Description

The G428 is a DIN rail mount, thermocouple input signal conditioner with 1800VDC isolation between input, output and power. The field configurable input and output offer flexible, wide ranging capability for J, K, T, R, S, E, and B type thermocouples.

The G428 input can be configured for over 60 thermocouple temperature ranges (see Table 6). The output is linear to temperature and can be set for either 0-5V, 0-10V, 0-1mA, 0-20mA or 4-20mA.

Wide ranging, precision zero and span pots allow 50% adjustability of offset and span turn-down within each of the ranges. For example, the 0-1000°C range could be offset and turned down to provide a 4-20mA signal representing 500-1000°C. Similarly, adjustment can be referenced to the output range. The example above could be used to provide a 12-20mA signal from a 750 to 1000°C temperature input.

Application

Three way isolation in the G428 completely eliminates ground loops from any source. Isolation protects expensive SCADA systems from ground faults and allows the noise reduction benefits of grounded thermocouples to be realized.

The G428 is equipped with cold junction compensation (CJC) circuitry to provide ice-point reference. Upscale or downscale thermocouple burnout detection is switch selectable.

High density DIN rail mounting offers an extremely compact solution to save valuable panel space.

Diagnostic LEDs

The G428 is equipped with front panel LEDs for INPUT (green), TROUBLE (yellow) and CAL OK (yellow). At start-up, both the INPUT and the CAL OK LEDs flash alternately for 10 seconds.

INPUT

This green LED is lit continuously when the input is within the specified range. In the full temperature range setting, for the overrange condition the LED flashes at 8Hz; for the under range condition it flashes at 4Hz. In a sub-range temperature setting, for the overrange condition the LED flashes at 1Hz; for the under range condition it flashes at 0.5Hz.

CAL OK

This yellow LED is continuously on when the device is calibrated.

TROUBLE

This yellow LED is off during the normal operation. Consult factory if this LED is on, indicating a microprocessor malfunction.

Configuration

The G428 offers 50% input zero and span adjustability within each of the fullscale input ranges. Unless otherwise specified, the factory presets the Model G428 as follows:

- **Input**: J-type
- **Range**: 0 to 500°C
- **Output**: 4 to 20mA
- **Burn Out**: Upscale

The DC power input accepts any DC source between 9 and 30V; typically a 12V or 24VDC source is used (see Accessories).

For other I/O ranges, refer to Tables 1 through 6 and reconfigure switches SW1 and SW2 for the desired input type range and output.

WARNING: Do not change switch settings with power applied. Severe damage will result!

1. Choose the desired temperature range from Table 6, then use Table 1 and 2 to configure the switches (as described in the following steps) for thermocouple type and range.

2. With DC power off, position input switches 1 and 2 of SW2 for the desired burnout detection mode.

3. Set positions 4 through 10 of SW2 for the desired thermocouple range and type.

4. Set positions 1 through 8 of SW1 for the desired output signal. (Table 4)
Calibration
1. After configuring the dip switches, connect the input to a calibrated thermocouple source. Connect the output to the device (or a load approximately equivalent to the device) and apply power.

Note: To maximize thermal stability, final calibration should be performed in the operation installation, allowing approximately 1 to 2 hours for warm up and thermal equilibrium of the system.

2. Set the calibrator to the desired minimum input and adjust the zero potentiometer for the desired minimum output.

3. Set the calibrator to the desired maximum input and adjust the span potentiometer for the desired maximum output.

4. Repeat steps 2 and 3, if necessary for best accuracy.

Table 1: G428 T/C Types

<table>
<thead>
<tr>
<th>Type</th>
<th>SW2</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>8</td>
</tr>
<tr>
<td>E</td>
<td>9</td>
</tr>
<tr>
<td>J</td>
<td>10</td>
</tr>
<tr>
<td>K</td>
<td>1</td>
</tr>
<tr>
<td>R</td>
<td>2</td>
</tr>
<tr>
<td>S</td>
<td>3</td>
</tr>
<tr>
<td>T</td>
<td>4</td>
</tr>
</tbody>
</table>

Key: ■ = 1 = ON or Closed

Table 2: G428 Range Settings

<table>
<thead>
<tr>
<th>Range</th>
<th>SW2</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
</tr>
</tbody>
</table>

Key: ■ = 1 = ON or Closed

Table 3: G428 Burnout Settings

<table>
<thead>
<tr>
<th>Burnout</th>
<th>SW2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Allowed</td>
<td>1</td>
</tr>
<tr>
<td>Upscale</td>
<td>2</td>
</tr>
<tr>
<td>Downscale</td>
<td>3</td>
</tr>
<tr>
<td>None</td>
<td>4</td>
</tr>
</tbody>
</table>

Key: ■ = 1 = ON or Closed

Table 4: G428 Output Settings

<table>
<thead>
<tr>
<th>Output</th>
<th>SW1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>0 to 5V</td>
<td>■ ■</td>
</tr>
<tr>
<td>0 to 10V</td>
<td>■ ■</td>
</tr>
<tr>
<td>0 to 1mA</td>
<td>■ ■</td>
</tr>
<tr>
<td>4 to 20mA</td>
<td>■ ■</td>
</tr>
<tr>
<td>0 to 20mA</td>
<td>■ ■</td>
</tr>
</tbody>
</table>

Key: ■ = 1 = ON or Closed

Table 5: G428 Thermocouple Accuracy

<table>
<thead>
<tr>
<th>TC Type</th>
<th>Temperature Range</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>-200 to 750°C (328 to 1382°F)</td>
<td>+/-0.5°F (+/-0.9°C)</td>
</tr>
<tr>
<td>K</td>
<td>-200 to 140°C (-328 to -220°F)</td>
<td>+/-5.0°F (+/-9.0°C)</td>
</tr>
<tr>
<td>K</td>
<td>-140 to 1250°C (-220 to 2262°F)</td>
<td>+/-2.0°F (+/-3.6°C)</td>
</tr>
<tr>
<td>K</td>
<td>1250 to 2430°C (2282 to 4466°F)</td>
<td>+/-4.0°F (+/-7.2°C)</td>
</tr>
<tr>
<td>E</td>
<td>-150 to 1000°C (-238 to 1832°F)</td>
<td>+/-2.5°F (+/-4.5°C)</td>
</tr>
<tr>
<td>T</td>
<td>-150 to 400°C (-238 to 752°F)</td>
<td>+/-3.0°F (+/-5.4°F)</td>
</tr>
<tr>
<td>R</td>
<td>50 to 1760°C (122 to 3260°F)</td>
<td>+/-6.0°F (+/-10.8°F)</td>
</tr>
<tr>
<td>S</td>
<td>50 to 1760°C (122 to 3260°F)</td>
<td>+/-6.0°F (+/-10.8°F)</td>
</tr>
<tr>
<td>B</td>
<td>500 to 1820°C (932 to 3308°F)</td>
<td>+/-5.0°F (+/-9.0°F)</td>
</tr>
</tbody>
</table>

Table 6: G428 Thermocouple Range Settings

<table>
<thead>
<tr>
<th>TC Type</th>
<th>Range</th>
<th>Temperature Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>6</td>
<td>500 to 1820°C (932 to 3308°F)</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1000 to 1820°C (1362 to 3308°F)</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>500 to 1000°C (932 to 1262°F)</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>500 to 1000°C (932 to 1262°F)</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>750 to 1000°C (1382 to 1832°F)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>500 to 1000°C (932 to 1262°F)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>500 to 1000°C (932 to 1262°F)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>500 to 1000°C (932 to 1262°F)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>500 to 1000°C (932 to 1262°F)</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>500 to 1000°C (932 to 1262°F)</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>250 to 500°C (482 to 932°F)</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>125 to 250°C (257 to 482°F)</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>750 to 1000°C (1382 to 1832°F)</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>375 to 500°C (707 to 932°F)</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>150 to 750°C (-238 to 1382°F)</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>150 to 250°C (-238 to 482°F)</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>150 to 0°C (-238 to 32°F)</td>
</tr>
<tr>
<td>E</td>
<td>2</td>
<td>18 to 750°C (0 to 1382°F)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>18 to 500°C (0 to 932°F)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>18 to 250°C (0 to 482°F)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>18 to 125°C (0 to 257°F)</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>18 to 500°C (0 to 932°F)</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>18 to 250°C (0 to 482°F)</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>18 to 125°C (0 to 257°F)</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>18 to 500°C (0 to 932°F)</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>18 to 250°C (0 to 482°F)</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>18 to 125°C (0 to 257°F)</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>18 to 0°C (0 to 32°F)</td>
</tr>
<tr>
<td>J</td>
<td>2</td>
<td>18 to 750°C (0 to 1382°F)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>18 to 500°C (0 to 932°F)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>18 to 250°C (0 to 482°F)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>18 to 125°C (0 to 257°F)</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>18 to 500°C (0 to 932°F)</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>18 to 250°C (0 to 482°F)</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>18 to 125°C (0 to 257°F)</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>18 to 500°C (0 to 932°F)</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>18 to 250°C (0 to 482°F)</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>18 to 125°C (0 to 257°F)</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>18 to 0°C (0 to 32°F)</td>
</tr>
<tr>
<td>K</td>
<td>2</td>
<td>18 to 1370°C (0 to 2498°F)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>18 to 1000°C (0 to 1832°F)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>18 to 750°C (0 to 1382°F)</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>18 to 1000°C (0 to 1832°F)</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>250 to 1000°C (482 to 1832°F)</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>250 to 1000°C (482 to 1832°F)</td>
</tr>
<tr>
<td>R, S</td>
<td>2</td>
<td>18 to 1370°C (0 to 2498°F)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>18 to 1000°C (0 to 1832°F)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>18 to 750°C (0 to 1382°F)</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>18 to 1000°C (0 to 1832°F)</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>250 to 1000°C (482 to 1832°F)</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>250 to 1000°C (482 to 1832°F)</td>
</tr>
<tr>
<td>T</td>
<td>10</td>
<td>18 to 1370°C (0 to 2498°F)</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>750 to 1000°C (1382 to 1832°F)</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>750 to 1000°C (1382 to 1832°F)</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>750 to 1000°C (1382 to 1832°F)</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>750 to 1000°C (1382 to 1832°F)</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>750 to 1000°C (1382 to 1832°F)</td>
</tr>
</tbody>
</table>
Note: All Ultra SlimPak modules are designed to operate in ambient temperatures from 0 to 55°C when mounted on a horizontal DIN rail. If five or more modules are mounted on a vertical rail, circulating air or model HS01 Heat Sink is recommended. Refer to HS01 Technical Bulletin (#721-0549-00) or contact the factory for assistance.
Specifications

Inputs:
Sensor Types: J, K, T, R, S, E, B
Input Ranges: See Table 6.
Impedance: >1M Ohms
Bias Current (burnout detection): <1.5microamp
Overvoltage: ±10V differential
Common Mode (Input to Gnd): 1800VDC, max.

Zero and Span Adjustability:
50% of any selected range

Output:
Voltage
Output: 0-5V, 0-10V
Source Impedance: <10 Ohms
Drive: 10mA, max.

Current
Output: 0-1mA, 0-20mA, 4-20mA
Source Impedance: >100K Ohms
Compliance:
0-1mA; 7.5V, max.(7.5K Ohms)
0-20mA; 12V, max.(600 Ohms)
4-20mA; 12V, max.(600 Ohms)

Accuracy (Including Linearity, Hysteresis):
see Table 5

Stability:
±0.04% of the maximum full scale range per °C change in ambient temperature, maximum.

Response Time (10 to 90%):
500mSec., typical.

Common Mode Rejection:
DC to 60Hz: 120dB

Isolation:
1800VDC between input, output & power.

EMC Compliance (CE Mark):
Emissions: EN50081-1
Immunity: EN50082-2
Safety: EN50178

LED Indication:
INPUT (Green):
continuously on if input is within selected range, flashes otherwise
TROUBLE (Yellow):
off during normal device operation.
CAL OK (Yellow):
continuously on in normal device operation
Thermocouple Burnout Detect:
Field configurable upscale, downscale, or disabled

Humidity (Non-Condensing):
Operating: 15 to 95% @ 45°C
Soak: 90% for 24 hours @ 65°C

Temperature Range:
Operating: 0 to 55°C (32 to 131°F)
Storage: -25 to 70°C (-13 to 158°F)

Power:
Consumption: 1.5W typical, 2.5W max.
Range: 9 to 30VDC

Terminations and Wire:
Screw terminals for 12-22 AWG. Use twisted pair for output and power connections.

Weight:
0.54 lbs

Agency Approvals:
UL recognized per standard UL508
(File No.E99775)
CE Conformance per EMC directive 89/336/EEC
and Low Voltage 73/23/EEC
RoHS Compliant

Ordering Information
Models & Accessories

Specify:
1. Model: G428-0001
2. Accessories: (see Accessories)
3. Optional Custom Factory Calibration; specify C620 with desired input and output range.

Accessories

All SlimPak "G" series modules will mount on standard TS32 (model MD02) or TS35 (model MD03) DIN rail. In addition, the following accessories are available:

HS01 Heat Sink
MD03 TS35 x 7.5 DIN rail
WV905 24VDC Power Supply (0.5A)
H910 24VDC Power Supply (1A)
H915 24VDC Power Supply (2.3A)
MB03 End Bracket for MD03
C664 I/O Descriptive Tag

Dimensions

Factory Assistance
For additional information on calibration, operation and installation contact our Technical Services Group:

703-669-1318
actionsupport@eurotherm.com

721-0652-00-H 02/09 Copyright© Eurotherm, Inc 2009

Eurotherm, Inc
741-F Miller Drive
Leesburg, VA 20175-8993
703-443-0000
info@eurotherm.com or www.eurotherm.com/actionio

Printed on recycled paper

Action Instruments • Barber-Colman • Chessell • Continental • Eurotherm