustrates both topologies: Standard and “CE don’t care” NAND Flash.

AImEl@ 417

ATMEL

Figure 25-4. Standard and “CE don’t care” NAND Flash Application Examples

SMC

418

PI1O

PI1O

D[7:0]
< g
A[22:21]
.
NCSx Not Connected
NANDOE R
NANDWE

\4

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

AD[7:0]
ALE
CLE

NAND Flash

NOE

NWE

CE

R/B

SMC

PIO

D[7:0]

g
A[22:21]
.
NCSx
NANDOE _
NANDWE

\4

AD[7:0]
ALE
CLE

CE

“CE don't care”
NAND Flash

NOE

NWE

R/B

s S A VA4S Series [Preliminary]

25.7 Application Example

25.7.1 Implementation Examples

Hardware configurations are given for illustration only. The user should refer to the manufacturer
web site to check for memory device availability.

For hardware implementation examples, refer to SAM4S-EK schematics, which show examples
of a connection to an LCD module and NAND Flash.

25.7.1.1 8-bit NAND Flash
Hardware Configuration

D[0..7]

Ul K9F2G08UOM

CLE 181 cLe woo |F22—22
ALE ALE 1/01)
NANDOE 81 RE 102 F—7p
NANDWE 18 1 WE o3 22—z
(ANY PIO) 2 CE o4 H41—7z
1105
(ANY PIO)< ToR | RB -
1107
3v3o 191 wp
R2 10K NC 4B
N.C X
»x—1dNe N.C 48—
*—2- N.C N.C 48—
»—31NC N.C FA—x
»x—414NC N.C 32— |I
x—3{NC PRE JB—' !
»—81NC N.C 38—
»—104 Nc N.C 34—
»—11Nc N.C PR
144N c N.C 28—
154 Nc N.C X 3v3
%201 N c
214 N vce
=224 N.C vee c2
=234 N.C
241 NC
%251 NC vss 100NF
284 NC VSS T
2 Gb 100NF

TSOP48 PACKAGE

Software Configuration
Perform the following configuration:
« Assign the SMC_NFCSx (for example SMC_NFCS3) field in the CCFG_SMCNFCS Register
on the Bus Matrix User Interface.

* Reserve A21 / A22 for ALE / CLE functions. Address and Command Latches are controlled
respectively by setting to 1 the address bits A21 and A22 during accesses.

« NANDOE and NANDWE signals are multiplexed with P1O lines. Thus, the dedicated P1Os
must be programmed in peripheral mode in the PIO controller.

« Configure a PIO line as an input to manage the Ready/Busy signal.

» Configure Static Memory Controller CS3 Setup, Pulse, Cycle and Mode according to NAND
Flash timings, the data bus width and the system bus frequency.

In this example, the NAND Flash is not addressed as a “CE don't care”. To address it as a “CE
don’t care”, connect NCS3 (if SMC_NFCS3 is set) to the NAND Flash CE.

AImEl@ 419

11100B-ATARM-31-Jul-12

ATMEL

25.7.1.2 NOR Flash
Hardware Configuration

D[0..7]

A[0..21]

veeq
NRST > RESET
NWE S WE
wpP vce c2

3vao——— vep OONF
NCS0 > CE
NRD > OE VSS

VSS =1

100NF

Software Configuration

Configure the Static Memory Controller CSO Setup, Pulse, Cycle and Mode depending on Flash
timings and system bus frequency.

220 SAMA4S Series [Preliminary] m———

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

25.8 Standard Read and Write Protocols

In the following sections, NCS represents one of the NCS[0..3] chip select lines.

25.8.1 Read Waveforms

The read cycle is shown on Figure 25-5.

The read cycle starts with the address setting on the memory address bus.

Figure 25-5. Standard Read Cycle

MCK

A[23:0]

NRD_CYCLE

NRD! HOLD

25.8.1.1 NRD Waveform

The NRD signal is characterized by a setup timing, a pulse width and a hold timing.

1. NRD_SETUP: the NRD setup time is defined as the setup of address before the NRD

falling edge;

2. NRD_PULSE: the NRD pulse length is the time between NRD falling edge and NRD

rising edge;

3. NRD_HOLD: the NRD hold time is defined as the hold time of address after the NRD

rising edge.

25.8.1.2 NCS Waveform

Similarly, the NCS signal can be divided into a setup time, pulse length and hold time:

1. NCS_RD_SETUP: the NCS setup time is defined as the setup time of address before

the NCS falling edge.

2. NCS_RD_PULSE: the NCS pulse length is the time between NCS falling edge and

NCS rising edge;

3. NCS_RD_HOLD: the NCS hold time is defined as the hold time of address after the

ATMEL

NCS rising edge.

11100B-ATARM-31-Jul-12

|
|
|
>I
|
|
4
+

|
|
|
T
|
|
|
|
|
|
|

421

25.8.1.3

25.8.1.4

Read Cycle

ATMEL

The NRD_CYCLE time is defined as the total duration of the read cycle, i.e., from the time where
address is set on the address bus to the point where address may change. The total read cycle
time is equal to:

NRD_CYCLE = NRD_SETUP + NRD_PULSE + NRD_HOLD
= NCS_RD_SETUP + NCS_RD_PULSE + NCS_RD_HOLD

All NRD and NCS timings are defined separately for each chip select as an integer number of
Master Clock cycles. To ensure that the NRD and NCS timings are coherent, user must define
the total read cycle instead of the hold timing. NRD_CYCLE implicitly defines the NRD hold time
and NCS hold time as:

NRD_HOLD = NRD_CYCLE - NRD SETUP - NRD PULSE
NCS_RD_HOLD = NRD_CYCLE - NCS_RD_SETUP - NCS_RD_PULSE

Null Delay Setup and Hold

If null setup and hold parameters are programmed for NRD and/or NCS, NRD and NCS remain
active continuously in case of consecutive read cycles in the same memory (see Figure 25-6).

Figure 25-6. No Setup, No Hold on NRD and NCS Read Signals

422

MCK

A[23:0]

NRD

NCS

D[7:0]

X X

X

— R §§

NRD_PULSE
<« >

NRD_PULSE
<« x>

NRD_PULSE

NCS_RD_PULSE NCS_RD_PULSE NCS_RD_PULSE

—>

NRD_CYCLE
<« >

|

|

I

I

I

|

|

|

I

I I
I I
| NRD_CYCLE NRD_CYCLE
| |
I

I

I

|

|

|

I

I

I

|

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

25.8.1.5 Null Pulse

25.8.2 Read Mode

Programming null pulse is not permitted. Pulse must be at least set to 1. A null value leads to
unpredictable behavior.

As NCS and NRD waveforms are defined independently of one other, the SMC needs to know
when the read data is available on the data bus. The SMC does not compare NCS and NRD tim-
ings to know which signal rises first. The READ_MODE parameter in the SMC_MODE register
of the corresponding chip select indicates which signal of NRD and NCS controls the read
operation.

25.8.2.1 Read is Controlled by NRD (READ_MODE = 1):

Figure 25-7 shows the waveforms of a read operation of a typical asynchronous RAM. The read
data is available tpc¢ after the falling edge of NRD, and turns to ‘Z’ after the rising edge of NRD.
In this case, the READ_MODE must be setto 1 (read is controlled by NRD), to indicate that data
is available with the rising edge of NRD. The SMC samples the read data internally on the rising
edge of Master Clock that generates the rising edge of NRD, whatever the programmed wave-
form of NCS may be.

Figure 25-7. READ_MODE = 1: Data is sampled by SMC before the rising edge of NRD

Data Sampling

o L
| | | | | | |
! | | I | I |
| | | | | | |
A[23:0] ! | | | | 1 X
| | | | | . |
| ! | | | : :
NRD : I N ' | |
: : : | . |
| 1 | 1 : :
NCS | ! | | | |
o il
: ! tpacc A ! [
D[7:0] ! ! N :
| | ~— L/ |
: I : :
| | I I
1 | | |

25.8.2.2 Read is Controlled by NCS (READ_MODE = 0)

11100B-ATARM-31-Jul-12

Figure 25-8 shows the typical read cycle of an LCD module. The read data is valid tp5cc after the
falling edge of the NCS signal and remains valid until the rising edge of NCS. Data must be sam-
pled when NCS is raised. In that case, the READ_MODE must be set to 0 (read is controlled by
NCS): the SMC internally samples the data on the rising edge of Master Clock that generates
the rising edge of NCS, whatever the programmed waveform of NRD may be.

AIMEL 423

®

ATMEL

Figure 25-8. READ_MODE = 0: Data is sampled by SMC before the rising edge of NCS

Data Sampling
|

MCK ! !
A[23:0] ' ! ' ' '					
. : :	i	X			
[
NRD]	
	1		I		
! 1			1 1		
! 1			: :		
NCS	: A N : ! !				
	j				
: : tPAcc\,iﬂ : :					
D[7:0] : : [— :					
	—				
:	l :				
1					
I ' | !

25.8.3 Write Waveforms
The write protocol is similar to the read protocol. It is depicted in Figure 25-9. The write cycle
starts with the address setting on the memory address bus.

25.8.3.1 NWE Waveforms
The NWE signal is characterized by a setup timing, a pulse width and a hold timing.

1. NWE_SETUP: the NWE setup time is defined as the setup of address and data before
the NWE falling edge;

2. NWE_PULSE: The NWE pulse length is the time between NWE falling edge and NWE
rising edge;

3. NWE_HOLD: The NWE hold time is defined as the hold time of address and data after
the NWE rising edge.

25.8.3.2 NCS Waveforms
The NCS signal waveforms in write operation are not the same that those applied in read opera-
tions, but are separately defined:

1. NCS_WR_SETUP: the NCS setup time is defined as the setup time of address before
the NCS falling edge.

2. NCS_WR_PULSE: the NCS pulse length is the time between NCS falling edge and
NCS rising edge;

3. NCS_WR_HOLD: the NCS hold time is defined as the hold time of address after the
NCS rising edge.

a2 SAMAS Series [Preliminary] -——

11100B-ATARM-31-Jul-12

Figure 25-9. Write Cycle

MCK

A[23:0]

NWE

NCS

25.8.3.3 Write Cycle

SAMA4S Series [Preliminary]

NWE_SETUP NWE_PULSE
<t >
| |

NCS,WR_SETUP
|<—>| <
| |

NCS_WR_PULSE

NWE_CYCLE

<
<

P
=
I|-|'|
I
o
=
w)

The write_cycle time is defined as the total duration of the write cycle, that is, from the time
where address is set on the address bus to the point where address may change. The total write
cycle time is equal to:

NWE_CYCLE = NWE_SETUP + NWE_PULSE + NWE_HOLD
=NCS_WR_SETUP + NCS_WR_PULSE + NCS_WR_HOLD

All NWE and NCS (write) timings are defined separately for each chip select as an integer num-
ber of Master Clock cycles. To ensure that the NWE and NCS timings are coherent, the user
must define the total write cycle instead of the hold timing. This implicitly defines the NWE hold
time and NCS (write) hold times as:

NWE_HOLD = NWE_CYCLE - NWE_SETUP - NWE_PULSE
NCS_WR_HOLD = NWE_CYCLE - NCS_WR_SETUP - NCS_WR_PULSE

25.8.34 Null Delay Setup and Hold

11100B-ATARM-31-Jul-12

If null setup parameters are programmed for NWE and/or NCS, NWE and/or NCS remain active
continuously in case of consecutive write cycles in the same memory (see Figure 25-10). How-
ever, for devices that perform write operations on the rising edge of NWE or NCS, such as
SRAM, either a setup or a hold must be programmed.

AImEl@ 425

ATMEL

Figure 25-10. Null Setup and Hold Values of NCS and NWE in Write Cycle

A T T s s I O o I
|
|

A[23:0] }(D(

™ |

X

NWE_PULSE

T

o ——

NWE_PULSE

NCS_WR_PULSE NCS_WR_PULSE

-~ > >

|
|
| NCS_WR_PULSE
|

I
I
NWE_CYCLE

NWE_CYCLE NWE_CYCLE

25.8.3.5 Null Pulse
Programming null pulse is not permitted. Pulse must be at least set to 1. A null value leads to
unpredictable behavior.

25.84 Write Mode
The WRITE_MODE parameter in the SMC_MODE register of the corresponding chip select indi-
cates which signal controls the write operation.

25.8.4.1 Write is Controlled by NWE (WRITE_MODE = 1):
Figure 25-11 shows the waveforms of a write operation with WRITE_MODE set to 1. The data is
put on the bus during the pulse and hold steps of the NWE signal. The internal data buffers are
switched to output mode after the NWE_SETUP time, and until the end of the write cycle,
regardless of the programmed waveform on NCS.

a6 SAMA4S Series [Preliminary] m———

11100B-ATARM-31-Jul-12

SAMA4S Series [Preliminary]

Figure 25-11. WRITE_MODE = 1. The write operation is controlled by NWE

MCK ! |
I
I
I
]

NWE

St i

|
|
:
A23:0] |
|
|
|
|
|
I
|
|
|
|

NCS | \

N

D[7:0]

)

>_

25.8.4.2 Write is Controlled by NCS (WRITE_MODE = 0)
Figure 25-12 shows the waveforms of a write operation with WRITE_MODE set to 0. The data is
put on the bus during the pulse and hold steps of the NCS signal. The internal data buffers are
switched to output mode after the NCS_WR_SETUP time, and until the end of the write cycle,
regardless of the programmed waveform on NWE.

Figure 25-12. WRITE_MODE = 0. The write operation is controlled by NCS

MCK ! |
I
I
|
|

A[23:0]

NCS

D[7:0]

>_

25.8.5 Write Protected Registers
To prevent any single software error that may corrupt SMC behavior, the registers listed below
can be write-protected by setting the WPEN bit in the SMC Write Protect Mode Register
(SMC_WPMR).

If a write access in a write-protected register is detected, then the WPVS flag in the SMC Write
Protect Status Register (SMC_WPSR) is set and the field WPVSRC indicates in which register
the write access has been attempted.

AImEl@ 427

11100B-ATARM-31-Jul-12

25.8.6

ATMEL

The WPVS flag is automatically reset after reading the SMC Write Protect Status Register

(SMC_WPSR).

List of the write-protected registers:

* Section 25.15.1 "SMC Setup Register”
» Section 25.15.2 "SMC Pulse Register”
* Section 25.15.3 "SMC Cycle Register”
* Section 25.15.4 "SMC MODE Register”

Coding Timing Parameters

All timing parameters are defined for one chip select and are grouped together in one
SMC_REGISTER according to their type.

The SMC_SETUP register groups the definition of all setup parameters:
* NRD_SETUP, NCS_RD_SETUP, NWE_SETUP, NCS_WR_SETUP

The SMC_PULSE register groups the definition of all pulse parameters:
*« NRD_PULSE, NCS_RD_PULSE, NWE_PULSE, NCS_WR_PULSE

The SMC_CYCLE register groups the definition of all cycle parameters:
* NRD_CYCLE, NWE_CYCLE

Table shows how the timing parameters are coded and their permitted range.

Coding and Range of Timing Parameters

Permitted Range

Coded Value Number of Bits Effective Value Coded Value Effective Value
setup [5:0] 6 128 x setup[5] + setup[4:0] 031 0 <128+31
pulse [6:0] 7 256 x pulse[6] + pulse[5:0] 063 0 <<256+63

0 <<256+127
cycle [8:0] 9 256 x cycle[8:7] + cycle[6:0] 0127 0 512+127
0 <768+127
25.8.7 Reset Values of Timing Parameters

Table 25-2 gives the default value of timing parameters at reset.

Table 25-2. Reset Values of Timing Parameters
Register Reset Value Description
SMC_SETUP 0x01010101 All setup timings are setto 1
SMC_PULSE 0x01010101 All pulse timings are setto 1
WRITE_MODE 1 Write is controlled with NWE
READ_MODE 1 Read is controlled with NRD

a8 SAMA4S Series [Preliminary] -——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

25.8.8 Usage Restriction
The SMC does not check the validity of the user-programmed parameters. If the sum of SETUP
and PULSE parameters is larger than the corresponding CYCLE parameter, this leads to unpre-
dictable behavior of the SMC.

For read operations:

Null but positive setup and hold of address and NRD and/or NCS can not be guaranteed at the
memory interface because of the propagation delay of theses signals through external logic and
pads. If positive setup and hold values must be verified, then it is strictly recommended to pro-
gram non-null values so as to cover possible skews between address, NCS and NRD signals.

For write operations:

If a null hold value is programmed on NWE, the SMC can guarantee a positive hold of address
and NCS signal after the rising edge of NWE. This is true for WRITE_MODE = 1 only. See “Early
Read Wait State” on page 430.

For read and write operations: a null value for pulse parameters is forbidden and may lead to
unpredictable behavior.

In read and write cycles, the setup and hold time parameters are defined in reference to the
address bus. For external devices that require setup and hold time between NCS and NRD sig-
nals (read), or between NCS and NWE signals (write), these setup and hold times must be
converted into setup and hold times in reference to the address bus.

25.9 Scrambling/Unscrambling Function
The external data bus D[7:0] can be scrambled in order to prevent intellectual property data
located in off-chip memories from being easily recovered by analyzing data at the package pin
level of either microcontroller or memory device.

The scrambling and unscrambling are performed on-the-fly without additional wait states.

The scrambling method depends on two user-configurable key registers, SMC_KEY1 and
SMC_KEY2. These key registers are only accessible in write mode.

The key must be securely stored in a reliable non-volatile memory in order to recover data from
the off-chip memory. Any data scrambled with a given key cannot be recovered if the key is lost.

The scrambling/unscrambling function can be enabled or disabled by programming the
SMC_OCMS reqister.

When multiple chip selects are handled, it is possible to configure the scrambling function per
chip select using the OCMS field in the SMC_OCMS registers.

25.10 Automatic Wait States

Under certain circumstances, the SMC automatically inserts idle cycles between accesses to
avoid bus contention or operation conflict.

25.10.1 Chip Select Wait States
The SMC always inserts an idle cycle between 2 transfers on separate chip selects. This idle
cycle ensures that there is no bus contention between the de-activation of one device and the
activation of the next one.

AImEl@ 429

11100B-ATARM-31-Jul-12

ATMEL

During chip select wait state, all control lines are turned inactive: NWR, NCS[0..3], NRD lines are
all setto 1.

Figure 25-13 illustrates a chip select wait state between access on Chip Select 0 and Chip
Select 2.

Figure 25-13. Chip Select Wait State between a Read Access on NCSO0 and a Write Access on NCS2

X

NCS2

e
N\

|

: Read to Writey Chip Select | |
| Wait State | Wait State | '
| I I

| |

25.10.2 Early Read Wait State
In some cases, the SMC inserts a wait state cycle between a write access and a read access to
allow time for the write cycle to end before the subsequent read cycle begins. This wait state is
not generated in addition to a chip select wait state. The early read cycle thus only occurs
between a write and read access to the same memory device (same chip select).

An early read wait state is automatically inserted if at least one of the following conditions is
valid:

« if the write controlling signal has no hold time and the read controlling signal has no setup
time (Figure 25-14).

« in NCS write controlled mode (WRITE_MODE = 0), if there is no hold timing on the NCS
signal and the NCS_RD_SETUP parameter is set to 0, regardless of the read mode (Figure
25-15). The write operation must end with a NCS rising edge. Without an Early Read Wait
State, the write operation could not complete properly.

* in NWE controlled mode (WRITE_MODE = 1) and if there is no hold timing (NWE_HOLD =
0), the feedback of the write control signal is used to control address, data, and chip select
lines. If the external write control signal is not inactivated as expected due to load
capacitances, an Early Read Wait State is inserted and address, data and control signals are
maintained one more cycle. See Figure 25-16.

30 SAMA4S Series [Preliminary] ———

11100B-ATARM-31-Jul-12

SAMA4S Series [Preliminary]

Figure 25-14. Early Read Wait State: Write with No Hold Followed by Read with No Setup

1
SR e e e e O e O o O
I | 1
1 | 1 1 I 1
1 | 1 1 I 1
1 | 1 1 I 1
. T T T
A[23:0] : . d | D
1 I 1 1 1
1 : 1 1 I 1
1 | 1 1 I 1
NWE 1 1 | J
1 1\ ::7/ 1 I 1
1 1 | 1
1 : 1 1 I 1
NRD 1 | 1 1 : 1
T T
1 : [1 |* N 1/ 1
' I nohold | | | '
: : ! : no setup : :
| : ‘ﬁ
D[7:0] " | | > :
1 1 1 1
1 1 1 1
1 1 1 1
Iy e e .
) =T L g gl |
1 write cycle :Early Read: read cycle :
: | Wait state | \
1 1 1 1
1 1 1 1
1 1 1 1
' 1 1 1

Figure 25-15. Early Read Wait State: NCS Controlled Write with No Hold Followed by a Read with No NCS Setup

1
vew | L] | I L[] L
1 : I 1
1 | I 1
1 | I 1
A[23:0] :>{ | : S
} 1 1
1 : I 1
| | 1
NCS ; .
1 | I 1
1 | | 1
} | I | 1
NRD 1 . 1 I 1
1 1 1/ [
1 : 1 . } ! 1
' | no hold | i no setup | '
. 1 | ! T 1
D[7:0] _'—<, | : >_._<I | >_:
1 T
1 1 ! 1
1 1 ! 1
1 1 ! 1
le >le e »!
1 1 T 1
1 write cycle 1 Early Reao‘I read cycle 1
: (WRITE_MODE = 0) : wait state ; (READ_MODE = 0 or READ_MODE = 1):
1 1 ! 1
1 1 ! 1
1 1 ! 1
- 1 1 1

AImEl@ 431

11100B-ATARM-31-Jul-12

ATMEL

Figure 25-16. Early Read Wait State: NWE-controlled Write with No Hold Followed by a Read with one Set-up Cycle

25.10.3

25.10.31

432

I

|

1

|

|

. . . . |
internal write controlling signal t
1 |

. . . 1 !

external write controlling signal ' 1 |
|

|

|

|

|

|

T

|

|

MCK

|
1
1
1
1
A[25:2] :>K
i
1

SRR IR DUV N’ S

(NWE) I | f\ 4 |
1 | |
1 | ! I
: 1 no hold ! read setup!= 1
| |
NRD !] : ' ’
1 I !
1 1 : : / 1
1 1 T 1
1 ! : 1
D[7:0] _|—< : >—<' >_|
1 ! 1
1 | | 1 1
1 | | 1 1
1 1 | I 1
1 1 | I 1
" ' 1
write cycle :Early Read, read cycle :
1
1
1
1

1
1 .

1 (WRITE_MODE = 1) | wait state 1 (READ_MODE =0 or READ_MODE =1)
1 1 !

1

1

Reload User Configuration Wait State

The user may change any of the configuration parameters by writing the SMC user interface.

When detecting that a new user configuration has been written in the user interface, the SMC
inserts a wait state before starting the next access. The so called “Reload User Configuration
Wait State” is used by the SMC to load the new set of parameters to apply to next accesses.

The Reload Configuration Wait State is not applied in addition to the Chip Select Wait State. If
accesses before and after re-programming the user interface are made to different devices
(Chip Selects), then one single Chip Select Wait State is applied.

On the other hand, if accesses before and after writing the user interface are made to the same
device, a Reload Configuration Wait State is inserted, even if the change does not concern the
current Chip Select.

User Procedure

To insert a Reload Configuration Wait State, the SMC detects a write access to any
SMC_MODE register of the user interface. If the user only modifies timing registers
(SMC_SETUP, SMC_PULSE, SMC_CYCLE registers) in the user interface, he must validate
the modification by writing the SMC_MODE, even if no change was made on the mode
parameters.

The user must not change the configuration parameters of an SMC Chip Select (Setup, Pulse,
Cycle, Mode) if accesses are performed on this CS during the modification. Any change of the
Chip Select parameters, while fetching the code from a memory connected on this CS, may lead
to unpredictable behavior. The instructions used to modify the parameters of an SMC Chip
Select can be executed from the internal RAM or from a memory connected to another CS.

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

25.10.3.2 Slow Clock Mode Transition

A Reload Configuration Wait State is also inserted when the Slow Clock Mode is entered or
exited, after the end of the current transfer (see “Slow Clock Mode” on page 444).

25.10.4 Read to Write Wait State

Due to an internal mechanism, a wait cycle is always inserted between consecutive read and
write SMC accesses.

This wait cycle is referred to as a read to write wait state in this document.

This wait cycle is applied in addition to chip select and reload user configuration wait states
when they are to be inserted. See Figure 25-13 on page 430.

25.11 Data Float Wait States

25.11.1 READ_MODE

11100B-ATARM-31-Jul-12

Some memory devices are slow to release the external bus. For such devices, it is necessary to
add wait states (data float wait states) after a read access:

» Before starting a read access to a different external memory

« Before starting a write access to the same device or to a different external one.
The Data Float Output Time (tpg) for each external memory device is programmed in the
TDF_CYCLES field of the SMC_MODE register for the corresponding chip select. The value of
TDF_CYCLES indicates the number of data float wait cycles (between 0 and 15) before the
external device releases the bus, and represents the time allowed for the data output to go to
high impedance after the memory is disabled.

Data float wait states do not delay internal memory accesses. Hence, a single access to an
external memory with long tye will not slow down the execution of a program from internal
memory.

The data float wait states management depends on the READ_MODE and the TDF_MODE
fields of the SMC_MODE register for the corresponding chip select.

Setting the READ_MODE to 1 indicates to the SMC that the NRD signal is responsible for turn-
ing off the tri-state buffers of the external memory device. The Data Float Period then begins
after the rising edge of the NRD signal and lasts TDF_CYCLES MCK cycles.

When the read operation is controlled by the NCS signal (READ_MODE = 0), the TDF field gives
the number of MCK cycles during which the data bus remains busy after the rising edge of NCS.

Figure 25-17 illustrates the Data Float Period in NRD-controlled mode (READ_MODE =1),
assuming a data float period of 2 cycles (TDF_CYCLES = 2). Figure 25-18 shows the read oper-
ation when controlled by NCS (READ_MODE = 0) and the TDF_CYCLES parameter equals 3.

AImEl@ 433

ATMEL

Figure 25-17. TDF Period in NRD Controlled Read Access (TDF = 2)

NCS

|
TDF = 2 clock cycles !
————p

)
|
|
|
| |
NRD controlled read operation
| |
|
|

o 1
|
|
|
|

TDF,= 3 clock cyicles

|

|
—
|)

|
T
NCS con:trolled read Pperation :
I

Y

v _

25.11.2 TDF Optimization Enabled (TDF_MODE = 1)
When the TDF_MODE of the SMC_MODE register is set to 1 (TDF optimization is enabled), the
SMC takes advantage of the setup period of the next access to optimize the number of wait
states cycle to insert.

s3a SAMAS Series [Preliminary] m———

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

Figure 25-19 shows a read access controlled by NRD, followed by a write access controlled by
NWE, on Chip Select 0. Chip Select 0 has been programmed with:

NRD_HOLD = 4; READ_MODE =1 (NRD controlled)
NWE_SETUP = 3; WRITE_MODE = 1 (NWE controlled)
TDF_CYCLES = 6; TDF_MODE = 1 (optimization enabled).

Figure 25-19. TDF Optimization: No TDF wait states are inserted if the TDF period is over when the next access begins

MCK

NRD

NWE

NCSO0

| I | | | Wait Staje I I I I I 1
' : . I I 1 1 I I I I I 1
1 1 ! | | | | 1
. : : : : :

I e GENINHIINININ ~)~
? iread ac:pess oniNCSO (E\IRD cm%trolled) i Rzlad to WI;ite iwrite aq:cess onNCS0 (lt\‘WE colhtrolled):

25.11.3 TDF Optimization Disabled (TDF_MODE = 0)
When optimization is disabled, TDF wait states are inserted at the end of the read transfer, so
that the data float period is ended when the second access begins. If the hold period of the
readl controlling signal overlaps the data float period, no additional TDF wait states will be
inserted.

Figure 25-20, Figure 25-21 and Figure 25-22 illustrate the cases:

« Read access followed by a read access on another chip select,

» Read access followed by a write access on another chip select,

* Read access followed by a write access on the same chip select,
with no TDF optimization.

AImEl@ 435

11100B-ATARM-31-Jul-12

ATMEL

Figure 25-20. TDF Optimization Disabled (TDF Mode = 0). TDF wait states between 2 read accesses on different chip

selects
o LI LML Lt
1 | I |] ! ! I I 1 I
1 | | 1 1 I I | | 1 |
! ! ! ! : ! ! ' ! ' !
wso (T T | X
1 X i |] ! ! I I 1 I
1 | I |] ! ! I I 1 I
read1 controlling signal ! ! | : : I I : : ; ;
1
L I N e e e
T e D D T s
read2 controlling signal 1 ; ! M | | ! !] |
(NRD) ! ! 3 : : TDF_CYCLES =6 | : K : AN
o | h : . | : | . : —
oo B)3)133331)))13333)1))))))))) ST g
1 | 1
1 | 1 1 1 |
! ! ! : 5 TDF WAIT STATES ' |
-< : B le >l +
X read1 cycle ' : | read é:cycle0
= — i TDF_MODE =
| TDF_CYCLES =6 chip Select I(optimizatioh disabled)

! Wait State

Figure 25-21. TDF Mode = 0: TDF wait states between a read and a write access on different chip selects

o | L LT LT LML L L L Lt
1 | 1 1 | 1 | 1 1 1 1
1 | 1 1 | 1 | 1 1 1 |
1 | | 1 : 1 | 1 | | 4!
weso) W) G G L | X
1 | 1 1 | 1 | 1 1 1 1
1 | 1 1 | 1 | 1 1 1 |
1 | | 1 : 1 | 1 | | 1
readl controlling signal ! ! : : ! I I I I I I
(NRD) ! LN\ feadl hold = 1 | : | Wwrite2 setup = 1 : |
: | « | ! | PR | !
write2 controlling signal : : : 1 : : : : : : :
(NWE) . | | TDR_CYCLES =14 | | | N\ | 4
! ! N : | ! g : : . .
1 | | 1 : 1 | 1 | | 1
1 | 1 1 1 | | 1
D[7:0 1] 1 \ 1 i/] 1
(I —
|
: | : | 1 1 | | 1
| | | I 1 1 I I 1
1 | 1 ! 1 1 | 1
e p ! le ol »
| | 1 1
\ read1 cycle ' ! 1 2 TDF WAIT STATES write2 cycle I
- — e}
! TDF_CYCLES =4 \ | 1 : TDF_MODE =0 :
1Read to Write! Chip Select 1 (optimization disabled)

I Wait State : Wait State :
1

a6 SAMAS Series [Preliminary] ———

11100B-ATARM-31-Jul-12

SAMA4S Series [Preliminary]

Figure 25-22. TDF Mode = 0: TDF walit states between read and write accesses on the same chip select

MCK

A[23:0]

readl controlling signal
(NRD)

write2 controlling signal
(NWE)

D[7:0]

11100B-ATARM-31-Jul-12

|
1 | ! 1 !
1 | | 1 1 I | | 1
1 | ! ! : ! ' ' ' '
D G G G
1 | | 1 1 I | | 1 |
1 | | 1 1 I | | 1 |
1 | | 1 1 | | | 1 |
1 | | 1 : | | | 1 |
: | : | : : : : : :
M1 hold =1 | | | : Juite2 setup =I1
: I n » : : : : —
1 !] ! 1 | | | 1 1
! | § ! TOF CYCLES =5 | R !
S S O e i A
\ | I : + T T
——— IO NI WNIINE—
: : : | : : :
I | | | 1
E: ,E : | 4 TDF WAIT STATES | !
! readl cycle ! < ! ; ; h |
| TDF_CYCLES =5 — l | | |
: 1Read to Write: I ' ' :
1 1

! wait State

ATMEL

write2 cycle
TDF_MODE = 0
(optimization disabled)

437

25.12 External Wait

25.12.1

25.12.2

438

Restriction

Frozen Mode

ATMEL

Any access can be extended by an external device using the NWAIT input signal of the SMC.
The EXNW_MODE field of the SMC_MODE register on the corresponding chip select must be
set to either to “10” (frozen mode) or “11” (ready mode). When the EXNW_MODE is set to “00”
(disabled), the NWAIT signal is simply ignored on the corresponding chip select. The NWAIT
signal delays the read or write operation in regards to the read or write controlling signal,
depending on the read and write modes of the corresponding chip select.

When one of the EXNW_MODE is enabled, it is mandatory to program at least one hold
cycle for the read/write controlling signal. For that reason, the NWAIT signal cannot be
used in Page Mode (“Asynchronous Page Mode” on page 446), or in Slow Clock Mode
(“Slow Clock Mode” on page 444).

The NWAIT signal is assumed to be a response of the external device to the read/write request
of the SMC. Then NWAIT is examined by the SMC only in the pulse state of the read or write
controlling signal. The assertion of the NWAIT signal outside the expected period has no impact
on SMC behavior.

When the external device asserts the NWAIT signal (active low), and after internal synchroniza-
tion of this signal, the SMC state is frozen, i.e., SMC internal counters are frozen, and all control
signals remain unchanged. When the resynchronized NWAIT signal is deasserted, the SMC
completes the access, resuming the access from the point where it was stopped. See Figure 25-
23. This mode must be selected when the external device uses the NWAIT signal to delay the
access and to freeze the SMC.

The assertion of the NWAIT signal outside the expected period is ignored as illustrated in Figure
25-24,

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

10)

W_MODE

Figure 25-23. Write Access with NWAIT Assertion in Frozen Mode (EXN

)

NWE_controlled

10 (Frozen)
1

Write cy
EXNW_MODE
WRITE_MODE

NWAIT signal

internally synchronized

5

NCS_WR_PULSE

NWE_PULSE

=7

439

AIMEL

. ________________[G]

11100B-ATARM-31-Jul-12

AIMEL

I)

10)

W_MODE

Figure 25-24. Read Access with NWAIT Assertion in Frozen Mode (EXN

Read cycle

=10 (Frozen)

READ_MODE

EXNW_MODE

)

NCS_controlled

:0(

Assertion is ignored

6

5, NCS_RD_HOLD

NRD_PULSE

internally synchronized

NWAIT signal

2, NRD_HOLD

NCS_RD_PULSE

=3

SAMA4S Series [Preliminary]

440

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

25.12.3

Ready Mode

In Ready mode (EXNW_MODE = 11), the SMC behaves differently. Normally, the SMC begins
the access by down counting the setup and pulse counters of the read/write controlling signal. In

the last cycle of the pulse phase, the resynchronized NWAIT signal is examined.

If asserted, the SMC suspends the access as shown in Figure 25-25 and Figure 25-26. After

deassertion, the access is completed: the hold step of the access is performed.

This mode must be selected when the external device uses deassertion of the NWAIT signal to
indicate its ability to complete the read or write operation.

If the NWAIT signal is deasserted before the end of the pulse, or asserted after the end of the
pulse of the controlling read/write signal, it has no impact on the access length as shown in Fig-

ure 25-26.

Figure 25-25. NWAIT Assertion in Write Access: Ready Mode (EXNW_MODE = 11)

MCK

A[23:0]

NWE

NCS

D[7:0]

NWAIT

internally synchronized
NWAIT signal

11100B-ATARM-31-Jul-12

:

5

A

/

Write cycle!
|

EXNW_MODE = 11 (Ready mode)
WRITE_MODE = 1 (NWE_controlled)

NWE_PULSE =5
NCS_WR_PULSE =7

ATMEL

e e ¥ - — - - —]

441

AIMEL

I)

11)

W_MODE

Figure 25-26. NWAIT Assertion in Read Access: Ready Mode (EXN

\Wait STATE

NWAIT

internally synchronized

=}

1<

o

o
||||| k=2
K%}

oy

S

=

[}

()

(%]

<
—
O
—~ 0
g5
O =
E5
yC_
.mS
el
”_\(
o
o

w

an
Qo
M_M
|
Bfa
Z<
> W
i
=}

o

o

oy

k=3

K%}

oy

S

=

[}

()

%))

<

NWAIT signal

7

NCS_RD_PULSE

NRD_PULSE

=7

SAMA4S Series [Preliminary]

442

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

25.12.4 NWAIT Latency and Read/Write Timings
There may be a latency between the assertion of the read/write controlling signal and the asser-
tion of the NWAIT signal by the device. The programmed pulse length of the read/write
controlling signal must be at least equal to this latency plus the 2 cycles of resynchronization + 1
cycle. Otherwise, the SMC may enter the hold state of the access without detecting the NWAIT
signal assertion. This is true in frozen mode as well as in ready mode. This is illustrated on Fig-
ure 25-27.

When EXNW_MODE is enabled (ready or frozen), the user must program a pulse length of the
read and write controlling signal of at least:

minimal pulse length = NWAIT latency + 2 resynchronization cycles + 1 cycle

Figure 25-27. NWAIT Latency

NWAIT signal | |

MCK I | I I I | I
I I I | I I I | |
| T T T T T | T
a3l < ! | | | | | ! | >
t t T T T T
I ! ! I I I : I
| | : ! ! ! WAITSTATE |
| I I | | I : >
—\ 4 | 3 I 2 I 1 I 0 I 0)
| | | 1 1 1 | /|
NRD ! - f T I
e 1 1 1 »l |
: I minimal pulse length 1 |
[I I
! I I I :
T I I
I
NWAIT : : : / |
[I I :
> t > |
NWAIT latency ! 2 cycle resynchronizatiél)n |
I
I

|
| |
| |
: Read cycle :

|
|
|
1
I
|
|
|
| |
1 |
| I
| |
| |
| |
| |
l 1
| I I I
| EXNW_MODE = 10 or 11 I
: REAP_MODE =1 :(NRD_contro:IIed)
| |
| |
| I
| |
| |
| |
| !

|
NRD_PULSE =5

—_—————,———— ¥y 4 e e] = - = -

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
intenally synchronized :
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

_—— - - -t - ——|}=t-—-—-4---F

AImEl@ 443

11100B-ATARM-31-Jul-12

ATMEL

25.13 Slow Clock Mode

25.13.1

The SMC is able to automatically apply a set of “slow clock mode” read/write waveforms when
an internal signal driven by the Power Management Controller is asserted because MCK has
been turned to a very slow clock rate (typically 32kHz clock rate). In this mode, the user-pro-
grammed waveforms are ignored and the slow clock mode waveforms are applied. This mode is
provided so as to avoid reprogramming the User Interface with appropriate waveforms at very
slow clock rate. When activated, the slow mode is active on all chip selects.

Slow Clock Mode Waveforms

Figure 25-28 illustrates the read and write operations in slow clock mode. They are valid on all
chip selects. Table 25-3 indicates the value of read and write parameters in slow clock mode.

Figure 25-28. Read/Write Cycles in Slow Clock Mode

25.13.2

444

w1
|
|

A[23:0]

NCS

| | 1
I“—HI : NCS | :4—»:
- l l T E—

I

|

|
|
NWE_CYCLE =!3
T | T
sLow'cLock MODE WRITE

Table 25-3. Read and Write Timing Parameters in Slow Clock Mode

Read Parameters

Duration (cycles)

Write Parameters

Duration (cycles)

NRD_SETUP 1 NWE_SETUP 1
NRD_PULSE 1 NWE_PULSE 1
NCS_RD_SETUP 0 NCS_WR_SETUP 0
NCS_RD_PULSE 2 NCS_WR_PULSE 3
NRD_CYCLE 2 NWE_CYCLE 3

Switching from (to) Slow Clock Mode to (from) Normal Mode

When switching from slow clock mode to the normal mode, the current slow clock mode transfer
is completed at high clock rate, with the set of slow clock mode parameters.See Figure 25-29 on
page 445. The external device may not be fast enough to support such timings.

Figure 25-30 illustrates the recommended procedure to properly switch from one mode to the
other.

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

Figure 25-29. Clock Rate Transition Occurs while the SMC is Performing a Write Operation

Slow Clock Mode
internal signal from PMC

MCK

A[23:0]

NWE

NCS

This write cycle finishes with the slow clock mode set
of parameters after the clock rate transition

SAMA4S Series [Preliminary]

| | | X [|| e e e
P(! | ! o DQ(oo X
| ' L L { ! ! ! ! ! !
[1
| | o T T T T R SR
| ! | 1 [: [T T Y I R B
| | 1 | | : + I I | | |
| I\ | [M R [T T
| ! | Lol | | | | | I 1 |
| ! | ! [e R B
| : 1 | 1 : 1 | 1 | 11! é borgo :2 [
| | |1y 1 130 |
e > an 'I‘_"I R B b B Rt . S
| ! | ! e e B B
I ! | 1 [o [T
! | ! [I T T T T R |
:\ : / I\ Co
1 " 1
1 . | 1 :
X NWE_CYCLE =3 1 ! X NWE_CYCLE =7 I
< ol > < -
a1 VI‘] :‘ -
SLOW CLOCK MODE WRITE S:.OW CLOCK MODE WF%lTE 1 NORMAL MODE WRITE
1 1 !
!

1
1
Slow clock mode
transition is detected:
Reload Configuration Wait State

Figure 25-30. Recommended Procedure to Switch from Slow Clock Mode to Normal Mode or from Normal Mode to Slow

Clock Mode

Slow Clock Mode

internal signal from PMC

wee | L] | Uy UUyUUyyy L
1 ! | 1 [| | I | | l [
1 ! | I [o [
t 1 T T T T 1
A[23:0] >< ! : :X ! D([o [|>< |
i ' 1 I I | I I | 1
: ! : : T T T R
1 ! | 1 [N | o [T I
| 1 : —_
we A BEREEEEEE
1 1 : 1 I 1 1 : 1 oz :
P I
: | I L D T o [T
\ T [T T T T R |
NCS : ! : :/ [| | | | | | y o
1 i] | [T T T T T T [
| ! | | [N | o [T T
! SLOW CLOCK MODE WRITE ! IDLE STATE X | NORMALMQDEWRITE |
P ’ [> e B L A B m e B
1 : I 1 : ! b
: : Reloadﬁonqguration :
\ \ Wait Sate 1
1 . .

11100B-ATARM-31-Jul-12

445

ATMEL

25.14 Asynchronous Page Mode

25.14.1

The SMC supports asynchronous burst reads in page mode, providing that the page mode is
enabled in the SMC_MODE register (PMEN field). The page size must be configured in the
SMC_MODE register (PS field) to 4, 8, 16 or 32 bytes.

The page defines a set of consecutive bytes into memory. A 4-byte page (resp. 8-, 16-, 32-byte
page) is always aligned to 4-byte boundaries (resp. 8-, 16-, 32-byte boundaries) of memory. The
MSB of data address defines the address of the page in memory, the LSB of address define the
address of the data in the page as detailed in Table 25-4.

With page mode memory devices, the first access to one page (t,,) takes longer than the subse-
guent accesses to the page (t;,) as shown in Figure 25-31. When in page mode, the SMC
enables the user to define different read timings for the first access within one page, and next
accesses within the page.

Table 25-4. Page Address and Data Address within a Page

Page Size Page Address® Data Address in the Page
4 bytes A[23:2] A[1:0]
8 bytes A[23:3] A[2:0]
16 bytes A[23:4] A[3:0]
32 bytes A[23:5] A[4:0]

Note: 1. “A” denotes the address bus of the memory device.

Protocol and Timings in Page Mode
Figure 25-31 shows the NRD and NCS timings in page mode access.

Figure 25-31. Page Mode Read Protocol (Address MSB and LSB are defined in Table 25-4)

446

MCK I | | | | | | |
|
AIMSB] j)(

Asel X X X |

el

NRD

NCS — tpa tsa
> > —_——————— P>

N

D[7:0] ; LK

2XX

T

NCS_RD_PULSE NRD_PULSE

|
|
|
L
|
L
|
|
|
|
|
[g >

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

The NRD and NCS signals are held low during all read transfers, whatever the programmed val-
ues of the setup and hold timings in the User Interface may be. Moreover, the NRD and NCS
timings are identical. The pulse length of the first access to the page is defined with the
NCS_RD_PULSE field of the SMC_PULSE register. The pulse length of subsequent accesses
within the page are defined using the NRD_PULSE parameter.

In page mode, the programming of the read timings is described in Table 25-5:

Table 25-5. Programming of Read Timings in Page Mode

Parameter Value Definition
READ_MODE X’ No impact
NCS_RD_SETUP X’ No impact
NCS_RD_PULSE toa Access time of first access to the page
NRD_SETUP X' No impact
NRD_PULSE tsa Access time of subsequent accesses in the page
NRD_CYCLE X' No impact

The SMC does not check the coherency of timings. It will always apply the NCS_RD_PULSE
timings as page access timing (t,,) and the NRD_PULSE for accesses to the page (tg,), even if
the programmed value for t,, is shorter than the programmed value for tg,.

25.14.2 Page Mode Restriction

The page mode is not compatible with the use of the NWAIT signal. Using the page mode and
the NWAIT signal may lead to unpredictable behavior.

25.14.3 Sequential and Non-sequential Accesses
If the chip select and the MSB of addresses as defined in Table 25-4 are identical, then the cur-
rent access lies in the same page as the previous one, and no page break occurs.

Using this information, all data within the same page, sequential or not sequential, are accessed
with a minimum access time (ty,). Figure 25-32 illustrates access to an 8-bit memory device in
page mode, with 8-byte pages. Access to D1 causes a page access with a long access time
(tpa)- Accesses to D3 and D7, though they are not sequential accesses, only require a short
access time (tg,).

If the MSB of addresses are different, the SMC performs the access of a new page. In the same
way, if the chip select is different from the previous access, a page break occurs. If two sequen-
tial accesses are made to the page mode memory, but separated by an other internal or external
peripheral access, a page break occurs on the second access because the chip select of the
device was deasserted between both accesses.

AImEl@ 447

11100B-ATARM-31-Jul-12

ATMEL

Figure 25-32. Access to Non-Sequential Data within the Same Page

vou I [
|
|
|
|

A[23:3] I;X Plage address

A2], A1, AO) Al >< A3 |>< A7

|
I
|
I
NRD |
|
NCS _:\
|

D[7:0]

|
DD (A

I I
| |
NRD_PULSE | NRD_PULSE |
| |
| |

LK 2l

NCS_RD_PULSE

»
< »
> P

a8 SAMAS Series [Preliminary] m-——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

25.15 Static Memory Controller (SMC) User Interface

The SMC is programmed using the registers listed in Table 25-6. For each chip select, a set of 4 registers is used to pro-
gram the parameters of the external device connected on it. In Table 25-6, “CS_number” denotes the chip select number.
16 bytes (0x10) are required per chip select.

The user must complete writing the configuration by writing any one of the SMC_MODE registers.

Table 25-6. Register Mapping

Offset Register Name Access Reset
0x10 x CS_number + 0x00 | SMC Setup Register SMC_SETUP Read-write 0x01010101
0x10 x CS_number + 0x04 | SMC Pulse Register SMC_PULSE Read-write 0x01010101
0x10 x CS_number + 0x08 | SMC Cycle Register SMC_CYCLE Read-write 0x00030003
0x10 x CS_number + 0xOC | SMC Mode Register SMC_MODE Read-write 0x10000003
0x80 SMC OCMS MODE Register SMC_OCMS Read-write 0x00000000
0x84 SMC OCMS KEY1 Register SMC_KEY1 Write once 0x00000000
0x88 SMC OCMS KEY2 Register SMC_KEY2 Write once 0x00000000
OxE4 SMC Write Protect Mode Register SMC_WPMR Read-write 0x00000000
OxE8 SMC Write Protect Status Register SMC_WPSR Read-only 0x00000000
OXEC-0xFC Reserved - - -

AImEl@ 449

11100B-ATARM-31-Jul-12

ATMEL

25.15.1 SMC Setup Register

Name: SMC_SETUP[0..3]

Address: 0x400E0000 [0], 0x400E0010 [1], 0x400E0020 [2], 0x400E0030 [3], 0x400E0040 [4]

Access: Read-write
31 30 29 28 27 26 25 24

| - | - | NCS_RD_SETUP |
23 22 21 20 19 18 17 16

| - | - | NRD_SETUP |
15 14 13 12 11 10 9 8

| - | - [NCS_WR_SETUP |
7 6 5 4 3 2 1 0

| - | - | NWE_SETUP |

* NWE_SETUP: NWE Setup Length
The NWE signal setup length is defined as:

NWE setup length = (128* NWE_SETUP[5] + NWE_SETUPJ[4:0]) clock cycles

« NCS_WR_SETUP: NCS Setup Length in WRITE Access

In write access, the NCS signal setup length is defined as:

NCS setup length = (128* NCS_WR_SETUP[5] + NCS_WR_SETUPJ[4:0]) clock cycles
 NRD_SETUP: NRD Setup Length

The NRD signal setup length is defined in clock cycles as:

NRD setup length = (128* NRD_SETUP[5] + NRD_SETUP[4:0]) clock cycles

* NCS_RD_SETUP: NCS Setup Length in READ Access

In read access, the NCS signal setup length is defined as:

NCS setup length = (128* NCS_RD_SETUP[5] + NCS_RD_SETUP[4:0]) clock cycles

0 SAMAS Series [Preliminary] m————

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

25.15.2 SMC Pulse Register

Name: SMC_PULSEJ0..3]

Address: 0x400E0004 [0], Ox400E0014 [1], 0x400E0024 [2], 0x400E0034 [3], 0x400E0044 [4]

Access: Read-write
31 30 29 28 27 26 25 24

| - | NCS_RD_PULSE |
23 22 21 20 19 18 17 16

| - | NRD_PULSE |
15 14 13 12 11 10 9 8

| - | NCS_WR_PULSE |
7 6 5 4 3 2 1 0

| - | NWE_PULSE |

 NWE_PULSE: NWE Pulse Length
The NWE signal pulse length is defined as:

NWE pulse length = (256* NWE_PULSE[6] + NWE_PULSE[5:0]) clock cycles

The NWE pulse length must be at least 1 clock cycle.

* NCS_WR_PULSE: NCS Pulse Length in WRITE Access

In write access, the NCS signal pulse length is defined as:

NCS pulse length = (256* NCS_WR_PULSE[6] + NCS_WR_PULSE[5:0]) clock cycles
The NCS pulse length must be at least 1 clock cycle.

« NRD_PULSE: NRD Pulse Length

In standard read access, the NRD signal pulse length is defined in clock cycles as:
NRD pulse length = (256* NRD_PULSE[6] + NRD_PULSE[5:0]) clock cycles

The NRD pulse length must be at least 1 clock cycle.

In page mode read access, the NRD_PULSE parameter defines the duration of the subsequent accesses in the page.
* NCS_RD_PULSE: NCS Pulse Length in READ Access

In standard read access, the NCS signal pulse length is defined as:

NCS pulse length = (256* NCS_RD_PULSE[6] + NCS_RD_PULSE[5:0]) clock cycles
The NCS pulse length must be at least 1 clock cycle.

In page mode read access, the NCS_RD_PULSE parameter defines the duration of the first access to one page.

AImEl@ 451

11100B-ATARM-31-Jul-12

ATMEL

25.15.3 SMC Cycle Register

Name: SMC_CYCLE[0..3]

Address: 0x400E0008 [0], 0x400E0018 [1], 0x400E0028 [2], 0x400E0038 [3], 0x400E0048 [4]

Access: Read-write
31 30 29 28 27 26 25 24

| - | - | - - - - - NRD_CYCLE |
23 22 21 20 19 18 17 16

| NRD_CYCLE |
15 14 13 12 11 10 9 8

| — - — — - - — NWE_CYCLE |
7 6 5 4 3 2 1 0

| NWE_CYCLE |

* NWE_CYCLE: Total Write Cycle Length
The total write cycle length is the total duration in clock cycles of the write cycle.

and hold steps of the NWE and NCS signals. It is defined as:

Write cycle length = (NWE_CYCLE[8:7]*256 + NWE_CYCLE][6:0]) clock cycles

* NRD_CYCLE: Total Read Cycle Length

It is equal to the sum of the setup, pulse

The total read cycle length is the total duration in clock cycles of the read cycle. It is equal to the sum of the setup, pulse
and hold steps of the NRD and NCS signals. It is defined as:

Read cycle length = (NRD_CYCLE[8:7]*256 + NRD_CYCLE[6:0]) clock cycles

452

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

25.15.4 SMC MODE Register

Name: SMC_MODE]J0..3]

Address: 0x400E000C [0], 0x400E001C [1], 0x400E002C [2], 0x400E003C [3], 0x400E004C [4]

Access: Read-write
31 30 29 28 27 26 25 24

| - | - | PS | - - - PMEN |
23 22 21 20 19 18 17 16

| - | - | - | TDF_MODE | TDF_CYCLES |
15 14 13 12 11 10 9 8

I - I . I - I - I . I . I - I - |
7 6 5 4 3 2 1 0

[- [- [EXNW_MODE [- [- [WRITE_MODE | READ_MODE |

« READ_MODE:

1: The read operation is controlled by the NRD signal.

— If TDF cycles are programmed, the external bus is marked busy after the rising edge of NRD.
— If TDF optimization is enabled (TDF_MODE =1), TDF wait states are inserted after the setup of NRD.
: The read operation is controlled by the NCS signal.

o

— If TDF cycles are programmed, the external bus is marked busy after the rising edge of NCS.
— If TDF optimization is enabled (TDF_MODE =1), TDF wait states are inserted after the setup of NCS.

WRITE_MODE
1: The write operation is controlled by the NWE signal.

— If TDF optimization is enabled (TDF_MODE =1), TDF wait states will be inserted after the setup of NWE.
: The write operation is controlled by the NCS signal.

o

— If TDF optimization is enabled (TDF_MODE =1), TDF wait states will be inserted after the setup of NCS.

+ EXNW_MODE: NWAIT Mode

The NWAIT signal is used to extend the current read or write signal. It is only taken into account during the pulse phase of
the read and write controlling signal. When the use of NWAIT is enabled, at least one cycle hold duration must be pro-
grammed for the read and write controlling signal.

Value Name Description
0 DISABLED Disabled
1 Reserved
2 FROZEN Frozen Mode
3 READY Ready Mode

* Disabled Mode: The NWAIT input signal is ignored on the corresponding Chip Select.

» Frozen Mode: If asserted, the NWAIT signal freezes the current read or write cycle. After deassertion, the read/write
cycle is resumed from the point where it was stopped.

AImEl@ 453

11100B-ATARM-31-Jul-12

ATMEL

» Ready Mode: The NWAIT signal indicates the availability of the external device at the end of the pulse of the controlling
read or write signal, to complete the access. If high, the access normally completes. If low, the access is extended until
NWAIT returns high.

* TDF_CYCLES: Data Float Time

This field gives the integer number of clock cycles required by the external device to release the data after the rising edge
of the read controlling signal. The SMC always provide one full cycle of bus turnaround after the TDF_CYCLES period. The
external bus cannot be used by another chip select during TDF_CYCLES + 1 cycles. From 0 up to 15 TDF_CYCLES can
be set.

TDF_MODE: TDF Optimization
1: TDF optimization is enabled.

— The number of TDF wait states is optimized using the setup period of the next read/write access.
0: TDF optimization is disabled.

— The number of TDF wait states is inserted before the next access begins.

PMEN: Page Mode Enabled
: Asynchronous burst read in page mode is applied on the corresponding chip select.

(=Y

0: Standard read is applied.

* PS: Page Size
If page mode is enabled, this field indicates the size of the page in bytes.

Value Name Description
0 4 BYTE 4-byte page
1 8 BYTE 8-byte page
2 16_BYTE 16-byte page
3 32_BYTE 32-byte page

a4 SAMAS Series [Preliminary] -——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

25.15.5 SMC OCMS Mode Register

Name: SMC_OCMS

Address: 0x400E0080

Access: Read-write

Reset: 0x00000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

| - | - - | - | CS3SE | CS2SE | CS1SE | CSOSE
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

I - I - - I - I - I - I - [SMSE

e CSXSE: Chip Select (x =0to 3) Scrambling Enable

0: Disable Scrambling for CSx.

1: Enable Scrambling for CSx.

+ SMSE: Static Memory Controller Scrambling Enable

0: Disable Scrambling for SMC access.

1: Enable Scrambling for SMC access.

25.15.6 SMC OCMS Key1 Register

Name: SMC_KEY1

Address: 0x400E0084

Access: Write Once

Reset: 0x00000000
31 30 29 28 27 26 25 24

| KEY1 |
23 22 21 20 19 18 17 16

| KEY1 |
15 14 13 12 11 10 9 8

| KEY1 |
7 6 5 4 3 2 1 0

| KEY1

» KEY1: Off Chip Memory Scrambling (OCMS) Key Part 1

When Off Chip Memory Scrambling is enabled setting the SMC_OCMS and SMC_TIMINGS registers in accordance, the
data scrambling depends on KEY1 and KEY2 values.

11100B-ATARM-31-Jul-12

ATMEL

455

25.15.7 SMC OCMS Key?2 Register
Name: SMC_KEY2

Address: 0x400E0088

Access: Write Once

Reset: 0x00000000
31 30 29 28 27 26 25 24

| KEY2 |
23 22 21 20 19 18 17 16

| KEY?2 |
15 14 13 12 11 10 9 8

| KEY2 |
7 6 5 4 3 2 1 0

| KEY?2 |

« KEY2: Off Chip Memory Scrambling (OCMS) Key Part 2
When Off Chip Memory Scrambling is enabled setting the SMC_OCMS and SMC_TIMINGS registers in accordance, the
data scrambling depends on KEY2 and KEY1 values.

6 SAMAS Series [Preliminary] m-——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

25.15.8 SMC Write Protect Mode Register

Name: SMC_WPMR

Address: Ox400EOOQOE4

Access: Read-write

Reset: See Table 25-6
31 30 29 28 27 26 25 24

| WPKEY |
23 22 21 20 19 18 17 16

| WPKEY |
15 14 13 12 11 10 9 8

| WPKEY |
7 6 5 4 3 2 1 0

. - - r - = 1T = 1T = /] — WPEN |

 WPEN: Write Protect Enable
0 = Disables the Write Protect if WPKEY corresponds to 0x534D43 (“SMC” in ASCI|I).

1 = Enables the Write Protect if WPKEY corresponds to 0x534D43 (“SMC” in ASCII).
Protects the registers listed below:

* Section 25.15.1 "SMC Setup Register”

 Section 25.15.2 "SMC Pulse Register”

 Section 25.15.3 "SMC Cycle Register”
* Section 25.15.4 "SMC MODE Register”

 WPKEY: Write Protect KEY
Should be written at value 0x534D43 (“SMC” in ASCII). Writing any other value in this field aborts the write operation of the
WPEN bit. Always reads as 0.

AImEl@ 457

11100B-ATARM-31-Jul-12

25.15.9 SMC Write Protect Status Register

Name: SMC_WPSR

Address: 0x400E00E8

Type: Read-only

Value: See Table 25-6
31 30 29 28 27 26 25 24

= 1 = 1T = = = = = —]
23 22 21 20 19 18 17 16

| WPVSRC |
15 14 13 12 11 10 9 8

| WPVSRC |
7 6 5 4 3 2 1 0

r - - - { = 1T = T = /] — wevs |

» WPVS: Write Protect Enable
0 = No Write Protect Violation has occurred since the last read of the SMC_WPSR register.

1 = A Write Protect Violation occurred since the last read of the SMC_WPSR register. If this violation is an unauthorized
attempt to write a protected register, the associated violation is reported into field WPVSRC.

 WPVSRC: Write Protect Violation Source
When WPVS is active, this field indicates the write-protected register (through address offset or code) in which a write
access has been attempted.

Note: Reading SMC_WPSR automatically clears all fields.

8 SAMAS Series [Preliminary] -——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

26. Peripheral DMA Controller (PDC)

26.1 Description

The Peripheral DMA Controller (PDC) transfers data between on-chip serial peripherals and the
on- and/or off-chip memories. The link between the PDC and a serial peripheral is operated by
the AHB to ABP bridge.

The user interface of each PDC channel is integrated into the user interface of the peripheral it
serves. The user interface of mono directional channels (receive only or transmit only), contains
two 32-bit memory pointers and two 16-bit counters, one set (pointer, counter) for current trans-
fer and one set (pointer, counter) for next transfer. The bi-directional channel user interface
contains four 32-bit memory pointers and four 16-bit counters. Each set (pointer, counter) is
used by current transmit, next transmit, current receive and next receive.

Using the PDC removes processor overhead by reducing its intervention during the transfer.
This significantly reduces the number of clock cycles required for a data transfer, which
improves microcontroller performance.

To launch a transfer, the peripheral triggers its associated PDC channels by using transmit and
receive signals. When the programmed data is transferred, an end of transfer interrupt is gener-
ated by the peripheral itself.

26.2 Embedded Characteristics

11100B-ATARM-31-Jul-12

« Handles data transfer between peripherals and memories
» Low bus arbitration overhead
— One Master Clock cycle needed for a transfer from memory to peripheral
— Two Master Clock cycles needed for a transfer from peripheral to memory
» Next Pointer management for reducing interrupt latency requirement

The Peripheral DMA Controller handles transfer requests from the channel according to the fol-
lowing priorities (Low to High priorities):

Table 26-1. Peripheral DMA Controller

Instance Name Channel T/R
PWM Transmit
TWIL1 Transmit
TWIO Transmit

UART1 Transmit
UARTO Transmit
USART1 Transmit
USARTO Transmit
DACC Transmit
SPI Transmit
SSC Transmit
HSMCI Transmit

ATMEL

459

ATMEL

Table 26-1. Peripheral DMA Controller

460

Instance Name Channel T/R
PIOA Receive
TWIL1 Receive
TWIO Receive

UART1 Receive
UARTO Receive
USART1 Receive
USARTO Receive
ADC Receive
SPI Receive
SSC Receive
HSMCI Receive

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

26.3 Block Diagram

11100B-ATARM-31-Jul-12

Figure 26-1. Block Diagram

FULL DUPLEX
PERIPHERAL

PDC

THR <

PDC Channel A <

A

RHR

PDC Channel B

Y

Status & Control

Control <€

HALF DUPLEX
PERIPHERAL

THR

PDC Channel C

Control

RHR

Status & Control

Control |-

RECEIVE or TRANSMIT
PERIPHERAL

A

PDC Channel D

Y.

A

RHR or THR

Status & Control

Control |-

ATMEL

461

ATMEL

26.4 Functional Description

26.4.1

26.4.2

26.4.3

462

Configuration

The PDC channel user interface enables the user to configure and control data transfers for
each channel. The user interface of each PDC channel is integrated into the associated periph-
eral user interface.

The user interface of a serial peripheral, whether it is full or half duplex, contains four 32-bit
pointers (RPR, RNPR, TPR, TNPR) and four 16-bit counter registers (RCR, RNCR, TCR,
TNCR). However, the transmit and receive parts of each type are programmed differently: the
transmit and receive parts of a full duplex peripheral can be programmed at the same time,
whereas only one part (transmit or receive) of a half duplex peripheral can be programmed at a
time.

32-bit pointers define the access location in memory for current and next transfer, whether it is
for read (transmit) or write (receive). 16-bit counters define the size of current and next transfers.
It is possible, at any moment, to read the number of transfers left for each channel.

The PDC has dedicated status registers which indicate if the transfer is enabled or disabled for
each channel. The status for each channel is located in the associated peripheral status register.
Transfers can be enabled and/or disabled by setting TXTEN/TXTDIS and RXTEN/RXTDIS in
the peripheral’'s Transfer Control Register.

At the end of a transfer, the PDC channel sends status flags to its associated peripheral. These
flags are visible in the peripheral status register (ENDRX, ENDTX, RXBUFF, and TXBUFE).
Refer to Section 26.4.3 and to the associated peripheral user interface.

Memory Pointers

Each full duplex peripheral is connected to the PDC by a receive channel and a transmit chan-
nel. Both channels have 32-bit memory pointers that point respectively to a receive area and to
a transmit area in on- and/or off-chip memory.

Each half duplex peripheral is connected to the PDC by a bidirectional channel. This channel
has two 32-bit memory pointers, one for current transfer and the other for next transfer. These
pointers point to transmit or receive data depending on the operating mode of the peripheral.

Depending on the type of transfer (byte, half-word or word), the memory pointer is incremented
respectively by 1, 2 or 4 bytes.

If a memory pointer address changes in the middle of a transfer, the PDC channel continues
operating using the new address.

Transfer Counters

Each channel has two 16-bit counters, one for current transfer and the other one for next trans-
fer. These counters define the size of data to be transferred by the channel. The current transfer
counter is decremented first as the data addressed by current memory pointer starts to be trans-
ferred. When the current transfer counter reaches zero, the channel checks its next transfer
counter. If the value of next counter is zero, the channel stops transferring data and sets the
appropriate flag. But if the next counter value is greater then zero, the values of the next
pointer/next counter are copied into the current pointer/current counter and the channel resumes
the transfer whereas next pointer/next counter get zero/zero as values. At the end of this trans-
fer the PDC channel sets the appropriate flags in the Peripheral Status Register.

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

26.4.4

26.4.5

26.4.5.1

26.45.2

26.453

26.4.5.4

11100B-ATARM-31-Jul-12

The following list gives an overview of how status register flags behave depending on the coun-
ters’ values:

* ENDRX flag is set when the PERIPH_RCR register reaches zero.

« RXBUFF flag is set when both PERIPH_RCR and PERIPH_RNCR reach zero.

« ENDTX flag is set when the PERIPH_TCR register reaches zero.

* TXBUFE flag is set when both PERIPH_TCR and PERIPH_TNCR reach zero.
These status flags are described in the Peripheral Status Register.

Data Transfers

The serial peripheral triggers its associated PDC channels’ transfers using transmit enable
(TXEN) and receive enable (RXEN) flags in the transfer control register integrated in the periph-
eral’s user interface.

When the peripheral receives an external data, it sends a Receive Ready signal to its PDC
receive channel which then requests access to the Matrix. When access is granted, the PDC
receive channel starts reading the peripheral Receive Holding Register (RHR). The read data
are stored in an internal buffer and then written to memory.

When the peripheral is about to send data, it sends a Transmit Ready to its PDC transmit chan-
nel which then requests access to the Matrix. When access is granted, the PDC transmit
channel reads data from memory and puts them to Transmit Holding Register (THR) of its asso-
ciated peripheral. The same peripheral sends data according to its mechanism.

PDC Flags and Peripheral Status Register

Each peripheral connected to the PDC sends out receive ready and transmit ready flags and the
PDC sends back flags to the peripheral. All these flags are only visible in the Peripheral Status
Register.

Depending on the type of peripheral, half or full duplex, the flags belong to either one single
channel or two different channels.

Receive Transfer End

This flag is set when PERIPH_RCR register reaches zero and the last data has been transferred
to memory.

It is reset by writing a non zero value in PERIPH_RCR or PERIPH_RNCR.

Transmit Transfer End

This flag is set when PERIPH_TCR register reaches zero and the last data has been written into
peripheral THR.

It is reset by writing a non zero value in PERIPH_TCR or PERIPH_TNCR.

Receive Buffer Full

This flag is set when PERIPH_RCR register reaches zero with PERIPH_RNCR also set to zero
and the last data has been transferred to memory.

It is reset by writing a non zero value in PERIPH_TCR or PERIPH_TNCR.

Transmit Buffer Empty

This flag is set when PERIPH_TCR register reaches zero with PERIPH_TNCR also set to zero
and the last data has been written into peripheral THR.

It is reset by writing a non zero value in PERIPH_TCR or PERIPH_TNCR.

AImEl@ 463

ATMEL

26.5 Peripheral DMA Controller (PDC) User Interface

Table 26-2. Register Mapping

Offset Register Name Access Reset
0x100 Receive Pointer Register PERIPH® _RPR Read-write 0
0x104 Receive Counter Register PERIPH_RCR Read-write 0
0x108 Transmit Pointer Register PERIPH_TPR Read-write 0
0x10C Transmit Counter Register PERIPH_TCR Read-write 0
0x110 Receive Next Pointer Register PERIPH_RNPR Read-write 0
0x114 Receive Next Counter Register PERIPH_RNCR Read-write 0
0x118 Transmit Next Pointer Register PERIPH_TNPR Read-write 0
0x11C Transmit Next Counter Register PERIPH_TNCR Read-write 0
0x120 Transfer Control Register PERIPH_PTCR Write-only 0
0x124 Transfer Status Register PERIPH_PTSR Read-only 0

Note: 1. PERIPH: Ten registers are mapped in the peripheral memory space at the same offset. These can be defined by the user
according to the function and the desired peripheral.)

s64 SAMAS Series [Preliminary] —-——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

26.5.1 Receive Pointer Register

Name: PERIPH_RPR

Access: Read-write
31 30 29 28 27 26 25 24

| RXPTR |
23 22 21 20 19 18 17 16

| RXPTR |
15 14 13 12 11 10 9 8

| RXPTR |
7 6 5 4 3 2 1 0

| RXPTR |

« RXPTR: Receive Pointer Register
RXPTR must be set to receive buffer address.

When a half duplex peripheral is connected to the PDC, RXPTR = TXPTR.

AImEl@ 465

11100B-ATARM-31-Jul-12

26.5.2 Receive Counter Register

Name: PERIPH_RCR

Access: Read-write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| RXCTR |
7 6 5 4 3 2 1 0

| RXCTR |

« RXCTR: Receive Counter Register
RXCTR must be set to receive buffer size.

When a half duplex peripheral is connected to the PDC, RXCTR = TXCTR.
0 = Stops peripheral data transfer to the receiver

1 - 65535 = Starts peripheral data transfer if corresponding channel is active

66 SAMAS Series [Preliminary] -——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

26.5.3 Transmit Pointer Register

Name: PERIPH_TPR

Access: Read-write
31 30 29 28 27 26 25 24

| TXPTR |
23 22 21 20 19 18 17 16

| TXPTR |
15 14 13 12 11 10 9 8

| TXPTR |
7 6 5 4 3 2 1 0

| TXPTR |

e TXPTR: Transmit Counter Register
TXPTR must be set to transmit buffer address.

When a half duplex peripheral is connected to the PDC, RXPTR = TXPTR.

AImEl@ 467

11100B-ATARM-31-Jul-12

26.5.4 Transmit Counter Register

Name: PERIPH_TCR

Access: Read-write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| TXCTR |
7 6 5 4 3 2 1 0

| TXCTR |

 TXCTR: Transmit Counter Register
TXCTR must be set to transmit buffer size.

When a half duplex peripheral is connected to the PDC, RXCTR = TXCTR.
0 = Stops peripheral data transfer to the transmitter

1- 65535 = Starts peripheral data transfer if corresponding channel is active

68 SAMAS Series [Preliminary] m-————

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

26.5.5 Receive Next Pointer Register

Name: PERIPH_RNPR

Access: Read-write
31 30 29 28 27 26 25 24

| RXNPTR |
23 22 21 20 19 18 17 16

| RXNPTR |
15 14 13 12 11 10 9 8

| RXNPTR |
7 6 5 4 3 2 1 0

| RXNPTR |

* RXNPTR: Receive Next Pointer
RXNPTR contains next receive buffer address.

When a half duplex peripheral is connected to the PDC, RXNPTR = TXNPTR.

AImEl@ 469

11100B-ATARM-31-Jul-12

26.5.6 Receive Next Counter Register

Name: PERIPH_RNCR

Access: Read-write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| RXNCTR |
7 6 5 4 3 2 1 0

| RXNCTR |

* RXNCTR: Receive Next Counter
RXNCTR contains next receive buffer size.

When a half duplex peripheral is connected to the PDC, RXNCTR = TXNCTR.

a0 SAMA4S Series [Preliminary] -——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

26.5.7 Transmit Next Pointer Register

Name: PERIPH_TNPR

Access: Read-write
31 30 29 28 27 26 25 24

| TXNPTR |
23 22 21 20 19 18 17 16

| TXNPTR |
15 14 13 12 11 10 9 8

| TXNPTR |
7 6 5 4 3 2 1 0

| TXNPTR |

e TXNPTR: Transmit Next Pointer
TXNPTR contains next transmit buffer address.

When a half duplex peripheral is connected to the PDC, RXNPTR = TXNPTR.

AImEl@ 471

11100B-ATARM-31-Jul-12

26.5.8 Transmit Next Counter Register

Name: PERIPH_TNCR

Access: Read-write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| TXNCTR |
7 6 5 4 3 2 1 0

| TXNCTR |

e TXNCTR: Transmit Counter Next
TXNCTR contains next transmit buffer size.

When a half duplex peripheral is connected to the PDC, RXNCTR = TXNCTR.

a2 SAMA4S Series [Preliminary] -——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

26.5.9 Transfer Control Register

Name: PERIPH_PTCR

Access: Write-only
31 30 29 28 27 26 25 24

. - r - ¢ - - - rr - ¢ - [- 1}
23 22 21 20 19 18 17 16

. - r - ¢ - - r - rr - ¢ - [- 1}
15 14 13 12 11 10 9 8

| - | - | - | - | - | - | TXTDIS | TXTEN |
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | RXTDIS | RXTEN |

« RXTEN: Receiver Transfer Enable
0 = No effect.

1 = Enables PDC receiver channel requests if RXTDIS is not set.

When a half duplex peripheral is connected to the PDC, enabling the receiver channel requests automatically disables the
transmitter channel requests. It is forbidden to set both TXTEN and RXTEN for a half duplex peripheral.

» RXTDIS: Receiver Transfer Disable

0 = No effect.

1 = Disables the PDC receiver channel requests.

When a half duplex peripheral is connected to the PDC, disabling the receiver channel requests also disables the transmit-
ter channel requests.

» TXTEN: Transmitter Transfer Enable

0 = No effect.

1 = Enables the PDC transmitter channel requests.

When a half duplex peripheral is connected to the PDC, it enables the transmitter channel requests only if RXTEN is not
set. It is forbidden to set both TXTEN and RXTEN for a half duplex peripheral.

» TXTDIS: Transmitter Transfer Disable

0 = No effect.

1 = Disables the PDC transmitter channel requests.

When a half duplex peripheral is connected to the PDC, disabling the transmitter channel requests disables the receiver
channel requests.

AImEl@ 473

11100B-ATARM-31-Jul-12

ATMEL

26.5.10 Transfer Status Register

Name: PERIPH_PTSR

Access: Read-only
31 30 29 28 27 26 25 24

. - r - ¢ - - - rr - ¢ - [- 1}
23 22 21 20 19 18 17 16

. - r - ¢ - - r - rr - ¢ - [- 1}
15 14 13 12 11 10 9 8

. - r - ¢ - - 1 - [- [- [TXEN]
7 6 5 4 3 2 1 0

. - r - ¢ - - 1 - [- [- [RXEN |

* RXTEN: Receiver Transfer Enable
0 = PDC Receiver channel requests are disabled.

1 = PDC Receiver channel requests are enabled.
* TXTEN: Transmitter Transfer Enable
0 = PDC Transmitter channel requests are disabled.

1 = PDC Transmitter channel requests are enabled.

a2 SAMAS Series [Preliminary] ———

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

27. Power Management Controller (PMC)

27.1 Clock Generator

27.1.1 Description

The Clock Generator User Interface is embedded within the Power Management Controller and
is described in Section 27.2.16 "Power Management Controller (PMC) User Interface”. However,
the Clock Generator registers are named CKGR_.

27.1.2 Embedded Characteristics
The Clock Generator is made up of:

« A Low Power 32,768 Hz Slow Clock Oscillator with bypass mode.
» A Low Power RC Oscillator
» A 3to 20 MHz Crystal or Ceramic Resonator-based Oscillator, which can be bypassed.

« A factory programmed Fast RC Oscillator. 3 output frequencies can be selected: 4, 8 or
12 MHz. By default 4MHz is selected.

« Two 80 to 240 MHz programmable PLL (input from 3 to 32 MHz), capable of providing the
clock MCK to the processor and to the peripherals.

It provides the following clocks:

» SLCK, the Slow Clock, which is the only permanent clock within the system.

* MAINCK is the output of the Main Clock Oscillator selection: either the Crystal or Ceramic
Resonator-based Oscillator or 4/8/12 MHz Fast RC Oscillator.

* PLLACK is the output of the Divider and 80 to 240 MHz programmable PLL (PLLA).
* PLLBCK is the output of the Divider and 80 to 240 MHz programmable PLL (PLLB).

AImEl@ 475

11100B-ATARM-31-Jul-12

ATMEL

27.1.3 Block Diagram

Figure 27-1. Clock Generator Block Diagram

Clock Gene rator
XTALSEL
(Supply @ntroller)
Embedded
32 kHz 0
RC Oscillator
|, SowClocl
SCK
XIN32 | I 32768 Hz
Crystal 1
XOUT32 | I Oscilbtor
Embedded MOSCSEL
4/8/12 MHz
Fast 0
RCOscillator
Main do cl
3-20 MHz MAINCK
XIN | I Crystal
or 1
Ceramic
xout Resonator
Oscillaor
L PLLAand PLLA Cloc
Divider /2 PLLACK
PLLBand PLLB Cloc
Divider /2 PLLBCK

l Satus T Control

Power
Management
Controller

sz SAMAS Series [Preliminary] m——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

27.1.4 Slow Clock

The Supply Controller embeds a slow clock generator that is supplied with the VDDIO power
supply. As soon as the VDDIO is supplied, both the crystal oscillator and the embedded RC
oscillator are powered up, but only the embedded RC oscillator is enabled. This allows the slow
clock to be valid in a short time (about 100 ps).

The Slow Clock is generated either by the Slow Clock Crystal Oscillator or by the Slow Clock RC
Oscillator.

The selection between the RC or the crystal oscillator is made by writing the XTALSEL bit in the
Supply Controller Control Register (SUPC_CR).

27.1.41 Slow Clock RC Oscillator
By default, the Slow Clock RC Oscillator is enabled and selected. The user has to take into
account the possible drifts of the RC Oscillator. More details are given in the section “DC Char-
acteristics” of the product datasheet.

It can be disabled via the XTALSEL bit in the Supply Controller Control Register (SUPC_CR).

27.1.4.2 Slow Clock Crystal Oscillator
The Clock Generator integrates a 32,768 Hz low-power oscillator. In order to use this oscillator,
the XIN32 and XOUT32 pins must be connected to a 32,768 Hz crystal. Two external capacitors
must be wired as shown in Figure 27-2. More details are given in the section “DC Characteris-
tics” of the product datasheet.

Note that the user is not obliged to use the Slow Clock Crystal and can use the RC oscillator
instead.

Figure 27-2. Typical Slow Clock Crystal Oscillator Connection
XIN32 XOUT32 GND

32,768 Hz
Crystal

|

L 1

The user can select the crystal oscillator to be the source of the slow clock, as it provides a more
accurate frequency. The command is made by writing the Supply Controller Control Register
(SUPC_CR) with the XTALSEL bit at 1. This results in a sequence which first configures the PIO
lines multiplexed with XIN32 and XOUT32 to be driven by the oscillator, then enables the crystal
oscillator and then disables the RC oscillator to save power. The switch of the slow clock source
is glitch free. The OSCSEL bit of the Supply Controller Status Register (SUPC_SR) tracks the
oscillator frequency downstream. It must be read in order to be informed when the switch
sequence, initiated when a new value is written in MOSCSEL bit of CKGR_MOR, is done.

Coming back on the RC oscillator is only possible by shutting down the VDDIO power supply. If
the user does not need the crystal oscillator, the XIN32 and XOUT32 pins can be left uncon-
nected since by default the XIN32 and XOUT32 system I/O pins are in PIO input mode with pull-
up after reset.

The user can also set the crystal oscillator in bypass mode instead of connecting a crystal. In
this case, the user has to provide the external clock signal on XIN32. The input characteristics of

AImEl@ 477

11100B-ATARM-31-Jul-12

27.15

478

Main Clock

ATMEL

the XIN32 pin are given in the product electrical characteristics section. In order to set the
bypass mode, the OSCBYPASS bit of the Supply Controller Mode Register (SUPC_MR) needs
to be set at 1.

The user can set the Slow Clock Crystal Oscillator in bypass mode instead of connecting a crys-
tal. In this case, the user has to provide the external clock signal on XIN32. The input
characteristics of the XIN32 pin under these conditions are given in the product electrical char-
acteristics section.

The programmer has to be sure to set the OSCBYPASS bit in the Supply Controller Mode Reg-
ister (SUPC_MR) and XTALSEL bit in the Supply Controller Control Register (SUPC_CR).

Figure 27-3 shows the Main Clock block diagram.

Figure 27-3. Main Clock Block Diagram

[Moscreen| [moscrer |
I

—— | MOSCRCS
4/8/12 MHz
Fast RC MOSCSEL MOSCSELS
Oscilldor
0
MAINCK
MOSCXTEN)
Main Clock
3-20 M 1
ain[J—] G
or
XOUT| I Ceramic Resonator
Oscilldor
MOSCXTCNT
3-20 MH
Oscilldor MOSCXTS
Slow Clock Counter
| MOSCRCEN I
[moscxTen | | remeas |
MOSCSEL
MAINCK Ref Main Clock MAINF
Main Cl Ck Frequency
ain Cloc Counter MAINRDY

The Main Clock has two sources:

» 4/8/12 MHz Fast RC Oscillator which starts very quickly and is used at startup.
« 3to 20 MHz Crystal or Ceramic Resonator-based Oscillator which can be bypassed.

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

27.15.1 4/8/12 MHz Fast RC Oscillator

After reset, the 4/8/12 MHz Fast RC Oscillator is enabled with the 4 MHz frequency selected and
it is selected as the source of MAINCK. MAINCK is the default clock selected to start up the
system.

The Fast RC Oscillator 8 and 12 MHz frequencies are calibrated in production. Note that is not
the case for the 4 MHz frequency.

Please refer to the “DC Characteristics” section of the product datasheet.

The software can disable or enable the 4/8/12 MHz Fast RC Oscillator with the MOSCRCEN bit
in the Clock Generator Main Oscillator Register (CKGR_MOR).

The user can also select the output frequency of the Fast RC Oscillator, either 4 MHz, 8 MHz or
12 MHz are available. It can be done through MOSCRCEF bits in CKGR_MOR. When changing
this frequency selection, the MOSCRCS bit in the Power Management Controller Status Regis-
ter (PMC_SR) is automatically cleared and MAINCK is stopped until the oscillator is stabilized.
Once the oscillator is stabilized, MAINCK restarts and MOSCRCS is set.

When disabling the Main Clock by clearing the MOSCRCEN bit in CKGR_MOR, the MOSCRCS
bit in the Power Management Controller Status Register (PMC_SR) is automatically cleared,
indicating the Main Clock is off.

Setting the MOSCRCS bit in the Power Management Controller Interrupt Enable Register
(PMC_IER) can trigger an interrupt to the processor.

It is recommended to disable the Main Clock as soon as the processor no longer uses it and
runs out of SLCK, PLLACK or PLLBCK.

The CAL4, CAL8 and CAL12 values in the PMC Oscillator Calibration Register (PMC_OCR) are
the default values set by Atmel during production. These values are stored in a specific Flash
memory area different from the main memory plane. These values cannot be modified by the
user and cannot be erased by a Flash erase command or by the ERASE pin. Values written by
the user's application in PMC_OCR are reset after each power up or peripheral reset.

27.15.2 4/8/12 MHz Fast RC Oscillator Clock Frequency Adjustment

It is possible for the user to adjust the main RC oscillator frequency through PMC_OCR. By
default, SEL4/8/12 are low, so the RC oscillator will be driven with Flash calibration bits which
are programmed during chip production.

The user can adjust the trimming of the 4/8/12 MHz Fast RC oscillator through this register in
order to obtain more accurate frequency (to compensate derating factors such as temperature
and voltage).

In order to calibrate the 4 MHz oscillator frequency, SEL4 must be set to 1 and a good frequency
value must be configured in CAL4. Likewise, SEL8/12 must be set to 1 and a trim value must be
configured in CAL8/12 in order to adjust the 8/12 MHz frequency oscillator.

It is possible to adjust the oscillator frequency while operating from this clock. For example,
when running on 4 MHz it is possible to change the CAL4 value if SEL4 is set in PMC_OCR.

It is possible to restart, at anytime, a measurement of the main frequency by means of the
RCMEAS bit in Main Clock Frequency Register (CKGR_MCFR). Thus, when MAINFRDY flag is
set, the MAINF field returns the frequency of the main clock and software can calculate the error
with an expected frequency and correct the CAL4 (or CAL8/CAL12) field accordingly. This may
be used to compensate frequency drift due to derating factors such as temperature and/or
voltage.

AImEl@ 479

11100B-ATARM-31-Jul-12

27.1.5.3

27.1.5.4

27.155

480

ATMEL

3 to 20 MHz Crystal or Ceramic Resonator-based Oscillator

After reset, the 3 to 20 MHz Crystal or Ceramic Resonator-based oscillator is disabled and it is
not selected as the source of MAINCK.

The user can select the 3 to 20 MHz Crystal or Ceramic Resonator-based oscillator to be the
source of MAINCK, as it provides a more accurate frequency. The software enables or disables
the main oscillator so as to reduce power consumption by clearing the MOSCXTEN bit in the
Main Oscillator Register (CKGR_MOR).

When disabling the main oscillator by clearing the MOSCXTEN bit in CKGR_MOR, the
MOSCXTS bit in PMC_SR is automatically cleared, indicating the Main Clock is off.

When enabling the main oscillator, the user must initiate the main oscillator counter with a value
corresponding to the startup time of the oscillator. This startup time depends on the crystal fre-
quency connected to the oscillator.

When the MOSCXTEN bit and the MOSCXTCNT are written in CKGR_MOR to enable the main
oscillator, the XIN and XOUT pins are automatically switched into oscillator mode and
MOSCXTS bit in the Power Management Controller Status Register (PMC_SR) is cleared and
the counter starts counting down on the slow clock divided by 8 from the MOSCXTCNT value.
Since the MOSCXTCNT value is coded with 8 bits, the maximum startup time is about 62 ms.

When the counter reaches 0, the MOSCXTS bit is set, indicating that the main clock is valid.
Setting the MOSCXTS bit in PMC_IMR can trigger an interrupt to the processor.

Main Clock Oscillator Selection

The user can select either the 4/8/12 MHz Fast RC oscillator or the 3 to 20 MHz Crystal or
Ceramic Resonator-based oscillator to be the source of Main Clock.

The advantage of the 4/8/12 MHz Fast RC oscillator is that it provides fast startup time, this is
why it is selected by default (to start up the system) and when entering Wait Mode.

The advantage of the 3 to 20 MHz Crystal or Ceramic Resonator-based oscillator is that it is very
accurate.

The selection is made by writing the MOSCSEL bit in the Main Oscillator Register
(CKGR_MOR). The switch of the Main Clock source is glitch free, so there is no need to run out
of SLCK, PLLACK or PLLBCK in order to change the selection. The MOSCSELS bit of the
Power Management Controller Status Register (PMC_SR) allows knowing when the switch
sequence is done.

Setting the MOSCSELS bit in PMC_IMR can trigger an interrupt to the processor.

Enabling the Fast RC Oscillator (MOSCRCEN = 1) and changing the Fast RC Frequency
(MOSCCREF) at the same time is not allowed.

The Fast RC must be enabled first and its frequency changed in a second step.

Main Clock Frequency Counter

The device features a Main Clock frequency counter that provides the frequency of the Main
Clock.

The Main Clock frequency counter is reset and starts incrementing at the Main Clock speed after
the next rising edge of the Slow Clock in the following cases:

* when the 4/8/12 MHz Fast RC oscillator clock is selected as the source of Main Clock and
when this oscillator becomes stable (i.e., when the MOSCRCS bit is set)

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

« when the 3 to 20 MHz Crystal or Ceramic Resonator-based oscillator is selected as the
source of Main Clock and when this oscillator becomes stable (i.e., when the MOSCXTS bit
is set)

« when the Main Clock Oscillator selection is modified

« when the RCMEAS bit of CKGR_MFCR is written to 1.

Then, at the 16th falling edge of Slow Clock, the MAINFRDY bit in the Clock Generator Main
Clock Frequency Register (CKGR_MCFR) is set and the counter stops counting. Its value can
be read in the MAINF field of CKGR_MCFR and gives the number of Main Clock cycles during
16 periods of Slow Clock, so that the frequency of the 4/8/12 MHz Fast RC oscillator or 3 to 20
MHz Crystal or Ceramic Resonator-based oscillator can be determined.

27.1.6 Divider and PLL Block

11100B-ATARM-31-Jul-12

The device features two Divider/PLL Blocks that permit a wide range of frequencies to be
selected on either the master clock, the processor clock or the programmable clock outputs.
Additionally, they provide a 48 MHz signal to the embedded USB device port regardless of the
frequency of the main clock.

Figure 27-4 shows the block diagram of the dividers and PLL blocks.

Figure 27-4. Dividers and PLL Blocks Diagram

I I I
MAINCK ® Divider B > PLLB L > PLLBCK

PLLBDIV2

i

Divider A > PLL A —— > PLLACK
PLLADIV2
PLLBCOUNT
[
PLL B
Counter LOCKB
PLLACOUNT
PLL A
stk ——[_tocka]
Counter LOCKA

AImEl@ 481

27.16.1

482

ATMEL

Divider and Phase Lock Loop Programming

The divider can be set between 1 and 255 in steps of 1. When a divider field (DIV) is set to 0, the
output of the corresponding divider and the PLL output is a continuous signal at level 0. On
reset, each DIV field is set to 0, thus the corresponding PLL input clock is set to 0.

The PLLs (PLLA, PLLB) allow multiplication of the divider’'s outputs. The PLL clock signal has a
frequency that depends on the respective source signal frequency and on the parameters DIV
(DIVA, DIVB) and MUL (MULA, MULB). The factor applied to the source signal frequency is
(MUL + 1)/DIV. When MUL is written to 0, the PLL is disabled and its power consumption is
saved. Re-enabling the PLL can be performed by writing a value higher than 0 in the MUL field.

Whenever the PLL is re-enabled or one of its parameters is changed, the LOCK (LOCKA,
LOCKB) bit in PMC_SR is automatically cleared. The values written in the PLLCOUNT field
(PLLACOUNT, PLLBCOUNT) in CKGR_PLLR (CKGR_PLLAR, CKGR_PLLBR) are loaded in
the PLL counter. The PLL counter then decrements at the speed of the Slow Clock until it
reaches 0. At this time, the LOCK bit is set in PMC_SR and can trigger an interrupt to the pro-
cessor. The user has to load the number of Slow Clock cycles required to cover the PLL
transient time into the PLLCOUNT field.

The PLL clock can be divided by 2 by writing the PLLDIV2 (PLLADIV2, PLLBDIV?2) bit in PMC
Master Clock Register (PMC_MCKR).

It is forbidden to change 4/8/12 MHz Fast RC oscillator, or main selection in CKGR_MOR regis-
ter while Master clock source is PLL and PLL reference clock is the Fast RC oscillator.

The user must:

 Switch on the Main RC oscillator by writing 1 in CSS field of PMC_MCKR.
» Change the frequency (MOSCRCEF) or oscillator selection (MOSCSEL) in CKGR_MOR.

» Wait for MOSCRCS (if frequency changes) or MOSCSELS (if oscillator selection changes) in
PMC_IER.

« Disable and then enable the PLL (LOCK in PMC_IDR and PMC_IER).
» Wait for PLLRDY.
» Switch back to PLL.

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

27.2 Power Management Controller (PMC)

27.2.1 Description

The Power Management Controller (PMC) optimizes power consumption by controlling all sys-
tem and user peripheral clocks. The PMC enables/disables the clock inputs to many of the
peripherals and the Cortex-M4 Processor.

The Supply Controller selects between the 32 kHz RC oscillator or the crystal oscillator. The
unused oscillator is disabled automatically so that power consumption is optimized.

By default, at startup the chip runs out of the Master Clock using the Fast RC oscillator running
at 4 MHz.

The user can trim the 8 and 12 MHz RC Oscillator frequencies by software.

27.2.2 Embedded Characteristics
The Power Management Controller provides the following clocks:

* MCK, the Master Clock, programmable from a few hundred Hz to the maximum operating
frequency of the device. It is available to the modules running permanently, such as the
Enhanced Embedded Flash Controller.

 Processor Clock (HCLK), must be switched off when entering the processor in Sleep Mode.
* Free running processor Clock (FCLK)

« the Cortex-M4 SysTick external clock

« UDP Clock (UDPCK), required by USB Device Port operations.

« Peripheral Clocks, typically MCK, provided to the embedded peripherals (USART, SSC, SPI,
TWI, TC, HSMCI, etc.) and independently controllable. In order to reduce the number of clock
names in a product, the Peripheral Clocks are named MCK in the product datasheet.

Programmable Clock Outputs can be selected from the clocks provided by the clock generator
and driven on the PCKXx pins.

The Power Management Controller also provides the following operations on clocks:

» a main crystal oscillator clock failure detector.
« a frequency counter on main clock and an on-the-fly adjustable main RC oscillator frequency.

AImEl@ 483

11100B-ATARM-31-Jul-12

ATMEL

27.2.3 Block Diagram

Figure 27-5. General Clock Block Diagram

Clock Gene rator

Processor Processor clock

Clock L > HCLK
Controller

XTALSEL

(Supply @ntroller)
Sleep Node [int

Embedded
32k RC |—>
Oscillaor

Divider
Sow Clock — I8

SysTick

\OH
K
Master Clock Controller
XIN32 32768 .
D crysa |—f 1 S (MC_MCKR) Fee rugg&% clock
M
0
J

XOUT32 | I Oscillaor MAINGK
Prescaler
0SCSEL PLLBCK 11,/2,/3,/4,/8, Maﬁé&'mk
Embedded PLLAX 116,/32,/64
4/8/12 MHz -
Fast] Peripherals
RC Oscillator g;l'acck (Dntro;ler
Main Clock . PCERX ON/OFF)
3-20 MH MAINCK periph_clk][..
XIN | I C“éfal
Ceramic [~
Resonator
xout | I Oscillgor Programmable Clock Controller
° SCK (®C_PCKx)
MAINCK T ONJOFF
PLLA and PLLBCK 11,/2,14,18, L 1 pekl]
Divider /2 PLLA Clock PLLAK /16,/32,/64
PLLACK MCK
cs =
PLLB and PLLB Clock USB Clock @htroller (PMC_USB)
Divider /2 PLLBCK PLLAK ONJ/OFH USB Clock
Divider | UDPCK
PLLBDIV2 PLLBCK 11,/2,/3,...,/16

l Satus T Control

Power
Management
Controller

s82 SAMAS Series [Preliminary] m———

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

27.2.4 Master Clock Controller

The Master Clock Controller provides selection and division of the Master Clock (MCK). MCK is
the clock provided to all the peripherals.

The Master Clock is selected from one of the clocks provided by the Clock Generator. Selecting
the Slow Clock provides a Slow Clock signal to the whole device. Selecting the Main Clock
saves power consumption of the PLLs.

The Master Clock Controller is made up of a clock selector and a prescaler.

The Master Clock selection is made by writing the CSS field (Clock Source Selection) in
PMC_MCKR (Master Clock Register). The prescaler supports the division by a power of 2 of the
selected clock between 1 and 64, and the division by 3. The PRES field in PMC_MCKR pro-
grams the prescaler.

Each time PMC_MCKR is written to define a new Master Clock, the MCKRDY bit is cleared in
PMC_SR. It reads 0 until the Master Clock is established. Then, the MCKRDY bit is set and can
trigger an interrupt to the processor. This feature is useful when switching from a high-speed
clock to a lower one to inform the software when the change is actually done.

Figure 27-6. Master Clock Controller

PMC_MCKR PMC_MCKR
CSS PRES

SICK ———— |

MAINCK ———————
Master Clock > MCK
PLLACK Prescaler
PLLBCK —————
_ To the Processor

" Clock Controller (PCK)

27.25 Processor Clock Controller
The PMC features a Processor Clock Controller (HCLK) that implements the Processor Sleep

Mode. The Processor Clock can be disabled by executing the WFI (WaitForinterrupt) processor
instruction.

The Processor Clock HCLK is enabled after a reset and is automatically re-enabled by any
enabled interrupt. The Processor Sleep Mode is achieved by disabling the Processor Clock,
which is automatically re-enabled by any enabled fast or normal interrupt, or by the reset of the
product.

When Processor Sleep Mode is entered, the current instruction is finished before the clock is
stopped, but this does not prevent data transfers from other masters of the system bus.

27.2.6 SysTick Clock

The SysTick calibration value is fixed to 12500 which allows the generation of a time base of 1
ms with SysTick clock to the maximum frequency on MCK divided by 8.

AImEl@ 485

11100B-ATARM-31-Jul-12

27.2.7

27.2.8

27.2.9

486

ATMEL

USB Clock Controller

The user can select the PLLA or the PLLB output as the USB Source Clock by writing the USBS
bit in PMC_USB. If using the USB, the user must program the PLL to generate an appropriate
frequency depending on the USBDIV bit in PMC_USB.

When the PLL output is stable, i.e., the LOCK bit is set:

» The USB device clock can be enabled by setting the UDP bit in PMC_SCER. To save power
on this peripheral when it is not used, the user can set the UDP bit in PMC_SCDR. The UDP
bit in PMC_SCSR gives the activity of this clock. The USB device port requires both the 48
MHz signal and the Master Clock. The Master Clock may be controlled by means of the
Master Clock Controller.

Figure 27-7. USB Clock Controller

USBDIV

UsB Divid
Source 1 "/" e’/ — > UDP Clock (UDPCK)
Clock 1,2,/3,..116 Uop

Peripheral Clock Controller

The Power Management Controller controls the clocks of each embedded peripheral by means
of the Peripheral Clock Controller. The user can individually enable and disable the Clock on the
peripherals.

The user can also enable and disable these clocks by writing Peripheral Clock Enable 0
(PMC_PCERO), Peripheral Clock Disable 0 (PMC_PCDRO), Peripheral Clock Enable 1
(PMC_PCER1) and Peripheral Clock Disable 1 (PMC_PCDR1) registers. The status of the
peripheral clock activity can be read in the Peripheral Clock Status Register (PMC_PCSRO0) and
Peripheral Clock Status Register (PMC_PCSR1).

When a peripheral clock is disabled, the clock is immediately stopped. The peripheral clocks are
automatically disabled after a reset.

In order to stop a peripheral, it is recommended that the system software wait until the peripheral
has executed its last programmed operation before disabling the clock. This is to avoid data cor-
ruption or erroneous behavior of the system.

The bit number within the Peripheral Clock Control registers (PMC_PCERO0-1, PMC_PCDRO-1,
and PMC_PCSRO0-1) is the Peripheral Identifier defined at the product level. The bit number cor-
responds to the interrupt source number assigned to the peripheral.

Free Running Processor Clock

The Free Running Processor Clock (FCLK) used for sampling interrupts and clocking debug
blocks ensures that interrupts can be sampled, and sleep events can be traced, while the pro-
cessor is sleeping. It is connected to Master Clock (MCK).

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

27.2.10

27.2.11

Programmable Clock Output Controller

Fast Startup

11100B-ATARM-31-Jul-12

The PMC controls 3 signals to be output on external pins, PCKx. Each signal can be indepen-
dently programmed via the Programmable Clock Registers (PMC_PCKX).

PCKx can be independently selected between the Slow Clock (SLCK), the Main Clock
(MAINCK), the PLLA Clock (PLLACK), the PLLB Clock (PLLBCK) and the Master Clock (MCK)
by writing the CSS field in PMC_PCKx. Each output signal can also be divided by a power of 2
between 1 and 64 by writing the PRES (Prescaler) field in PMC_PCKXx.

Each output signal can be enabled and disabled by writing 1 in the corresponding bit, PCKx of
PMC_SCER and PMC_SCDR, respectively. Status of the active programmable output clocks
are given in the PCKx bits of PMC_SCSR (System Clock Status Register).

Moreover, like the PCK, a status bit in PMC_SR indicates that the Programmable Clock is actu-
ally what has been programmed in the Programmable Clock registers.

As the Programmable Clock Controller does not manage with glitch prevention when switching
clocks, it is strongly recommended to disable the Programmable Clock before any configuration
change and to re-enable it after the change is actually performed.

The device allows the processor to restart in less than 10 microseconds while the device is in
Wait Mode.

The system enters Wait Mode by writing the WAITMODE bit at 1 in the PMC Clock Generator
Main Oscillator Register (CKGR_MOR). Waiting for MOSCRCEN bit to be cleared is strongly
recommended to ensure that the core will not execute undesired instructions.

Important: Prior to instructing the system to enter in Wait Mode, the internal sources of wakeup
provided by RTT, RTC and USB must be cleared and verified too, that none of the enabled
external wakeup inputs (WKUP) hold an active polarity.

A Fast Startup is enabled upon the detection of a programmed level on one of the 16 wake-up
inputs (WKUP) or upon an active alarm from the RTC, RTT and USB Controller. The polarity of
the 16 wake-up inputs is programmable by writing the PMC Fast Startup Polarity Register
(PMC_FSPR).

The Fast Restart circuitry, as shown in Figure 27-8, is fully asynchronous and provides a fast
startup signal to the Power Management Controller. As soon as the fast startup signal is
asserted, the embedded 4/8/12 MHz Fast RC oscillator restarts automatically.

When entering the Wait Mode, the embedded flash can be placed in low power mode depending
on the configuration of the FLPM in PMC_FSMR register. This bitfield can be programmed any-
time and will be taken into account at the next time the system enters Wait Mode.

The power consumption reduction is optimal when configuring 1 (deep power down mode) in
FLPM. If 0 is programmed (standby mode), the power consumption is slightly higher as com-
pared to the deep power down mode.

When programming 2 in FLPM, the Wait Mode flash power consumption is equivalent to the
active mode when there is no read access on the flash.

AImEl@ 487

ATMEL

Figure 27-8. Fast Startup Circuitry

WKuPO [| &

—
|/
WKUP1 P)}
WKUP15 P:}D— > fast_restart
>
D

RTT Alarm —

RTCAL

i

RTC Alarm
USBAL

UsB Alarm —)

Each wake-up input pin and alarm can be enabled to generate a Fast Startup event by writing 1
to the corresponding bit in the Fast Startup Mode Register PMC_FSMR.

1

The user interface does not provide any status for Fast Startup, but the user can easily recover
this information by reading the PIO Controller and the status registers of the RTC, RTT and USB
Controller.

27.2.12 Main Crystal Clock Failure Detector

The clock failure detector monitors the 3 to 20 MHz Crystal or Ceramic Resonator-based oscilla-
tor to identify an eventual defect of this oscillator (for example, if the crystal is unconnected).

The clock failure detector can be enabled or disabled by means of the CFDEN bit in the PMC
Clock Generator Main Oscillator Register (CKGR_MOR). After reset, the detector is disabled.
However, if the 3 to 20 MHz Crystal or Ceramic Resonator-based Oscillator is disabled, the
clock failure detector is disabled too.

The slow RC oscillator must be enabled.The clock failure detection must be enabled only when
system clock MCK selects the fast RC oscillator. Then the status register must be read 2 slow
clock cycles after enabling.

A failure is detected by means of a counter incrementing on the 3 to 20 MHz Crystal oscillator or
Ceramic Resonator-based oscillator clock edge and timing logic clocked on the slow clock RC
oscillator controlling the counter. The counter is cleared when the slow clock RC oscillator signal
is low and enabled when the slow clock RC oscillator is high. Thus the failure detection time is 1

a8 SAMAS Series [Preliminary] m————

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

slow clock RC oscillator clock period. If, during the high level period of the slow clock RC oscilla-
tor, less than 8 fast crystal oscillator clock periods have been counted, then a failure is declared.

If a failure of the 3 to 20 MHz Crystal or Ceramic Resonator-based oscillator clock is detected,
the CFDEV flag is set in the PMC Status Register (PMC_SR), and generates an interrupt if it is
not masked. The interrupt remains active until a read operation in the PMC_SR register. The
user can know the status of the clock failure detector at any time by reading the CFDS bit in the
PMC_SR register.

If the 3 to 20 MHz Crystal or Ceramic Resonator-based oscillator clock is selected as the source
clock of MAINCK (MOSCSEL = 1), and if the Master Clock Source is PLLACK or PLLBCK (CSS
=2 or 3), a clock failure detection automatically forces MAINCK to be the source clock for the
master clock (MCK).Then, regardless of the PMC configuration, a clock failure detection auto-
matically forces the 4/8/12 MHz Fast RC oscillator to be the source clock for MAINCK. If the Fast
RC oscillator is disabled when a clock failure detection occurs, it is automatically re-enabled by
the clock failure detection mechanism.

It takes 2 slow clock RC oscillator cycles to detect and switch from the 3 to 20 MHz Crystal, or
Ceramic Resonator-based oscillator, to the 4/8/12 MHz Fast RC Oscillator if the Master Clock
source is Main Clock, or 3 slow clock RC oscillator cycles if the Master Clock source is PLLACK
or PLLBCK.

A clock failure detection activates a fault output that is connected to the Pulse Width Modulator
(PWM) Controller. With this connection, the PWM controller is able to force its outputs and to
protect the driven device, if a clock failure is detected. This fault output remains active until the
defect is detected and until it is cleared by the bit FOCLR in the PMC Fault Output Clear Regis-
ter (PMC_FOCR).

The user can know the status of the fault output at any time by reading the FOS bit in the
PMC_SR register.

27.2.13 Programming Sequence
1. Enabling the Main Oscillator:
The main oscillator is enabled by setting the MOSCXTEN field in the Main Oscillator Regis-
ter (CKGR_MOR). The user can define a start-up time. This can be achieved by writing a
value in the MOSCXTST field in CKGR_MOR. Once this register has been correctly config-
ured, the user must wait for MOSCXTS field in the PMC_SR register to be set. This can be
done either by polling the status register, or by waiting the interrupt line to be raised if the
associated interrupt to MOSCXTS has been enabled in the PMC_IER register.

Start Up Time = 8 * MOSCXTST / SLCK = 56 Slow Clock Cycles.
The main oscillator will be enabled (MOSCXTS bit set) after 56 Slow Clock Cycles.
2. Checking the Main Oscillator Frequency (Optional):
In some situations the user may need an accurate measure of the main clock frequency. This
measure can be accomplished via the Main Clock Frequency Register (CKGR_MCFR).

Once the MAINFRDY field is set in CKGR_MCFR, the user may read the MAINF field in
CKGR_MCEFR. This provides the number of main clock cycles within sixteen slow clock
cycles.

3. Setting PLL and Divider:
All parameters needed to configure PLLA and the divider are located in CKGR_PLLAXR.

AImEl@ 489

11100B-ATARM-31-Jul-12

ATMEL

The DIV field is used to control the divider itself. It must be set to 1 when PLL is used. By
default, DIV parameter is set to O which means that the divider is turned off.

The MUL field is the PLL multiplier factor. This parameter can be programmed between 0
and 62. If MUL is set to 0, PLL will be turned off, otherwise the PLL output frequency is PLL
input frequency multiplied by (MUL + 1).

The PLLCOUNT field specifies the number of slow clock cycles before the LOCK bit is set in
PMC_SR, after CKGR_PLLAXR has been written.

Once the CKGR_PLL register has been written, the user must wait for the LOCK bit to be
set in the PMC_SR. This can be done either by polling the status register or by waiting the
interrupt line to be raised if the associated interrupt to LOCK has been enabled in PMC_IER.
All parameters in CKGR_PLLAXR can be programmed in a single write operation. If at some
stage one of the following parameters, MUL or DIV is modified, the LOCK bit will go low to
indicate that PLL is not ready yet. When PLL is locked, LOCK will be set again. The user is
constrained to wait for LOCK bit to be set before using the PLL output clock.

4. Selection of Master Clock and Processor Clock
The Master Clock and the Processor Clock are configurable via the Master Clock Register
(PMC_MCKR).

The CSS field is used to select the Master Clock divider source. By default, the selected
clock source is main clock.

The PRES field is used to control the Master Clock prescaler. The user can choose between
different values (1, 2, 3, 4, 8, 16, 32, 64). Master Clock output is prescaler input divided by
PRES parameter. By default, PRES parameter is set to 1 which means that master clock is
equal to main clock.

Once PMC_MCKR has been written, the user must wait for the MCKRDY bit to be set in
PMC_SR. This can be done either by polling the status register or by waiting for the interrupt
line to be raised if the associated interrupt to MCKRDY has been enabled in the PMC_IER
register.

The PMC_MCKR must not be programmed in a single write operation. The preferred pro-
gramming sequence for PMC_MCKR is as follows:
« If a new value for CSS field corresponds to PLL Clock,
— Program the PRES field in PMC_MCKR.
— Wait for the MCKRDY bit to be set in PMC_SR.
— Program the CSS field in PMC_MCKR.
— Wait for the MCKRDY bit to be setin PMC_SR.
« If a new value for CSS field corresponds to Main Clock or Slow Clock,
— Program the CSS field in PMC_MCKR.
— Wait for the MCKRDY bit to be set in the PMC_SR.
— Program the PRES field in PMC_MCKR.
— Wait for the MCKRDY bit to be setin PMC_SR.

If at some stage one of the following parameters, CSS or PRES is modified, the MCKRDY
bit will go low to indicate that the Master Clock and the Processor Clock are not ready yet.
The user must wait for MCKRDY bit to be set again before using the Master and Processor
Clocks.

a0 SAMAS Series [Preliminary] ———

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

Note: IF PLLx clock was selected as the Master Clock and the user decides to modify it by writing in
CKGR_PLLR, the MCKRDY flag will go low while PLL is unlocked. Once PLL is locked again,
LOCK goes high and MCKRDY is set.
While PLL is unlocked, the Master Clock selection is automatically changed to Slow Clock. For fur-
ther information, see Section 27.2.14.2 “Clock Switching Waveforms” on page 493.

Code Example:

write_register(PMC_MCKR, 0x00000001)
wait (MCKRDY=1)
write_register(PMC_MCKR, 0x00000011)
wai t (MCKRDY=1)

The Master Clock is main clock divided by 2.
The Processor Clock is the Master Clock.

5. Selection of Programmable Clocks

Programmable clocks are controlled via registers, PMC_SCER, PMC_SCDR and
PMC_SCSR.

Programmable clocks can be enabled and/or disabled via PMC_SCER and PMC_SCDR. 3
Programmable clocks can be enabled or disabled. The PMC_SCSR provides a clear indica-
tion as to which Programmable clock is enabled. By default all Programmable clocks are
disabled.

Programmable Clock Registers (PMC_PCKXx) are used to configure Programmable clocks.

The CSS field is used to select the Programmable clock divider source. Four clock options
are available: main clock, slow clock, PLLACK, PLLBCK. By default, the clock source
selected is slow clock.

The PRES field is used to control the Programmable clock prescaler. It is possible to choose
between different values (1, 2, 4, 8, 16, 32, 64). Programmable clock output is prescaler
input divided by PRES parameter. By default, the PRES parameter is set to 0 which means
that master clock is equal to slow clock.

Once PMC_PCKx has been programmed, The corresponding Programmable clock must be
enabled and the user is constrained to wait for the PCKRDYX bit to be set in PMC_SR. This
can be done either by polling the status register or by waiting the interrupt line to be raised, if
the associated interrupt to PCKRDYx has been enabled in the PMC_IER register. All param-
eters in PMC_PCKXx can be programmed in a single write operation.

If the CSS and PRES parameters are to be modified, the corresponding Programmable
clock must be disabled first. The parameters can then be modified. Once this has been
done, the user must re-enable the Programmable clock and wait for the PCKRDYx bit to be
set.

6. Enabling Peripheral Clocks

Once all of the previous steps have been completed, the peripheral clocks can be enabled
and/or disabled via registers PMC_PCERO, PMC_PCER, PMC_PCDRO and PMC_PCDR.

AImEl@ 491

11100B-ATARM-31-Jul-12

ATMEL

27.2.14 Clock Switching Details

27.2.14.1

492

Master Clock Switching Timings

Table 27-1 and Table 27-2 give the worst case timings required for the Master Clock to switch
from one selected clock to another one. This is in the event that the prescaler is de-activated.
When the prescaler is activated, an additional time of 64 clock cycles of the newly selected clock
has to be added.

Table 27-1. Clock Switching Timings (Worst Case)

From Main Clock SLCK PLL Clock
To
PLL Clock +
Main Clock - 4x SLCK + > e
2.5 x Main Clock 4x S!‘CK *
1 x Main Clock
0.5 x Main Clock + 3 x PLL Clock +
SLek 4.5 x SLCK B 5 x SLCK
0.5 . yg[]ci?k ¥ 2.5 x PLL Clock + 2.5 x PLL Clock +
PLL Clock 5Xx SLCK + 4 X SLCK +
PLLCOUNT x SLCK +
PLLCOUNT x SLCK PLLCOUNT x SLCK
2.5 x PLLx Clock

Notes: 1. PLL designates either the PLLA or the PLLB Clock.
2. PLLCOUNT designates either PLLACOUNT or PLLBCOUNT.

Table 27-2. Clock Switching Timings between Two PLLs (Worst Case)

From PLLA Clock PLLB Clock
To
2.5 x PLLA Clock + 3 x PLLA Clock +
PLLA Clock 4 x SLCK + 4 x SLCK +
PLLACOUNT x SLCK 1.5 x PLLA Clock
3 x PLLB Clock + 2.5 x PLLB Clock +
PLLB Clock 4 x SLCK + 4 x SLCK +
1.5 x PLLB Clock PLLBCOUNT x SLCK

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

27.2.14.2 Clock Switching Waveforms

Figure 27-9. Switch Master Clock from Slow Clock to PLLx Clock

SIowCIock||||||||||||||||||||||||||||||||||
PLLxCIock|||

LOCK |

MCKRDY

MasterCIock|||||||||||||||||||||||||||| |||||
Write PMC_MCKR |

Figure 27-10. Switch Master Clock from Main Clock to Slow Clock

Slow Clock | | | | | | | | | | |—

MCKRDY '| |

Write PMC_MCKR |

ATMEL

11100B-ATARM-31-Jul-12

493

ATMEL

Figure 27-11. Change PLLx Programming

SIowCIock||
PLLx Clock ||| |||||||||||||||||| | | | | | | | | | | | | | | | I ||

LOCKx

MCKRDY

MasterCIock||||||||||||||||| |||||||||||||||| ||| ||
Slow Clock
Write CKGR_PLLxR ||

Figure 27-12. Programmable Clock Output Programming

PLLx Clock ||

PCKRDY

PCKx Output ||||||||||||||||||||||||||

Write PMC_PCKx |_| PLL Clock is selected

Write PMC_SCER |_| PCKXx is enabled

Write PMC_SCDR PCKXx is disabled |_|

a4 SAMAS Series [Preliminary] m-——

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

27.2.15 Write Protection Registers
To prevent any single software error that may corrupt PMC behavior, certain address spaces
can be write protected by setting the WPEN bit in the “PMC Write Protect Mode Register”

11100B-ATARM-31-Jul-12

(PMC_WPMR).

If a write access to the protected registers is detected, then the WPVS flag in the PMC Write
Protect Status Register (PMC_WPSR) is set and the field WPVSRC indicates in which register

the write access has been attempted.

The WPVS flag is reset by writing the PMC Write Protect Mode Register (PMC_WPMR) with the

appropriate access key, WPKEY.

The protected registers are:

“PMC System Clock Enable Register”
“PMC System Clock Disable Register”
“PMC Peripheral Clock Enable Register 0”
“PMC Peripheral Clock Disable Register 0”
“PMC Clock Generator Main Oscillator Register”
“PMC Clock Generator PLLA Register”
“PMC Clock Generator PLLB Register”
“PMC Master Clock Register”

“PMC USB Clock Register”

“PMC Programmable Clock Register”
“PMC Fast Startup Mode Register”

“PMC Fast Startup Polarity Register”
“PMC Peripheral Clock Enable Register 1”
“PMC Peripheral Clock Disable Register 1”
“PMC Oscillator Calibration Register”

ATMEL

495

ATMEL

27.2.16 Power Management Controller (PMC) User Interface
Table 27-3. Register Mapping

Offset Register Name Access Reset
0x0000 System Clock Enable Register PMC_SCER Write-only -
0x0004 System Clock Disable Register PMC_SCDR Write-only -
0x0008 System Clock Status Register PMC_SCSR Read-only 0x0000_0001
0x000C Reserved - - -
0x0010 Peripheral Clock Enable Register O PMC_PCERO Write-only -
0x0014 Peripheral Clock Disable Register 0 PMC_PCDRO Write-only -
0x0018 Peripheral Clock Status Register 0 PMC_PCSRO Read-only 0x0000_0000
0x001C Reserved - - -
0x0020 Main Oscillator Register CKGR_MOR Read-write 0x0000_0001
0x0024 Main Clock Frequency Register CKGR_MCFR Read-write 0x0000_0000
0x0028 PLLA Register CKGR_PLLAR Read-write 0x0000_3F00
0x002C PLLB Register CKGR_PLLBR Read-write 0x0000_3F00
0x0030 Master Clock Register PMC_MCKR Read-write 0x0000_0001
0x0034 Reserved - - -
0x0038 USB Clock Register PMC_USB Read/Write 0x0000_0000
0x003C Reserved - - -
0x0040 Programmable Clock O Register PMC_PCKO Read-write 0x0000_0000
0x0044 Programmable Clock 1 Register PMC_PCK1 Read-write 0x0000_0000
0x0048 Programmable Clock 2 Register PMC_PCK2 Read-write 0x0000_0000

0x004C - 0x005C | Reserved - - -
0x0060 Interrupt Enable Register PMC_IER Write-only -
0x0064 Interrupt Disable Register PMC_IDR Write-only -
0x0068 Status Register PMC_SR Read-only 0x0001_0008
0x006C Interrupt Mask Register PMC_IMR Read-only 0x0000_0000
0x0070 Fast Startup Mode Register PMC_FSMR Read-write 0x0000_0000
0x0074 Fast Startup Polarity Register PMC_FSPR Read-write 0x0000_0000
0x0078 Fault Output Clear Register PMC_FOCR Write-only -

0x007C- OXxO0EO | Reserved - - -
0x00E4 Write Protect Mode Register PMC_WPMR Read-write 0x0
O0xO00E8 Write Protect Status Register PMC_WPSR Read-only 0x0

OXOOEC-0xO0FC | Reserved - - -
0x0100 Peripheral Clock Enable Register 1 PMC_PCER1 Write-only -
0x0104 Peripheral Clock Disable Register 1 PMC_PCDR1 Write-only -

a6 SAMAS Series [Preliminary] ———

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

Table 27-3. Register Mapping

Offset Register Name Access Reset
0x0108 Peripheral Clock Status Register 1 PMC_PCSR1 Read-only 0x0000_0000
0x010C Reserved - - -
0x0110 Oscillator Calibration Register PMC_OCR Read-write 0x0040_4040

Note: If an offset is not listed in the table it must be considered as “reserved”.

11100B-ATARM-31-Jul-12

ATMEL

497

27.2.16.1 PMC System Clock Enable Register
Name: PMC_SCER

Address: 0x400E0400

Access: Write-only
31 30 29 28 27 26 25 24

| - | - | - | - | - | - | - | - |
23 22 21 20 19 18 17 16

| - | - | - | - | - | - | - | - |
15 14 13 12 11 10 9 8

| — | - | - | - | — | pPck2 [pcki | pcko |
7 6 5 4 3 2 1 0

[__uwop | - | - | - | - | - | - | - |

This register can only be written if the WPEN bit is cleared in “PMC Write Protect Mode Register” .
» UDP: USB Device Port Clock Enable

0 = No effect.

1 = Enables the 48 MHz clock (UDPCK) of the USB Device Port.

* PCKXx: Programmable Clock x Output Enable

0 = No effect.

1 = Enables the corresponding Programmable Clock output.

a8 SAMAS Series [Preliminary] ———

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

27.2.16.2 PMC System Clock Disable Register
Name: PMC_SCDR

Address: 0x400E0404

Access: Write-only
31 30 29 28 27 26 25 24

| - | - | - | - | - | - | - - |
23 22 21 20 19 18 17 16

| - | - | - | - | - | - | - - |
15 14 13 12 11 10 9 8

| - | - | — | — | — | pck2 | pcki PCKO |
7 6 5 4 3 2 1 0

[__uop | - | - | - | - | - | - - |

This register can only be written if the WPEN bit is cleared in “PMC Write Protect Mode Register” .

» UDP: USB Device Port Clock Disable
0 = No effect.

1 = Disables the 48 MHz clock (UDPCK) of the USB Device Port.
* PCKXx: Programmable Clock x Output Disable
0 = No effect.

1 = Disables the corresponding Programmable Clock output.

11100B-ATARM-31-Jul-12

ATMEL

499

27.2.16.3 PMC System Clock Status Register
Name: PMC_SCSR

Address: 0x400E0408

Access: Read-only
31 30 29 28 27 26 25 24

| - | - | - | - | - | - | - | - |
23 22 21 20 19 18 17 16

| - | - | - | - | - | - | - | - |
15 14 13 12 11 10 9 8

| — | - | - | - | — | pPck2 [pcki | pcko |
7 6 5 4 3 2 1 0

[__uwop | - | - | - | - | - | - | - |

» UDP: USB Device Port Clock Status
0 = The 48 MHz clock (UDPCK) of the USB Device Port is disabled.

1 = The 48 MHz clock (UDPCK) of the USB Device Port is enabled.
* PCKXx: Programmable Clock x Output Status
0 = The corresponding Programmable Clock output is disabled.

1 = The corresponding Programmable Clock output is enabled.

soo0 SAMAS Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

27.2.16.4 PMC Peripheral Clock Enable Register 0
Name: PMC_PCERO

Address: 0x400E0410

Access: Write-only
31 30 29 28 27 26 25 24

[pPp31 | pPD30 | PD29 | pPD28 | P27 | pPD26 | PD25 | P24 |
23 22 21 20 19 18 17 16

[P23 | pPpD22 | pPD21 | PD20 | pPD19 | P18 | pPD17 [pPDi16 |
15 14 13 12 11 10 9 8

[pp1i5 | pPp14a | pPD13 | pPpi2 | pPpD11 | PDIO | PD9 | PID8 |
7 6 5 4 3 2 1 0

[pp7z | pPp6e | pPps | pPp4a | pPD3 | pPD2 | — | — |

This register can only be written if the WPEN bit is cleared in “PMC Write Protect Mode Register” .
e PIDx: Peripheral Clock x Enable

0 = No effect.

1 = Enables the corresponding peripheral clock.

Note: To get PIDx, refer to identifiers as defined in the section “Peripheral Identifiers” in the product datasheet. Other peripherals can
be enabled in PMC_PCERL (Section 27.2.16.23 "PMC Peripheral Clock Enable Register 1”).

Note: Programming the control bits of the Peripheral ID that are not implemented has no effect on the behavior of the PMC.

AImEl@ 501

11100B-ATARM-31-Jul-12

ATMEL

27.2.16.5 PMC Peripheral Clock Disable Register 0
Name: PMC_PCDRO

Address: 0x400E0414

Access: Write-only
31 30 29 28 27 26 25 24

[pPp31 | pPD30 | PD29 | pPD28 | P27 | pPD26 | PD25 | P24 |
23 22 21 20 19 18 17 16

[P23 | pPpD22 | pPD21 | PD20 | pPD19 | P18 | pPD17 [pPDi16 |
15 14 13 12 11 10 9 8

[pp1i5 | pPp14a | pPD13 | pPpi2 | pPpD11 | PDIO | PD9 | PID8 |
7 6 5 4 3 2 1 0

[pp7z | pPp6e | pPps | pPp4a | pPD3 | pPD2 | - | - |

This register can only be written if the WPEN bit is cleared in “PMC Write Protect Mode Register” .
» PIDx: Peripheral Clock x Disable

0 = No effect.

1 = Disables the corresponding peripheral clock.

Note: To get PIDx, refer to identifiers as defined in the section “Peripheral Identifiers” in the product datasheet. Other peripherals can
be disabled in PMC_PCDR1 (Section 27.2.16.24 "PMC Peripheral Clock Disable Register 1”).

s2 SAMAS Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

27.2.16.6 PMC Peripheral Clock Status Register 0

Name: PMC_PCSRO

Address: 0x400E0418

Access: Read-only
31 30 29 28 27 26 25 24

[pPp31 | pPD30 | PD29 | pPD28 | P27 | pPD26 | PD25 | P24 |
23 22 21 20 19 18 17 16

[P23 | pPpD22 | pPD21 | PD20 | pPD19 | P18 | pPD17 [pPDi16 |
15 14 13 12 11 10 9 8

[pp1i5 | pPp14a | pPD13 | pPpi2 | pPpD11 | PDIO | PD9 | PID8 |
7 6 5 4 3 2 1 0

[pp7z | pPp6e | pPps | pPp4a | pPD3 | pPD2 | — | — |

» PIDx: Peripheral Clock x Status
0 = The corresponding peripheral clock is disabled.

1 = The corresponding peripheral clock is enabled.

Note: To get PIDx, refer to identifiers as defined in the section “Peripheral Identifiers” in the product datasheet. Other peripherals sta-

tus can be read in PMC_PCSR1 (Section 27.2.16.25 "PMC Peripheral Clock Status Register 1”).

11100B-ATARM-31-Jul-12

ATMEL

503

ATMEL

27.2.16.7 PMC Clock Generator Main Oscillator Register

Name: CKGR_MOR

Address: 0x400E0420

Access: Read-write
31 30 29 28 27 26 25 24

| - | - - - - - CFDEN MOSCSEL |
23 22 21 20 19 18 17 16

| KEY |
15 14 13 12 11 10 9 8

| MOSCXTST |
7 6 5 4 3 2 1 0

| - | MOSCRCF | MOSCRCEN | WAITMODE | MOSCXTBY MOSCXTEN |

This register can only be written if the WPEN bit is cleared in “PMC Write Protect Mode Register” .

 KEY: Password

Should be written at value 0x37. Writing any other value in this field aborts the write operation.

* MOSCXTEN: Main Crystal Oscillator Enable

A crystal must be connected between XIN and XOUT.

0 = The Main Crystal Oscillator is disabled.

1 = The Main Crystal Oscillator is enabled. MOSCXTBY must be set to 0.
When MOSCXTEN is set, the MOSCXTS flag is set once the Main Crystal Oscillator startup time is achieved.

* MOSCXTBY: Main Crystal Oscillator Bypass

0 = No effect.

1 = The Main Crystal Oscillator is bypassed. MOSCXTEN must be set to 0. An external clock must be connected on XIN.

When MOSCXTBY is set, the MOSCXTS flag in PMC_SR is automatically set.
Clearing MOSCXTEN and MOSCXTBY bits allows resetting the MOSCXTS flag.

« WAITMODE: Wait Mode Command

0 = No effect.

1 = Enters the device in Wait Mode.

Note: The WAITMODE bit is write-only.

« MOSCRCEN: Main On-Chip RC Oscillator Enable

0 = The Main On-Chip RC Oscillator is disabled.
1 = The Main On-Chip RC Oscillator is enabled.

When MOSCRCEN is set, the MOSCRCS flag is set once the Main On-Chip RC Oscillator startup time is achieved.

soa SAMAS Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

* MOSCRCF: Main On-Chip RC Oscillator Frequency Selection
At start-up, the Main On-Chip RC Oscillator frequency is 4 MHz.

Value Name Description
0x0 4 MHz The Fast RC Oscillator Frequency is at 4 MHz (default)
0x1 8 MHz The Fast RC Oscillator Frequency is at 8 MHz
0x2 12_MHz The Fast RC Oscillator Frequency is at 12 MHz

Note: MOSCRCF must be changed only if MOSCRCS is set in PMC_SR register. Therefore MOSCRCF and MOSCRCEN cannot be
changed at the same time.

* MOSCXTST: Main Crystal Oscillator Start-up Time
Specifies the number of Slow Clock cycles multiplied by 8 for the Main Crystal Oscillator start-up time.

* MOSCSEL: Main Oscillator Selection
0 = The Main On-Chip RC Oscillator is selected.

1 = The Main Crystal Oscillator is selected.

 CFDEN: Clock Failure Detector Enable
0 = The Clock Failure Detector is disabled.

1 = The Clock Failure Detector is enabled.

Notes: 1. The slow RC oscillator must be enabled when the CFDEN is enabled.
2. The clock failure detection must be enabled only when system clock MCK selects the fast RC oscillator.
3. Then the status register must be read 2 slow clock cycles after enabling.

AImEl@ 505

11100B-ATARM-31-Jul-12

27.2.16.8 PMC Clock Generator Main Clock Frequency Register
Name: CKGR_MCFR

Address: 0x400E0424

Access: Read-Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

| - | - | - | RCMEAS | - | - | - | MAINFRDY |
15 14 13 12 11 10 9 8

| MAINF |
7 6 5 4 3 2 1 0

| MAINF |

This register can only be written if the WPEN bit is cleared in “PMC Write Protect Mode Register” .

e MAINF: Main Clock Frequency
Gives the number of Main Clock cycles within 16 Slow Clock periods.

* MAINFRDY: Main Clock Ready
0 = MAINF value is not valid or the Main Oscillator is disabled or a measure has just been started by means of RCMEAS.

1 = The Main Oscillator has been enabled previously and MAINF value is available.

» RCMEAS: RC Oscillator Frequency Measure (write-only)
0 = No effect.

1 = Restart a measure of the main RC frequency, MAINF will carry the new frequency as soon as a low to high transition
occurs on MAINFRDY flag.

The measure is performed on the main frequency (i.e. not limited to RC oscillator only) but if the main clock frequency
source is the fast crystal oscillator, the restart of the measure is unneeded because of the well known stability of crystal
oscillators.

so6 SAMAS Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

27.2.16.9 PMC Clock Generator PLLA Register
Name: CKGR_PLLAR

Address: 0x400E0428

Access: Read-write
31 30 29 28 27 26 25 24

| - | - ONE - - MULA |
23 22 21 20 19 18 17 16

| MULA |
15 14 13 12 11 10 9 8

| - - PLLACOUNT |
7 6 5 4 3 2 1 0

| DIVA |

Possible limitations on PLLA input frequencies and multiplier factors should be checked before using the PMC.
Warning: Bit 29 must always be set to 1 when programming the CKGR_PLLAR register.

This register can only be written if the WPEN bit is cleared in “PMC Write Protect Mode Register” .

» DIVA: Divider

0 = Divider output is stuck at 0.

1= Divider is bypassed (divide by 1)

2 up to 255 = clock is divided by DIVA

e PLLACOUNT: PLLA Counter
Specifies the number of Slow Clock cycles x8 before the LOCKA bit is set in PMC_SR after CKGR_PLLAR is written.

* MULA: PLLA Multiplier
0 = The PLLA is deactivated.
1 up to 62 = The PLLA Clock frequency is the PLLA input frequency multiplied by MULA + 1.

* ONE: Must Be Setto 1
Bit 29 must always be set to 1 when programming the CKGR_PLLAR register.

AImEl@ 507

11100B-ATARM-31-Jul-12

ATMEL

27.2.16.10 PMC Clock Generator PLLB Register
Name: CKGR_PLLBR

Address: 0x400E042C

Access: Read-write
31 30 29 28 27 26 25 24

| — [— — — — MULB |
23 22 21 20 19 18 17 16

| MULB |
15 14 13 12 11 10 9 8

| - - PLLBCOUNT |
7 6 5 4 3 2 1 0

| DIVB |

Possible limitations on PLLB input frequencies and multiplier factors should be checked before using the PMC.
This register can only be written if the WPEN bit is cleared in “PMC Write Protect Mode Register” .

» DIVB: Divider

0 = Divider output is stuck at 0.

1= Divider is bypassed (divide by 1)

2 up to 255 = clock is divided by DIVB

e« PLLBCOUNT: PLLB Counter
Specifies the number of Slow Clock cycles x8 before the LOCKB bit is set in PMC_SR after CKGR_PLLBR is written.

* MULB: PLLB Multiplier
0 = The PLLB is deactivated.

1 up to 62 = The PLLB Clock frequency is the PLLB input frequency multiplied by MULB + 1.

so8 SAMAS Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

27.2.16.11 PMC Master Clock Register

Name: PMC_MCKR

Address: 0x400E0430

Access: Read-write
31 30 29 28 27 26 25 24

- T - 1 - [- T - - S R
23 22 21 20 19 18 17 16

- 1 - 1 - 1 - T - - S R
15 14 13 12 11 10 9 8

| — | — [pPLBDIV2 [PLLADIVZ2 | — — - | - |
7 6 5 4 3 2 1 0

| — | PRES | — — CSS |

This register can only be written if the WPEN bit is cleared in “PMC Write Protect Mode Register” .

» CSS: Master Clock Source Selection

Value Name Description
0 SLOW_CLK Slow Clock is selected
1 MAIN_CLK Main Clock is selected
2 PLLA CLK PLLA Clock is selected
3 PLLB_CLK PLLB Clock is selected

* PRES: Processor Clock Prescaler

Value Name Description
0 CLK_ 1 Selected clock
1 CLK_2 Selected clock divided by 2
2 CLK 4 Selected clock divided by 4
3 CLK_8 Selected clock divided by 8
4 CLK_16 Selected clock divided by 16
5 CLK_32 Selected clock divided by 32
6 CLK_64 Selected clock divided by 64
7 CLK_3 Selected clock divided by 3

* PLLADIV2: PLLA Divisor by 2
PLLADIV2 PLLA Clock Division

0 PLLA clock frequency is divided by 1.
1 PLLA clock frequency is divided by 2.

11100B-ATARM-31-Jul-12

ATMEL

509

* PLLBDIV2: PLLB Divisor by 2

PLLBDIV2 PLLB Clock Division
0 PLLB clock frequency is divided by 1.
1 PLLB clock frequency is divided by 2.

s:10 SAMAS Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

27.2.16.12 PMC USB Clock Register
Name: PMC_USB

Address: 0x400E0438

Access: Read-write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - - |
15 14 13 12 11 10 9 8

| — | — | — | — | USBDIV |
7 6 5 4 3 2 1 0

I - I - I - I - I - I - I - uses |

This register can only be written if the WPEN bit is cleared in “PMC Write Protect Mode Register” .

e USBS: USB Input Clock Selection
0 = USB Clock Input is PLLA.

1 =USB Clock Input is PLLB.

« USBDIV: Divider for USB Clock.
USB Clock is Input clock divided by USBDIV+1.

11100B-ATARM-31-Jul-12

ATMEL

511

A IIIIEI% O

27.2.16.13 PMC Programmable Clock Register
Name: PMC_PCKx

Address: 0x400E0440

Access: Read-write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| — | PRES | — | CSS |

This register can only be written if the WPEN bit is cleared in “PMC Write Protect Mode Register” .

» CSS: Master Clock Source Selection

Value Name Description
0 SLOW_CLK Slow Clock is selected
1 MAIN_CLK Main Clock is selected
2 PLLA CLK PLLA Clock is selected
3 PLLB_CLK PLLB Clock is selected
4 MCK Master Clock is selected

* PRES: Programmable Clock Prescaler

Value Name Description

0 CLK_ 1 Selected clock

1 CLK_2 Selected clock divided by 2
2 CLK 4 Selected clock divided by 4
3 CLK_8 Selected clock divided by 8
4 CLK_16 Selected clock divided by 16
5 CLK_32 Selected clock divided by 32
6 CLK_64 Selected clock divided by 64

512 SAMAS Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

27.2.16.14 PMC Interrupt Enable Register
Name: PMC_IER

Address: 0x400E0460

Access: Write-only
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
| - | - | - | - | — | crbev | moscrcs | moscsELs |
15 14 13 12 11 10 9 8
| — | — | — | — | — | pPckrDY2 | PckrDY1 | PCKRDYO |
7 6 5 4 3 2 1 0
| - | - | - | - | MCKRDY | LOCKB | LOCKA | MOSCXTS |
» MOSCXTS: Main Crystal Oscillator Status Interrupt Enable
» LOCKA: PLLA Lock Interrupt Enable
« LOCKB: PLLB Lock Interrupt Enable
» MCKRDY: Master Clock Ready Interrupt Enable
 PCKRDYx: Programmable Clock Ready x Interrupt Enable
» MOSCSELS: Main Oscillator Selection Status Interrupt Enable
* MOSCRCS: Main On-Chip RC Status Interrupt Enable
» CFDEV: Clock Failure Detector Event Interrupt Enable
ATMEL 513
Y 5

11100B-ATARM-31-Jul-12

27.2.16.15 PMC Interrupt Disable Register
Name: PMC_IDR

Address: 0x400E0464

Access: Write-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

| - | - | — | — | - | crpEv | mMoscrcs | moscseLs |
15 14 13 12 11 10 9 8

| — | — | — | — | — | pPckrDY2 | PckrDY1 | PCKRDYO |
7 6 5 4 3 2 1 0

| - | - [- | - [MCKRDY | LOCKB | LOCKA | MOSCXTS |

* MOSCXTS: Main Crystal Oscillator Status Interrupt Disable

* LOCKA: PLLA Lock Interrupt Disable

* LOCKB: PLLB Lock Interrupt Disable

» MCKRDY: Master Clock Ready Interrupt Disable

 PCKRDYx: Programmable Clock Ready x Interrupt Disable

* MOSCSELS: Main Oscillator Selection Status Interrupt Disable
* MOSCRCS: Main On-Chip RC Status Interrupt Disable

» CFDEV: Clock Failure Detector Event Interrupt Disable

s:4 SAMAS Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

27.2.16.16 PMC Status Register
Name: PMC_SR

Address: 0x400E0468

Access: Read-only
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
| - | - | - FOS CFDS | CFDEV | MOSCRCS | MOSCSELS |
15 14 13 12 11 10 9 8
| — | — | - - — | pPckrDY2 | PckrDY1 | PCKRDYO |
7 6 5 4 3 2 1 0
| OSCSELS | - | - | - | MCKRDY | LOCKB | LOCKA | MOSCXTS |
* MOSCXTS: Main XTAL Oscillator Status
0 = Main XTAL oscillator is not stabilized.
1 = Main XTAL oscillator is stabilized.
 LOCKA: PLLA Lock Status
0 = PLLA is not locked
1 =PLLA is locked.
 LOCKB: PLLB Lock Status
0 = PLLB is not locked
1 =PLLB is locked.
« MCKRDY: Master Clock Status
0 = Master Clock is not ready.
1 = Master Clock is ready.
* OSCSELS: Slow Clock Oscillator Selection
0 = Internal slow clock RC oscillator is selected.
1 = External slow clock 32 kHz oscillator is selected.
» PCKRDYx: Programmable Clock Ready Status
0 = Programmable Clock x is not ready.
1 = Programmable Clock x is ready.
e MOSCSELS: Main Oscillator Selection Status
0 = Selection is in progress.
1 = Selection is done.
* MOSCRCS: Main On-Chip RC Oscillator Status
0 = Main on-chip RC oscillator is not stabilized.
ATMEL 515
Y 5

11100B-ATARM-31-Jul-12

ATMEL

1 = Main on-chip RC oscillator is stabilized.
» CFDEV: Clock Failure Detector Event
0 = No clock failure detection of the main on-chip RC oscillator clock has occurred since the last read of PMC_SR.

1 = At least one clock failure detection of the main on-chip RC oscillator clock has occurred since the last read of PMC_SR.

» CFDS: Clock Failure Detector Status
0 = A clock failure of the main on-chip RC oscillator clock is not detected.

1 = A clock failure of the main on-chip RC oscillator clock is detected.
» FOS: Clock Failure Detector Fault Output Status
0 = The fault output of the clock failure detector is inactive.

1 = The fault output of the clock failure detector is active.

si6 SAMAS Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

27.2.16.17 PMC Interrupt Mask Register
Name: PMC_IMR

Address: 0x400E046C

Access: Read-only
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
| - | - | — | — | - | crpEv | mMoscrcs | moscseLs |
15 14 13 12 11 10 9 8
| — | — | — | — | — | pPckrDY2 | PckrDY1 | PCKRDYO |
7 6 5 4 3 2 1 0
| - | - | - | - | MCKRDY | LOCKB | LOCKA | MOSCXTS |
» MOSCXTS: Main Crystal Oscillator Status Interrupt Mask
 LOCKA: PLLA Lock Interrupt Mask
 LOCKB: PLLB Lock Interrupt Mask
 MCKRDY: Master Clock Ready Interrupt Mask
* PCKRDYx: Programmable Clock Ready x Interrupt Mask
» MOSCSELS: Main Oscillator Selection Status Interrupt Mask
* MOSCRCS: Main On-Chip RC Status Interrupt Mask
» CFDEV: Clock Failure Detector Event Interrupt Mask
ATMEL 517
Y 5

11100B-ATARM-31-Jul-12

ATMEL

27.2.16.18 PMC Fast Startup Mode Register

Name: PMC_FSMR

Address: 0x400E0470

Access: Read-write
31 30 29 28 27 26 25 24

I - I - - I - I - I - I - I - |
23 22 21 20 19 18 17 16

| — | FLPM | — | — | USBAL | RTCAL | RTTAL |
15 14 13 12 11 10 9 8

| FSTT15 | FSTT14 | FSTT13 | FSTT12 | FSTT11 | FSTT10 | FSTT9 | FSTTS |
7 6 5 4 3 2 1 0

| FSTT7 | FSTT6 | FSTT5 | FSTT4 | FSTT3 | FSTT2 | FSTT1 | FSTTO |

This register can only be written if the WPEN bit is cleared in “PMC Write Protect Mode Register” .

FSTTO - FSTT15: Fast Startup Input Enable 0 to 15
0 = The corresponding wake up input has no effect on the Power Management Controller.

1 = The corresponding wake up input enables a fast restart signal to the Power Management Controller.

 RTTAL: RTT Alarm Enable
0 = The RTT alarm has no effect on the Power Management Controller.

1 =The RTT alarm enables a fast restart signal to the Power Management Controller.

RTCAL: RTC Alarm Enable

0 = The RTC alarm has no effect on the Power Management Controller.

1 =The RTC alarm enables a fast restart signal to the Power Management Controller.

» USBAL: USB Alarm Enable
0 = The USB alarm has no effect on the Power Management Controller.

1 =The USB alarm enables a fast restart signal to the Power Management Controller.

FLPM: Flash Low Power Mode

Value Name Description
0 FLASH_STANDBY Flash is in Standby Mode when system enters Wait Mode
1 FLASH_DEEP_POWERDOWN Flash is in deep power down mode when system enters Wait Mode
2 FLASH_IDLE idle mode

si8 SAMAS Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

27.2.16.19 PMC Fast Startup Polarity Register
Name: PMC_FSPR

Address: 0x400E0474

Access: Read-write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| FSTP15 | FSTP14 | FSTP13 | FSTP12 | FSTP11 | FSTP10 | FSTP9 | FSTP8 |
7 6 5 4 3 2 1 0

[FSTP7 [FSTP6 [FSTP5 [FSTP4 [FSTP3 [FSTP2 [FSTPL [FSTPO |

This register can only be written if the WPEN bit is cleared in “PMC Write Protect Mode Register” .

e FSTPx: Fast Startup Input Polarityx
Defines the active polarity of the corresponding wake up input. If the corresponding wake up input is enabled and at the
FSTP level, it enables a fast restart signal.

AImEl@ 519

11100B-ATARM-31-Jul-12

ATMEL

27.2.16.20 PMC Fault Output Clear Register
Name: PMC_FOCR

Address: 0x400E0478

Access: Write-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 4 2 1 0

| - | - | - | - | - | - | - | FOCIR |

e FOCLR: Fault Output Clear
Clears the clock failure detector fault output.

s20 SAMAS Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

27.2.16.21 PMC Write Protect Mode Register
Name: PMC_WPMR

Address: Ox400E04E4

Access: Read-write

Reset: See Table 27-3
31 30 29 28 27 26 25 24

| WPKEY |
23 22 21 20 19 18 17 16

| WPKEY |
15 14 13 12 11 10 9 8

| WPKEY |
7 6 5 4 3 2 1 0

- 1 - T -7 T - - - WEEN]

« WPEN: Write Protect Enable

0 = Disables the Write Protect if WPKEY corresponds to 0x504D43 (“PMC” in ASCII).

1 = Enables the Write Protect if WPKEY corresponds to 0x504D43 (“PMC” in ASCII).

Protects the registers:

“PMC System Clock Enable Register”
“PMC System Clock Disable Register”
“PMC Peripheral Clock Enable Register 0”
“PMC Peripheral Clock Disable Register 0”
“PMC Clock Generator Main Oscillator Register”
“PMC Clock Generator PLLA Register”
“PMC Clock Generator PLLB Register”
“PMC Master Clock Register”

“PMC USB Clock Register”

“PMC Programmable Clock Register”
“PMC Fast Startup Mode Register”

“PMC Fast Startup Polarity Register”

“PMC Peripheral Clock Enable Register 1”
“PMC Peripheral Clock Disable Register 1”
“PMC Oscillator Calibration Register”

» WPKEY: Write Protect KEY

Should be written at value 0x504D43 (“PMC” in ASCII). Writing any other value in this field aborts the write operation of the

WPEN bit. Always reads as 0.

11100B-ATARM-31-Jul-12

ATMEL

521

27.2.16.22 PMC Write Protect Status Register
Name: PMC_WPSR

Address: Ox400E04ES8

Access: Read-only

Reset: See Table 27-3
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

| WPVSRC |
15 14 13 12 11 10 9 8

| WPVSRC |
7 6 5 4 3 2 1 0

I - I - I - I - I - I - I - wevs |

» WPVS: Write Protect Violation Status
0 = No Write Protect Violation has occurred since the last read of the PMC_WPSR register.

1 = A Write Protect Violation has occurred since the last read of the PMC_WPSR register. If this violation is an unauthor-
ized attempt to write a protected register, the associated violation is reported into field WPVSRC.

 WPVSRC: Write Protect Violation Source
When WPVS is active, this field indicates the write-protected register (through address offset or code) in which a write
access has been attempted.

Reading PMC_WPSR automatically clears all fields.

522 SAMAS Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

27.2.16.23 PMC Peripheral Clock Enable Register 1

Name: PMC_PCER1

Address: 0x400E0500

Access: Write-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| _ [— | - | — | - | PD3a | pPD33 [PD32 |

This register can only be written if the WPEN bit is cleared in “PMC Write Protect Mode Register” .

e PIDx: Peripheral Clock x Enable
0 = No effect.

1 = Enables the corresponding peripheral clock.

Notes:

11100B-ATARM-31-Jul-12

1. To get PIDx, refer to identifiers as defined in the section “Peripheral Identifiers” in the product datasheet.

2. Programming the control bits of the Peripheral ID that are not implemented has no effect on the behavior of the PMC.

ATMEL

523

27.2.16.24 PMC Peripheral Clock Disable Register 1
Name: PMC_PCDR1

Address: 0x400E0504

Access: Write-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| _ [_ [— [- [- | PD34 | PD33 | PD32 |

This register can only be written if the WPEN bit is cleared in “PMC Write Protect Mode Register” on page 521.
» PIDx: Peripheral Clock x Disable

0 = No effect.

1 = Disables the corresponding peripheral clock.

Note: To get PIDx, refer to identifiers as defined in the section “Peripheral Identifiers” in the product datasheet.

s22 SAMAS Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

27.2.16.25 PMC Peripheral Clock Status Register 1

Name: PMC_PCSR1

Address: 0x400E0508

Access: Read-only
31 30 29 28 27 26 25 24

I - I - I - - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - - I - I - I - I - |
15 14 13 12 11 10

I - I - I - - I - I - I - I - |
7 6 5 4 3 2 1 0

| _ [— | - — | - | PD3a | pPD33 [PD32 |

» PIDx: Peripheral Clock x Status
0 = The corresponding peripheral clock is disabled.

1 = The corresponding peripheral clock is enabled.

Note:

11100B-ATARM-31-Jul-12

ATMEL

To get PIDx, refer to identifiers as defined in the section “Peripheral Identifiers” in the product datasheet.

525

27.2.16.26 PMC Oscillator Calibration Register
Name: PMC_OCR

Address: 0x400E0510

Access: Read-write
31 30 29 28 27 26 25 24

I - - - - - —]
23 22 21 20 19 18 17 16

| SEL12 | CAL12 |
15 14 13 12 11 10 9 8

| SEL8 | CALS |
7 6 5 4 3 2 1 0

| SEL4 [CAL4 |

This register can only be written if the WPEN bit is cleared in “PMC Write Protect Mode Register” .

» CAL4: RC Oscillator Calibration bits for 4 Mhz
Calibration bits applied to the RC Oscillator when SEL4 is set.

» SELA4: Selection of RC Oscillator Calibration bits for 4 Mhz
0 = Default value stored in Flash memory.
1 = Value written by user in CAL4 field of this register.

» CALS8: RC Oscillator Calibration bits for 8 Mhz
Calibration bits applied to the RC Oscillator when SELS8 is set.

» SELS8: Selection of RC Oscillator Calibration bits for 8 Mhz
0 = Factory determined value stored in Flash memory.
1 = Value written by user in CALS field of this register.

» CAL12: RC Oscillator Calibration bits for 12 Mhz
Calibration bits applied to the RC Oscillator when SEL12 is set.

* SEL12: Selection of RC Oscillator Calibration bits for 12 Mhz
0 = Factory determined value stored in Flash memory.

1 = Value written by user in CAL12 field of this register.

s26 SAMAS Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

28. Chip Identifier (CHIPID)

28.1 Description

The Chip Identifier (CHIPID) registers permit recognition of the device and its revision. These
registers provide the sizes and types of the on-chip memories, as well as the set of embedded
peripherals.

Two chip identifier registers are embedded: CHIPID_CIDR (Chip ID Register) and CHIPID_EXID
(Extension ID). Both registers contain a hard-wired value that is read-only. The first register con-
tains the following fields:

« EXT - shows the use of the extension identifier register

* NVPTYP and NVPSIZ - identifies the type of embedded non-volatile memory and its size

* ARCH - identifies the set of embedded peripherals

* SRAMSIZ - indicates the size of the embedded SRAM

« EPROC - indicates the embedded ARM processor

* VERSION - gives the revision of the silicon
The second register is device-dependent and reads 0 if the bit EXT is 0.

28.2 Embedded Characteristics
 Chip ID Registers

— Identification of the Device Revision, Sizes of the Embedded Memories, Set of
Peripherals, Embedded Processor

AImEl@ 527

11100B-ATARM-31-Jul-12

ATMEL

Table 28-1. SAMA4S Chip IDs Register

Flash Size RAM Size
Chip Name (KBytes) (KBytes) Pin Count CHIPID_CIDR CHIPID_EXID
SAM4SD32C 2*1024 160 100 0X29A7_0EEO
SAM4SD32B 2*1024 160 64 0X2997_0EEO
SAM4SD16C 2*512 160 100 0X29A7_0CEO
SAM4SD16B 2*512 160 64 0X2997_0CEO
SAM4SA16C 1024 160 100 0X28A7_0CEO 0x0
SAM4SA16B 1024 160 64 0X2897_0CEO 0x0
SAM4S16B 1024 128 64 0x289C_0CEO 0x0
SAM4S16C 1024 128 100 0x28AC_OCEO 0x0
SAM4S8B 512 128 64 0x289C_0AEQ 0x0
SAM4S8C 512 128 100 0x28AC_0OAEO 0x0

s28 SAMAS Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

28.3 Chip Identifier (CHIPID) User Interface

Table 28-2. Register Mapping

Offset Register Name Access Reset
0x0 Chip ID Register CHIPID_CIDR Read-only -
Ox4 Chip ID Extension Register CHIPID_EXID Read-only -

11100B-ATARM-31-Jul-12

ATMEL

529

ATMEL

28.3.1 Chip ID Register
Name: CHIPID_CIDR
Address: 0x400E0740
Access: Read-only
31 30 29 28 27 26 25 24
| EXT | NVPTYP | ARCH |
23 22 21 20 19 18 17 16
| ARCH | SRAMSIZ |
15 14 13 12 11 10 9 8
| NVPSIZ2 | NVPSIZ |
7 6 5 4 3 2 1 0
| EPROC VERSION |
* VERSION: Version of the Device
Current version of the device.
 EPROC: Embedded Processor
Value Name Description
1 ARM946ES ARM946ES
2 ARM7TDMI ARM7TDMI
3 CM3 Cortex-M3
4 ARM920T ARM920T
5 ARM926EJS ARM926EJS
6 CA5 Cortex-A5
7 CM4 Cortex-M4
* NVPSIZ: Nonvolatile Program Memory Size
Value Name Description
0 NONE None
1 8K 8K bytes
2 16K 16K bytes
3 32K 32K bytes
4 Reserved
5 64K 64K bytes
6 Reserved
7 128K 128K bytes
8 Reserved
9 256K 256K bytes
10 512K 512K bytes
11 Reserved
12 1024K 1024K bytes

530

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

Value Name Description
13 Reserved
14 2048K 2048K bytes
15 Reserved

* NVPSIZ2 Second Nonvolatile Program Memory Size

Value Name Description
0 NONE None
1 8K 8K bytes
2 16K 16K bytes
3 32K 32K bytes
4 Reserved
5 64K 64K bytes
6 Reserved
7 128K 128K bytes

8 Reserved
9 256K 256K bytes
10 512K 512K bytes
11 Reserved
12 1024K 1024K bytes
13 Reserved
14 2048K 2048K bytes
15 Reserved
* SRAMSIZ: Internal SRAM Size

Value Name Description
0 48K 48K bytes
1 1K 1K bytes
2 2K 2K bytes
3 6K 6K bytes
4 24K 24K bytes
5 4K 4K bytes
6 80K 80K bytes
7 160K 160K bytes
8 8K 8K bytes
9 16K 16K bytes
10 32K 32K bytes
11 64K 64K bytes
12 128K 128K bytes

11100B-ATARM-31-Jul-12

ATMEL

531

Value Name Description

13 256K 256K bytes

14 96K 96K bytes

15 512K 512K bytes

* ARCH: Architecture Identifier

Value Name Description
0x19 AT91SAMIXxX AT91SAMI9xx Series
0x29 AT91SAMIXExx AT91SAMIXExx Series
0x34 AT91x34 AT91x34 Series
0x37 CAP7 CAP7 Series
0x39 CAP9 CAP9 Series
0x3B CAP11 CAP11 Series
0x40 AT91x40 AT91x40 Series
0x42 AT91x42 AT91x42 Series
0x55 AT91x55 AT91x55 Series
0x60 AT91SAM7AXX AT91SAM7AXxx Series
0x61 AT91SAM7AQXX AT91SAM7AQxx Series
0x63 AT91x63 AT91x63 Series
0x70 AT91SAM7Sxx AT91SAM7Sxx Series
0x71 AT91SAM7XCxx AT91SAM7XCxx Series
0x72 AT91SAM7SEXX AT91SAM7SEXxx Series
0x73 AT91SAM7LxXX AT91SAM7Lxx Series
0x75 AT91SAM7 XXX AT91SAMT7Xxx Series
0x76 AT91SAM7SLxX AT91SAM7SLxx Series
0x80 SAM3UxC SAM3UXC Series (100-pin version)
0x81 SAM3UXE SAMB3UXE Series (144-pin version)
0x83 SAM3A/SAM4A xC SAM3AXC or SAM4AXxC Series (100-pin version)
0x84 SAM3X/ISAM4X xC SAM3XxCor SAM4XxC Series (100-pin version)
0x85 SAM3X/SAM4X xXE SAM3XXEor SAM4XXE Series (144-pin version)
0x86 SAM3X/SAMAX XG (SZ%Z'/‘?Z);’?‘_GF)?; 3;2%'\:;'“6 Series
0x88 SAM3S/SAM4S xA SAM3SXA or SAM4SXA Series (48-pin version)
0x89 SAM3S/SAM4S xB SAM3SxBor SAM4SxB Series (64-pin version)
0x8A SAM3S/SAM4S xC SAM3SxCor SAM4SxC Series (100-pin version)
0x92 AT91x92 AT91x92 Series
0x93 SAM3NXA SAM3NXA Series (48-pin version)
0x94 SAM3NxB SAM3NXxB Series (64-pin version)
0x95 SAM3NxC SAM3NXC Series (100-pin version)
0x99 SAM3SDxB SAM3SDxB Series (64-pin version)

532 SAMAS Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

Value Name Description

0x9A SAM3SDxC SAM3SDxC Series (100-pin version)
O0xA5 SAM5A SAM5A

OxFO AT75Cxx AT75Cxx Series

* NVPTYP: Nonvolatile Program Memory Type

Value Name Description
0 ROM ROM
1 ROMLESS ROMless or on-chip Flash
4 SRAM SRAM emulating ROM
2 FLASH Embedded Flash Memory
ROM and Embedded Flash Memory
3 ROM_FLASH NVPSIZ is ROM size

NVPSIZ2 is Flash size

» EXT: Extension Flag
0 = Chip ID has a single register definition without extension

1 = An extended Chip ID exists.

11100B-ATARM-31-Jul-12

ATMEL

533

28.3.2 Chip ID Extension Register

Name: CHIPID_EXID

Address: 0x400EQ0744

Access: Read-only
31 30 29 28 27 26 25 24

| EXID |
23 22 21 20 19 18 17 16

| EXID |
15 14 13 12 11 10 9 8

| EXID |
7 6 5 4 3 2 1 0

| EXID |

e EXID: Chip ID Extension
Reads 0 if the bit EXT in CHIPID_CIDR is 0.

53 SAMAS Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

29. Parallel Input/Output Controller (P10O)

29.1 Description

The Parallel Input/Output Controller (PIO) manages up to 32 fully programmable input/output
lines. Each 1/O line may be dedicated as a general-purpose I/O or be assigned to a function of
an embedded peripheral. This assures effective optimization of the pins of a product.

Each 1/O line is associated with a bit number in all of the 32-bit registers of the 32-bit wide User
Interface.

Each 1/O line of the PIO Controller features:

< An input change interrupt enabling level change detection on any 1/O line.

« Additional Interrupt modes enabling rising edge, falling edge, low level or high level detection
on any I/O line.

« A glitch filter providing rejection of glitches lower than one-half of PIO clock cycle.

« A debouncing filter providing rejection of unwanted pulses from key or push button
operations.

* Multi-drive capability similar to an open drain 1/O line.

« Control of the pull-up and pull-down of the 1/O line.

« Input visibility and output control.
The PIO Controller also features a synchronous output providing up to 32 bits of data output in a
single write operation.

An 8-bit parallel capture mode is also available which can be used to interface a CMOS digital
image sensor, an ADC, a DSP synchronous port in synchronous mode, etc...

29.2 Embedded Characteristics

« Up to 32 Programmable 1/O Lines

* Fully Programmable through Set/Clear Registers

« Multiplexing of Four Peripheral Functions per I/O Line

« For each I/O Line (Whether Assigned to a Peripheral or Used as General Purpose 1/0)
— Input Change Interrupt
— Programmable Glitch Filter
— Programmable Debouncing Filter
— Multi-drive Option Enables Driving in Open Drain
— Programmable Pull Up on Each I/O Line
— Pin Data Status Register, Supplies Visibility of the Level on the Pin at Any Time

— Additional Interrupt Modes on a Programmable Event: Rising Edge, Falling Edge,
Low Level or High Level

— Lock of the Configuration by the Connected Peripheral
« Synchronous Output, Provides Set and Clear of Several I/O lines in a Single Write
» Write Protect Registers
* Programmable Schmitt Trigger Inputs
« Parallel Capture Mode

AImEl@ 535

11100B-ATARM-31-Jul-12

ATMEL

— Can be used to interface a CMOS digital image sensor, an ADC....
— One Clock, 8-bit Parallel Data and Two Data Enable on I/O Lines
— Data Can be Sampled one time of out two (For Chrominance Sampling Only)

— Supports Connection of one Peripheral DMA Controller Channel (PDC) Which
Offers Buffer Reception Without Processor Intervention

29.3 Block Diagram

Figure 29-1. Block Diagram

<—|:| PIODCCLK
D
— | <—|:| PIODC[7:0]
PDC Parallel Capture
Status Mode
! <—|:| PIODCEN1
<—|:| PIODCEN?

PIO Interrupt

Interrupt Controller

4

PIO Clock P10 Controller
PMC >
| Data, Enable N
| E) > Up to 32
peripheral 10s
Embedded —>
Peripheral
7 <—>|:| PINO "\
Data, Enable
|) <—>|:| PIN 1
l—> > Up to 32 pins
°
> L_Jp to 32 .
Embedded —> peripheral 10s °
Peripheral -
J ‘ ’D

APB

53 SAMAS Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

Table 29-1. Signal Description

Signal Name Signal Description Signal Type
PIODCCLK Parallel Capture Mode Clock Input
PIODCJ7:0] Parallel Capture Mode Data Input
PIODCEN1 Parallel Capture Mode Data Enable 1 Input
PIODCEN2 Parallel Capture Mode Data Enable 2 Input

Figure 29-2. Application Block Diagram

On-Chip Peripheral Drivers
Keyboard Driver Control & Command
Driver

On-Chip Peripherals

PIO Controller

Keyboard Driver General Purpose 1/0s External Devices

AImEl@ 537

11100B-ATARM-31-Jul-12

ATMEL

29.4 Product Dependencies

294.1

29.4.2

29.4.3

538

Pin Multiplexing

Each pin is configurable, according to product definition as either a general-purpose /O line
only, or as an I/O line multiplexed with one or two peripheral I1/0s. As the multiplexing is hard-
ware defined and thus product-dependent, the hardware designer and programmer must
carefully determine the configuration of the PIO controllers required by their application. When
an 1/O line is general-purpose only, i.e. not multiplexed with any peripheral 1/0O, programming of
the PIO Controller regarding the assignment to a peripheral has no effect and only the PIO Con-
troller can control how the pin is driven by the product.

Power Management

The Power Management Controller controls the PIO Controller clock in order to save power.
Writing any of the registers of the user interface does not require the PIO Controller clock to be
enabled. This means that the configuration of the 1/O lines does not require the PIO Controller
clock to be enabled.

However, when the clock is disabled, not all of the features of the PIO Controller are available,
including glitch filtering. Note that the Input Change Interrupt, Interrupt Modes on a programma-
ble event and the read of the pin level require the clock to be validated.

After a hardware reset, the PIO clock is disabled by default.

The user must configure the Power Management Controller before any access to the input line
information.

Interrupt Generation

The PIO Controller is connected on one of the sources of the Nested Vectored Interrupt Control-
ler (NVIC). Using the PIO Controller requires the NVIC to be programmed first.

The PIO Controller interrupt can be generated only if the PIO Controller clock is enabled.

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

29.5 Functional Description

The PIO Controller features up to 32 fully-programmable 1/O lines. Most of the control logic asso-
ciated to each 1/0O is represented in Figure 29-3. In this description each signal shown
represents but one of up to 32 possible indexes.

Figure 29-3. 1/O Line Control Logic

PIO_OER[0]
PIO_ODR[0]

Peripheral A Output Enable. ————— o)
Peripheral B Output Enable ———— 01
Peripheral C Output Enable ——— X |10

Peripheral D Output Enable -

//H | PIO_PER[0] |
PIO_ABCDSR1[0]
PIO_PSRI0]
PIO_ABCDSR2[0]
PIO_PDR[0]
N
—00
1
10

Peripheral A Output o
Peripheral B Output (0]

Peripheral C Output ———————
Peripheral D Output ——8 L

=y

PIO_SODRI0]
PIO_ODSR[0]
PIO_CODR[0]

— > Peripheral A Input
$——> Peripheral B Input
$——> Peripheral C Input

—> Peripheral D Input

| PIO_PDSR[0] |
| PIO_ISRI[0] I
EVENT (Up to 32 possible inputs)
DETECTOR .

PIO Clock Progra_mmable
0 L | Glitch PIO Interrupt
Slow Clock Debo(t:rrming Resynchronization
Clock " Filter Stage PIO_IER[]
Divider
| PIO_SCDR I— PIO_IMR[0]
PIO_IFER[0] PIO_IDR[0]

PIO_IFSR[0]

| PIO_IFSCER[0] | PIO_IFDR[0] | Po_Isrisy
PIO_IFSCSRI0 PIO_IER[31]
PIO_IFSCDR[0] Tro IMR[31]

295.1 Pull-up and Pull-down Resistor Control
Each 1/O line is designed with an embedded pull-up resistor and an embedded pull-down resis-
tor. The pull-up resistor can be enabled or disabled by writing respectively PIO_PUER (Pull-up
Enable Register) and PIO_PUDR (Pull-up Disable Resistor). Writing in these registers results in
setting or clearing the corresponding bit in PIO_PUSR (Pull-up Status Register). Reading a 1 in
P10_PUSR means the pull-up is disabled and reading a 0 means the pull-up is enabled. The

AImEl@ 539

11100B-ATARM-31-Jul-12

29.5.2

29.5.3

540

ATMEL

pull-down resistor can be enabled or disabled by writing respectively PIO_PPDER (Pull-down
Enable Register) and PIO_PPDDR (Pull-down Disable Resistor). Writing in these registers
results in setting or clearing the corresponding bit in PIO_PPDSR (Pull-down Status Register).
Reading a 1 in PIO_PPDSR means the pull-up is disabled and reading a 0 means the pull-down
is enabled.

Enabling the pull-down resistor while the pull-up resistor is still enabled is not possible. In this
case, the write of PIO_PPDER for the concerned I/O line is discarded. Likewise, enabling the
pull-up resistor while the pull-down resistor is still enabled is not possible. In this case, the write
of PIO_PUER for the concerned I/O line is discarded.

Control of the pull-up resistor is possible regardless of the configuration of the I/O line.

After reset, all of the pull-ups are enabled, i.e. PIO_PUSR resets at the value 0x0, and all the
pull-downs are disabled, i.e. PIO_PPDSR resets at the value OXFFFFFFFF.

I/0 Line or Peripheral Function Selection

When a pin is multiplexed with one or two peripheral functions, the selection is controlled with
the registers PIO_PER (PIO Enable Register) and PIO_PDR (PIO Disable Register). The regis-
ter PIO_PSR (PIO Status Register) is the result of the set and clear registers and indicates
whether the pin is controlled by the corresponding peripheral or by the PIO Controller. A value of
0 indicates that the pin is controlled by the corresponding on-chip peripheral selected in the
P1IO_ABCDSR1 and PIO_ABCDSR2 (ABCD Select Registers). A value of 1 indicates the pin is
controlled by the PIO controller.

If a pin is used as a general purpose I/O line (not multiplexed with an on-chip peripheral),
PIO_PER and PIO_PDR have no effect and PIO_PSR returns 1 for the corresponding bit.

After reset, most generally, the 1/O lines are controlled by the P1O controller, i.e. PIO_PSR
resets at 1. However, in some events, it is important that PIO lines are controlled by the periph-
eral (as in the case of memory chip select lines that must be driven inactive after reset or for
address lines that must be driven low for booting out of an external memory). Thus, the reset
value of PIO_PSR is defined at the product level, depending on the multiplexing of the device.

Peripheral A or B or C or D Selection

The PIO Controller provides multiplexing of up to four peripheral functions on a single pin. The
selection is performed by writing PIO_ABCDSR1 and PIO_ABCDSR2 (ABCD Select Registers).

For each pin:
« the corresponding bit at level 0 in PIO_ABCDSR1 and the corresponding bit at level 0 in
PIO_ABCDSR2 means peripheral A is selected.

« the corresponding bit at level 1 in PIO_ABCDSR1 and the corresponding bit at level 0 in
P1IO_ABCDSR2 means peripheral B is selected.

« the corresponding bit at level 0 in PIO_ABCDSR1 and the corresponding bit at level 1 in
P1IO_ABCDSR2 means peripheral C is selected.

« the corresponding bit at level 1 in PIO_ABCDSR1 and the corresponding bit at level 1 in
P1IO_ABCDSR2 means peripheral D is selected.

Note that multiplexing of peripheral lines A, B, C and D only affects the output line. The periph-
eral input lines are always connected to the pin input.

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

After reset, PIO_ABCDSR1 and PIO_ABCDSR2 are 0, thus indicating that all the PIO lines are
configured on peripheral A. However, peripheral A generally does not drive the pin as the PI1O
Controller resets in 1/O line mode.

Writing in PIO_ABCDSR1 and PIO_ABCDSR2 manages the multiplexing regardless of the con-
figuration of the pin. However, assignment of a pin to a peripheral function requires a write in the
peripheral selection registers (PIO_ABCDSR1 and PIO_ABCDSR2) in addition to a write in
PIO_PDR.

2954 Output Control
When the I/0 line is assigned to a peripheral function, i.e. the corresponding bit in PIO_PSR is at
0, the drive of the I/O line is controlled by the peripheral. Peripheral A or B or C or D depending
on the value in PIO_ABCDSR1 and PIO_ABCDSR2 (ABCD Select Registers) determines
whether the pin is driven or not.

When the 1/O line is controlled by the PIO controller, the pin can be configured to be driven. This
is done by writing PIO_OER (Output Enable Register) and PIO_ODR (Output Disable Register).
The results of these write operations are detected in PIO_OSR (Output Status Register). When
a bit in this register is at 0, the corresponding I/O line is used as an input only. When the bit is at
1, the corresponding I/O line is driven by the PI1O controller.

The level driven on an I/O line can be determined by writing in PIO_SODR (Set Output Data
Register) and PIO_CODR (Clear Output Data Register). These write operations respectively set
and clear PIO_ODSR (Output Data Status Register), which represents the data driven on the 1/O
lines. Writing in PIO_OER and PIO_ODR manages PIO_OSR whether the pin is configured to
be controlled by the PIO controller or assigned to a peripheral function. This enables configura-
tion of the 1/O line prior to setting it to be managed by the PIO Controller.

Similarly, writing in PIO_SODR and PIO_CODR effects PIO_ODSR. This is important as it
defines the first level driven on the 1/O line.

2955 Synchronous Data Output

Clearing one (or more) PIO line(s) and setting another one (or more) PIO line(s) synchronously
cannot be done by using PIO_SODR and PIO_CODR registers. It requires two successive write
operations into two different registers. To overcome this, the PIO Controller offers a direct con-
trol of P1O outputs by single write access to PIO_ODSR (Output Data Status Register).Only bits
unmasked by PIO_OWSR (Output Write Status Register) are written. The mask bits in
P1O_OWSR are set by writing to PIO_OWER (Output Write Enable Register) and cleared by
writing to PIO_OWDR (Output Write Disable Register).

After reset, the synchronous data output is disabled on all the 1/O lines as PIO_OWSR resets at
0x0.

29.5.6 Multi Drive Control (Open Drain)
Each 1/O can be independently programmed in Open Drain by using the Multi Drive feature. This
feature permits several drivers to be connected on the I/O line which is driven low only by each
device. An external pull-up resistor (or enabling of the internal one) is generally required to guar-
antee a high level on the line.

The Multi Drive feature is controlled by PIO_MDER (Multi-driver Enable Register) and
PIO_MDDR (Multi-driver Disable Register). The Multi Drive can be selected whether the I/O line
is controlled by the PIO controller or assigned to a peripheral function. PIO_MDSR (Multi-driver
Status Register) indicates the pins that are configured to support external drivers.

AImEl@ 541

11100B-ATARM-31-Jul-12

29.5.7

ATMEL

After reset, the Multi Drive feature is disabled on all pins, i.e. PIO_MDSR resets at value 0x0.

Output Line Timings

Figure 29-4 shows how the outputs are driven either by writing PIO_SODR or PIO_CODR, or by
directly writing PIO_ODSR. This last case is valid only if the corresponding bit in PIO_OWSR is
set. Figure 29-4 also shows when the feedback in PIO_PDSR is available.

Figure 29-4. Output Line Timings

Write PIO_ODSR at 1

Write PIO_ODSR at 0

29.5.8

29.5.9

542

mMcK |

Write PIO_SODR

| L

APB Access

Write PIO_CODR

APB Access

PIO_ODSR

PIO_PDSR

2 cycles . 2 cycles

Inputs

The level on each I/O line can be read through PIO_PDSR (Pin Data Status Register). This reg-
ister indicates the level of the I/O lines regardless of their configuration, whether uniquely as an
input or driven by the PIO controller or driven by a peripheral.

Reading the 1/O line levels requires the clock of the PIO controller to be enabled, otherwise
PIO_PDSR reads the levels present on the 1/O line at the time the clock was disabled.

Input Glitch and Debouncing Filters

Optional input glitch and debouncing filters are independently programmable on each I/O line.

The glitch filter can filter a glitch with a duration of less than 1/2 Master Clock (MCK) and the
debouncing filter can filter a pulse of less than 1/2 Period of a Programmable Divided Slow
Clock.

The selection between glitch filtering or debounce filtering is done by writing in the registers
PIO_IFSCDR (PIO Input Filter Slow Clock Disable Register) and PIO_IFSCER (PIO Input Filter
Slow Clock Enable Register). Writing PIO_IFSCDR and PIO_IFSCER respectively, sets and
clears bits in PIO_IFSCSR.

The current selection status can be checked by reading the register PIO_IFSCSR (Input Filter
Slow Clock Status Register).

« If PIO_IFSCSR]i] = 0: The glitch filter can filter a glitch with a duration of less than 1/2 Period
of Master Clock.

« If PIO_IFSCSR]i] = 1: The debouncing filter can filter a pulse with a duration of less than 1/2
Period of the Programmable Divided Slow Clock.

For the debouncing filter, the Period of the Divided Slow Clock is performed by writing in the DIV
field of the PIO_SCDR (Slow Clock Divider Register)

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

s S A VA4S Series [Preliminary]

Tdiv_slclk = ((DIV+1)*2).Tslow_clock

When the glitch or debouncing filter is enabled, a glitch or pulse with a duration of less than 1/2
Selected Clock Cycle (Selected Clock represents MCK or Divided Slow Clock depending on
PIO_IFSCDR and PIO_IFSCER programming) is automatically rejected, while a pulse with a
duration of 1 Selected Clock (MCK or Divided Slow Clock) cycle or more is accepted. For pulse
durations between 1/2 Selected Clock cycle and 1 Selected Clock cycle the pulse may or may
not be taken into account, depending on the precise timing of its occurrence. Thus for a pulse to
be visible it must exceed 1 Selected Clock cycle, whereas for a glitch to be reliably filtered out,
its duration must not exceed 1/2 Selected Clock cycle.

The filters also introduce some latencies, this is illustrated in Figure 29-5 and Figure 29-6.

The glitch filters are controlled by the register set: PIO_IFER (Input Filter Enable Register),
PIO_IFDR (Input Filter Disable Register) and PIO_IFSR (Input Filter Status Register). Writing
PIO_IFER and PIO_IFDR respectively sets and clears bits in PIO_IFSR. This last register
enables the glitch filter on the 1/O lines.

When the glitch and/or debouncing filter is enabled, it does not modify the behavior of the inputs
on the peripherals. It acts only on the value read in PIO_PDSR and on the input change interrupt
detection. The glitch and debouncing filters require that the PIO Controller clock is enabled.

Figure 29-5. Input Glitch Filter Timing
PIO_IFCSR=0
mex || I I L L1 | I L[|
up tp 1.5 cycles
Pin Level IR [1
1 cycle 1 cycle 1 cycle 1 cycle
PIO_PDSR
if PIO_IFSR=0
2 cycles 1 cycle
PIO_PDSR up to 2.5 pycles
ifPIO_IFSR=1 up to 2 cycles
Figure 29-6. Input Debouncing Filter Timing
PIO_IFCSR =1
Divided Slow Clock | I | | | | | L
Pin Level (f] (L 1l | |
up to|2 [cycles Tmck up to %cycles Tmck
PIO_PDSR r I
if PIO_IFSR = 0 |
1 cycle|Tdiv_slclk 1 cycle Tdiv_slclk
PIO_PDSR up|to 1.5 cycles Tdiv_slclk
if PIO_IFSR =1 uplto 1.5 cycles Tdiv_slclk 0_

11100B-ATARM-31-Jul-12

[

up to 2 cycles Tmck up to 2 cycles Tmck

543

ATMEL

29.5.10

544

ATMEL

Input Edge/Level Interrupt

The PIO Controller can be programmed to generate an interrupt when it detects an edge or a
level on an I/O line. The Input Edge/Level Interrupt is controlled by writing PIO_IER (Interrupt
Enable Register) and PIO_IDR (Interrupt Disable Register), which respectively enable and dis-
able the input change interrupt by setting and clearing the corresponding bit in PIO_IMR
(Interrupt Mask Register). As Input change detection is possible only by comparing two succes-
sive samplings of the input of the 1/O line, the PIO Controller clock must be enabled. The Input
Change Interrupt is available, regardless of the configuration of the I/O line, i.e. configured as an
input only, controlled by the PIO Controller or assigned to a peripheral function.

By default, the interrupt can be generated at any time an edge is detected on the input.

Some additional Interrupt modes can be enabled/disabled by writing in the PIO_AIMER (Addi-
tional Interrupt Modes Enable Register) and PIO_AIMDR (Additional Interrupt Modes Disable
Register). The current state of this selection can be read through the PIO_AIMMR (Additional
Interrupt Modes Mask Register)

These Additional Modes are:

« Rising Edge Detection
« Falling Edge Detection
* Low Level Detection
* High Level Detection
In order to select an Additional Interrupt Mode:

» The type of event detection (Edge or Level) must be selected by writing in the set of registers;
PIO_ESR (Edge Select Register) and PIO_LSR (Level Select Register) which enable
respectively, the Edge and Level Detection. The current status of this selection is accessible
through the PIO_ELSR (Edge/Level Status Register).

« The Polarity of the event detection (Rising/Falling Edge or High/Low Level) must be selected
by writing in the set of registers; PIO_FELLSR (Falling Edge /Low Level Select Register) and
PIO_REHLSR (Rising Edge/High Level Select Register) which allow to select Falling or
Rising Edge (if Edge is selected in the PIO_ELSR) Edge or High or Low Level Detection (if
Level is selected in the PIO_ELSR). The current status of this selection is accessible through
the PIO_FRLHSR (Fall/Rise - Low/High Status Register).

When an input Edge or Level is detected on an I/O line, the corresponding bit in PIO_ISR (Inter-
rupt Status Register) is set. If the corresponding bit in PIO_IMR is set, the PIO Controller
interrupt line is asserted. The interrupt signals of the thirty-two channels are ORed-wired
together to generate a single interrupt signal to the Nested Vector Interrupt Controller (NVIC).

When the software reads PIO_ISR, all the interrupts are automatically cleared. This signifies that
all the interrupts that are pending when PIO_ISR is read must be handled. When an Interrupt is
enabled on a “Level”, the interrupt is generated as long as the interrupt source is not cleared,
even if some read accesses in PIO_ISR are performed.

SAMA4S Series [Preliminary] m—

11100B-ATARM-31-Jul-12

SAMA4S Series [Preliminary]

Figure 29-7. Event Detector on Input Lines (Figure represents line 0)

Detector
p Falling Edge
Detector
PIO_REHLSRJ[0]

PIO_FRLHSR[0]
PIO_FELLSR[0]

Resynchronized input on line 0 High Level
Detector

«
Detector

Event Detector

Event detection on line 0

PIO_ESR[0] PIO_AIMMR[0]

PIO_AIMDRI[0]

Edge
Detector

29.5.10.1 Example

If generating an interrupt is required on the following:
* Rising edge on PIO line 0
* Falling edge on PIO line 1
« Rising edge on PIO line 2
e Low Level on PIO line 3
 High Level on PIO line 4
* High Level on PIO line 5
* Falling edge on PIO line 6
* Rising edge on PIO line 7
« Any edge on the other lines

The configuration required is described below.

29.5.10.2 Interrupt Mode Configuration
All the i