
# Pulse Withstanding Chip Resistors



#### **PWC Series**

- Higher power ratings
- Improved working voltage ratings
- Excellent pulse withstanding performance
- Sn/Pb or Pb-free wrap-around terminations
- Standard chip sizes available from 0805 to 2512



### **Electrical Data**

| Characteristic        | 0805                                                         | 1206    | 2010   | 2512    |  |
|-----------------------|--------------------------------------------------------------|---------|--------|---------|--|
| Power @ 70°C          | 125mW                                                        | 330mW   | 750mW  | 1.5W    |  |
| Max voltage rating    | 150V                                                         | 200V    | 400V   | 500V    |  |
| Resistance range      |                                                              |         |        |         |  |
| ±1%, ±5%              | $1.0\Omega$ to $10 M\Omega$                                  |         |        |         |  |
| ±0.5%                 | 10 $\Omega$ to 1M $\Omega$                                   |         |        |         |  |
| Absolute TCR          | $<10R = \pm 200$ ppm $\ge 10R = \pm 100$ ppm/°C              |         |        |         |  |
| Operating temperature | −55°C to +155°C                                              |         |        |         |  |
| Termination           | Wrap-around Sn/Pb or Pb-free with leach resistant Ni barrier |         |        |         |  |
| Thermal impedance     | 220°C/W                                                      | 160°C/W | 80°C/W | 50°C/W  |  |
| Pad/trace area        | 40mm²*                                                       | 50mm²*  | 60mm²* | 100mm²* |  |

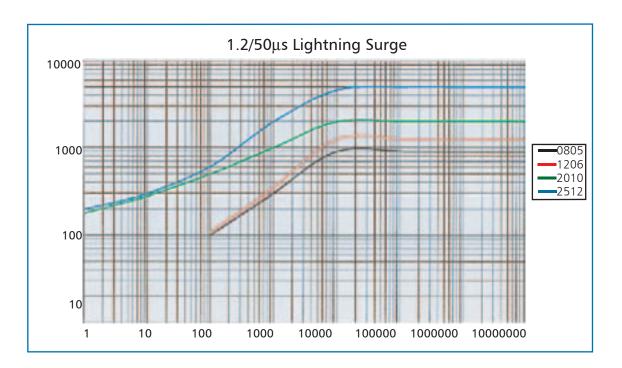
\*Recommended minimum pad and adjacent trace area for each termination for rated power on FR4 PCB.

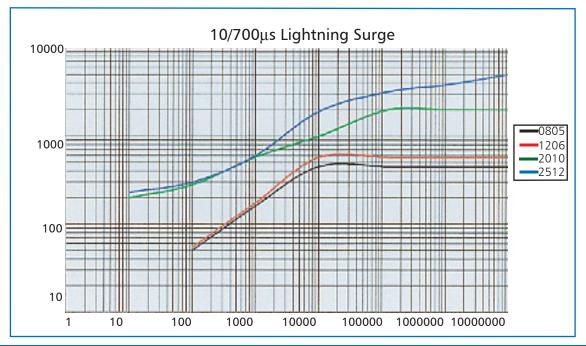
## **Environmental Data**

| Test                                          | Maximum <sup>1</sup> | Typical |      |
|-----------------------------------------------|----------------------|---------|------|
| Load life at rated power (1000 hours @ 70°C)  | 1.0                  | 0.25    |      |
| Overload (6.25 X rated power for 5 seconds)   | $\Delta R\%$         | 1.0     | 0.1  |
| High temperature storage (1000 hours @ 155°C) | $\Delta R\%$         | 1.0     | 0.2  |
| Moisture resistance                           | $\Delta R\%$         | 1.0     | 0.25 |
| Thermal shock                                 | $\Delta R\%$         | 0.25    | 0.05 |
| Resistance to soldering heat                  | $\Delta R\%$         | 0.25    | 0.05 |

Note <sup>1</sup>:  $0.01\Omega$  added for all resistance values <10 $\Omega$ .

General Note IRC reserves the right to make changes in product specification without notice or liability. All information is subject to IRC's own data and is considered accurate at time of going to print.




## Pulse Performance Data

#### Lighting Surge

Resistors are tested in accordance with IEC 60 115-1 using both 1.2/50µs and 10/700µs pulse shapes. The limit of acceptance is a shift in resistance of less than 1% from the initial value.

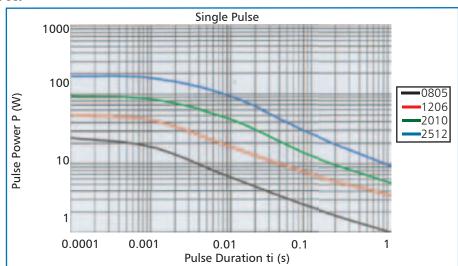


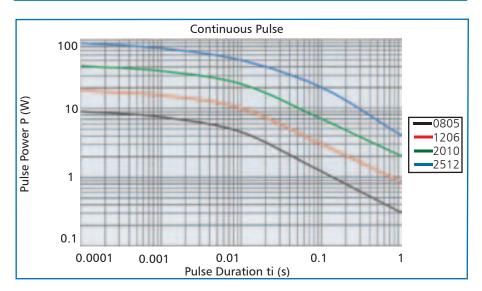


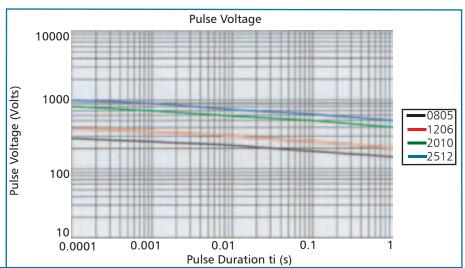
© IRC Advanced Film Division • Corpus Christi Texas 78411 USA Telephone: 361 992 7900 • Facsimile: 361 992 3377 • Email: afdsales@irctt.com • Website: www.irctt.com

# Pulse Withstanding Chip Resistors




## Pulse Performance Data


#### Single impulse:


The single impulse graph is the result of 50 impulses of rectangular shape applied at one minute intervals. The limit of acceptance was a shift in resistance of less than 1% from the initial value. The power applied was subject to the restrictions of the maximum permissible impulse voltage graph shown.

Continuous load due to repetitive pulses: The continuous load graph was obtained by applying repetitive

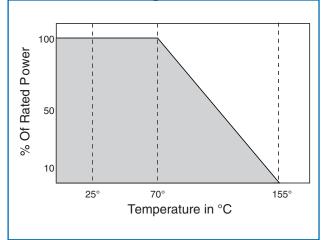
obtained by applying repetitive rectangular pulses where the pulse period was adjusted so that the average power dissipated in the resistor was equal to its rated power at 70°C. Again the limit of acceptance was a shift in resistance of less than 1% from the initial value.







© IRC Advanced Film Division • Corpus Christi Texas 78411 USA Telephone: 361 992 7900 • Facsimile: 361 992 3377 • Email: afdsales@irctt.com • Website: www.irctt.com


# Pulse Withstanding Chip Resistors



## **Physical Data**

|      | L<br>(mm) | W<br>(mm) | T max<br>(mm) | A<br>(mm) | B min<br>(mm) | C<br>(mm) | Weight<br>(grams) |   |
|------|-----------|-----------|---------------|-----------|---------------|-----------|-------------------|---|
| 0805 | 2.0±0.3   | 1.25±0.2  | 0.6           | 0.3±0.15  | 0.9           | 0.3±0.1   | 0.009             |   |
| 1206 | 3.2±0.4   | 1.6±0.2   | 0.7           | 0.4±0.2   | 1.7           | 0.4±0.15  | 0.020             |   |
| 2010 | 5.1±0.3   | 2.5±0.2   | 0.8           | 0.6±0.3   | 3.0           | 0.6±0.25  | 0.036             |   |
| 2512 | 6.5±0.3   | 3.2±0.2   | 0.8           | 0.6±0.3   | 4.4           | 0.6±0.25  | 0.055             | A |

### Power Derating Data



### Ordering Data

| Prefix                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chip Size and Termination<br>2805LF = 100% Tin (pb-free) termination<br>1206 = 60/40 solder termination<br>1206LF = 100% Tin (pb-free) termination<br>2010E = 60/40 solder termination<br>2010LF = 100% Tin (pb-free) termination<br>2512 = 60/40 solder termination<br>2512 = 60/40 solder termination |
| Resistance Value (Use IEC62 code)                                                                                                                                                                                                                                                                       |
| Tolerance Code                                                                                                                                                                                                                                                                                          |
| For additional information or to discuss your specific requirements,<br>please contact our Applications Team using the contact details below.                                                                                                                                                           |

#### Construction:

Thick film resistor material, overglaze and organic protection are screen printed on a 96% alumina substrate. Wrap-around terminations have an electroplated nickel barrier and tin-lead solder coating, ensuring excellent 'leach' resistance properties and solderability.

#### Marking:

Components are not marked. Reels are marked with type, value, tolerance, date code and quantity.

#### Solvent resistance:

The body protection is resistance to all normal industrial cleaning solvents suitable for printed circuits.