Specialty Polymer Aluminum Electrolytic Capacitors

TECHNICAL GUIDE Standard products (FD/CD/UD/UE series) Lower ESR products (SL/SX/SD/SE series) High Temp. products (HL/HD/HE series) 100 0 100 Aluminium 1000uF ectrolytic Capacitors 1 kHz 1 kHz $10 \, kHz$ 100 kHz 1000 kHz 10000 kHz 10000 10 Frequency Z(ohm) 0.1 0 0.01 💿

Panasonic Industrial Company 2 Panasonic Way Secaucus, NJ 07094 1-800-344-2112 http://www.panasonic.com/pic/ecg

Construction and Product Range

(General Purpose)

Co	nstruction	AT	200		39
W.V.		CD	UD	UE	FD
(V. DC)		7.3 x 4.3 x 1.8	7.3 x 4.3 x 2.8	7.3 x 4.3 x 4.2	7.3 x 4.3 x 1.1
2	Capacitance	100~150 μF	180~330 μF	270~470 μF	68 μF
	ESR	18 mΩ	9~15 mΩ	7~12 mΩ	28 mΩ
	Ripple current	2500 mA	3000~3400 mA	3300~3700 mA	2000 mA
2.5	Capacitance	82~120 μF	150~270 μF	220~390 μF	56 μF
	ESR	18 mΩ	9~15 mΩ	7~12 mΩ	28 mΩ
	Ripple current	2500 mA	3000~3400 mA	3300~3700 mA	2000 mA
4	Capacitance	56~100 μF	120~180 μF	180~270 μF	39~47 μF
	ESR	18~25 mΩ	9~18 mΩ	7~12 mΩ	28 mΩ
	Ripple current	1800~2500 mA	2500~3400 mA	3000~3700 mA	2000 mA
6.3	Capacitance	10~68 μF	100~150 μF	150~220 μF	33 μF
	ESR	18~55 mΩ	9~18 mΩ	7~15 mΩ	28 mΩ
	Ripple current	1400~2500 mA	2500~3400 mA	3000~3700 mA	2000 mA
8	Capacitance	8.2~47 μF	68~100 μF	100~150 μF	22 μF
	ESR	18~55mΩ	15~18 mΩ	12~15 mΩ	28 mΩ
	Ripple current	1400~2500 mA	2500~3000 mA	3000~3300 mA	2000 mA
12.5	Capacitance ESR Ripple current	4.7~22 μF 30~80 mΩ 1000~1600 mA	 - 		15 μF 40 mΩ 1400 mA
16	Capacitance ESR Ripple current	2.2~8.2 μF 45~110 mΩ 1000~1300 mA		 	

S-Series

Г

(/
\sim	_	Size	61

W.V. (V. DC)	Size (Series)	SL/SX 7.3 x 4.3 x 1.8 7.3 x 4.3 x 2.0	SD 7.3 x 4.3 x 2.8	SE 7.3 x 4.3 x 4.2
2	Capacitance	100~220 <i>μ</i> F	270~390 μF	390~560 μF
	ESR	9 mΩ	7 mΩ	5 mΩ
	Ripple current	3000 mA	3500 mA	4000 mA
2.5	Capacitance	100/180 <i>μ</i> F	220/270 μF	330/390 <i>μ</i> F
	ESR	9 mΩ	7 mΩ	5 mΩ
	Ripple current	3000 mA	3500 mA	4000 mA
4	Capacitance	82/100 μF	150 <i>μ</i> F	220 μF
	ESR	9 mΩ	7 mΩ	5 mΩ
	Ripple current	3000 mA	3500 mA	4000 mA
6.3	Capacitance	56/68 μF	120 <i>μ</i> F	180 <i>μ</i> F
	ESR	9 mΩ	7 mΩ	5 mΩ
	Ripple current	3000 mA	3500 mA	4000 mA
8	Capacitance ESR Ripple current			
12.5	Capacitance ESR Ripple current	 	 	
16	Capacitance ESR Ripple current	 	 	

HL	HD	HE
7.3 x 4.3 x 1.8	7.3 x 4.3 x 2.8	7.3 x 4.3 x 4.2
100 <i>μ</i> F	180/220 <i>μ</i> F	270/330 <i>μ</i> F
18 mΩ	15 mΩ	12 mΩ
1800 mA	2200 mA	3000 mA
82 μF	150/180 <i>μ</i> F	220/270 <i>μ</i> F
18 mΩ	15 mΩ	12 mΩ
1800 mA	2200 mA	3000 mA
56~68 <i>μ</i> F	120 <i>μ</i> F	180 μF
18 mΩ	15 mΩ	12 mΩ
1800 mA	2200 mA	3000 mA
47 μF	100 μF	150 <i>μ</i> F
18 mΩ	15 mΩ	12 mΩ
1800 mA	2200 mA	3000 mA
33μF	68 μF	100 μF
18 mΩ	15 mΩ	12 mΩ
1800 mA	2200 mA	3000 mA

ESR spec at 100kHz/20°C (mΩ max.) Ripple current at 100kHz/105°C (max. mA rms)

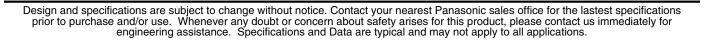


Table of Contents

_	
C	
ш	

		Page No.	
ſ	Features	4 - 7	2
	Exclusive features: SP-Cap Comparison with other types of capacitors		
	Example of simulation		
2	Outline of Products	8 - 10	€
	Very low ESR Product structure		
	Product Line-up	9	
	Product tables	10	4
€	Product Lists	11	
4	Product Specifications		5
5	Application Guidelines (READ THOROUGHLY)	17	Ð
6	Packaging Specifications	19	6
7	Soldering Specifications	20	J
8	Reference Land-pattern	20	
9	Special Capabilities	21 - 23	7 8
	Excellent noise absorption	21	
	Excellent ripple voltage reduction Excellent transient response		
40			9
10	Transient Response Simulation		
	Simulation method Estimation of capacitance-frequency characteristics using the Ladder model		20
	Estimation of capacitance-frequency characteristics using the Ladder moder	20	10
11	Safety and Reliability		
	Why is the capacitor difficult to smoke and ignite?	30	11
	Reliability The SP-cap is difficult to short-circuit		υu
10	Data	22 54	
12	Data Frequency characteristics		12
	Temperature characteristics		
	Shelf Life (with no load at +105°C)		
	Damp heat, Steady State (with no load at +60°C, 90%R.H.)		
	Surge voltage Resistance to soldering heat		
		····· + ·	

3

Exclusive features: SP-Cap

Features

Very low ESR (Equivalent Series Resistance) characteristics

The specialty polymer capacitor has very low ESR characteristics which allows it to have rapid current discharge capability. This makes the SP-Cap an excellent choice as a bulk capacitor in CPU applications.

Very low impedance characteristics

Stable capacitance characteristics

The specialty polymer capacitor has stable capacitance characteristics versus changes in the operating temperature and frequency.

Voltage derating not required for standard product

The specialty polymer capacitor usually can be operated at full rated voltage. Voltage derating may be required depending on the operating temperature. (125°C rated product)

Stable temperature characteristics

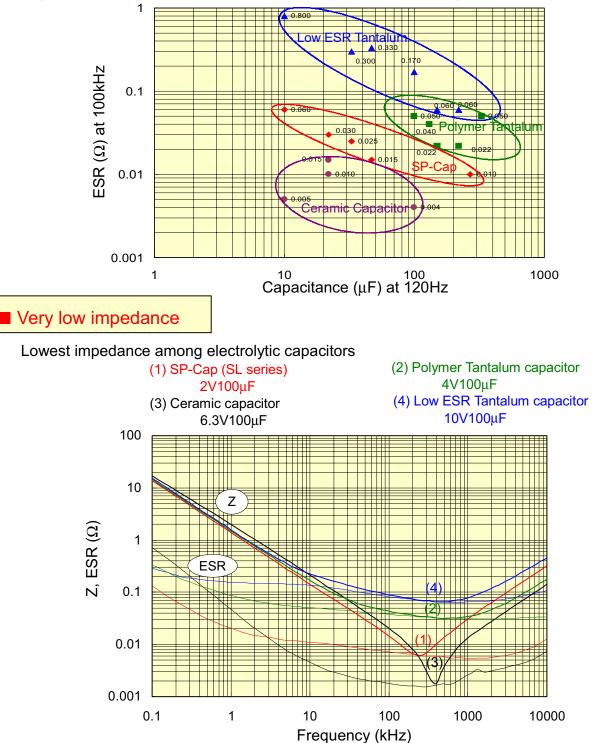
The specialty polymer capacitor has stable capacitance and ESR characteristics versus changes in operating temperature.

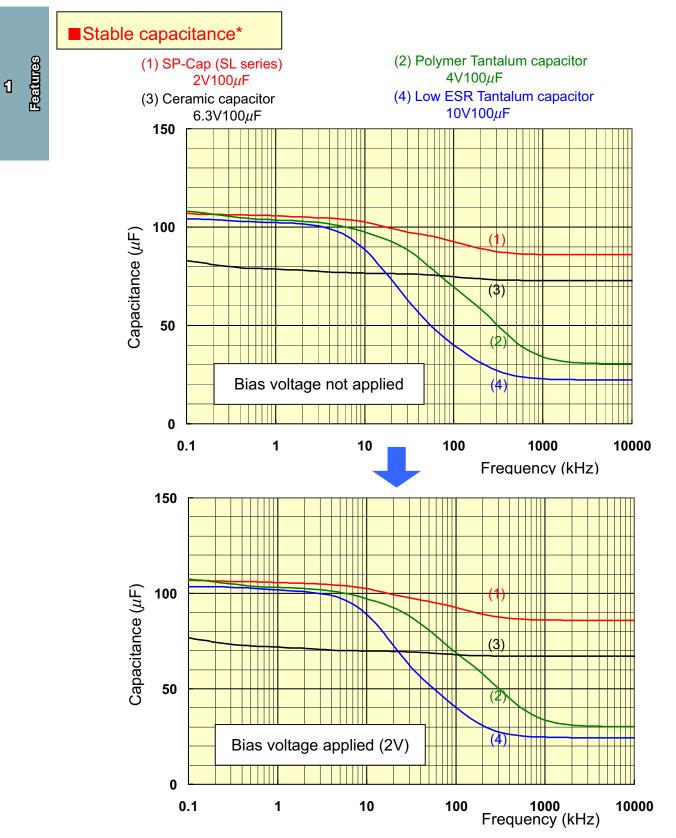
• High safety taking full advantage of the material

More difficult to ignite and "smoke" than a tantalum electrolytic capacitor.

Surface mounting and reduced height

With the adoption of our exclusive new structure, surface mounting and a reduction in height have been achieved.

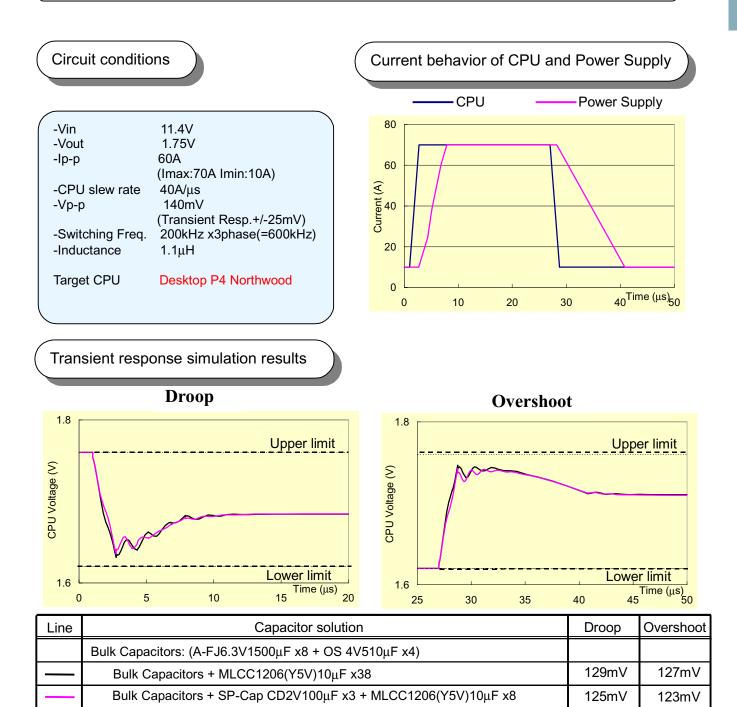

TECHNICAL GUIDE Specialty Polymer Aluminum Electrolytic Capacitors (SP–Cap)


Comparison with other types of capacitors

Very low ESR and large capacitance

ESR: Approx. 1/10 or less than that of a tantalum capacitor Capacitance: Approx. 3 times or more than that of a ceramic capacitor

*Please refer to 'Estimation of capacitance-frequency characteristics using the Ladder model'


TECHNICAL GUIDE Specialty Polymer Aluminum Electrolytic Capacitors (SP–Cap)

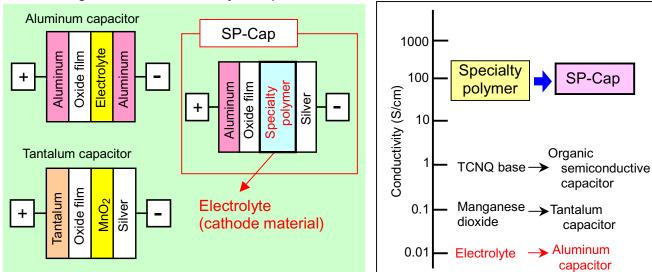
Example of simulation

SP-AL can replace MLCC!

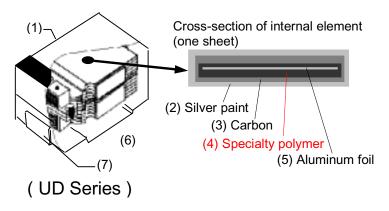
3 pcs of EEFCD0D101R(2V100 μ F) can replace 30 pcs of MLCC 6.3V10 μ F Y5V 1206.

Design and specifications are subject to change without notice. Contact your nearest Panasonic sales office for the lastest specifications

prior to purchase and/or use. Whenever any doubt or concern about safety arises for this product, please contact us immediately for engineering assistance. Specifications and Data are typical and may not apply to all applications.


Conductivity of various types of electrolytes

Outline of Products Very low ESR • In order to reduce ESR, the electrical conductivity of the electrolyte (cathode material) must be increased.

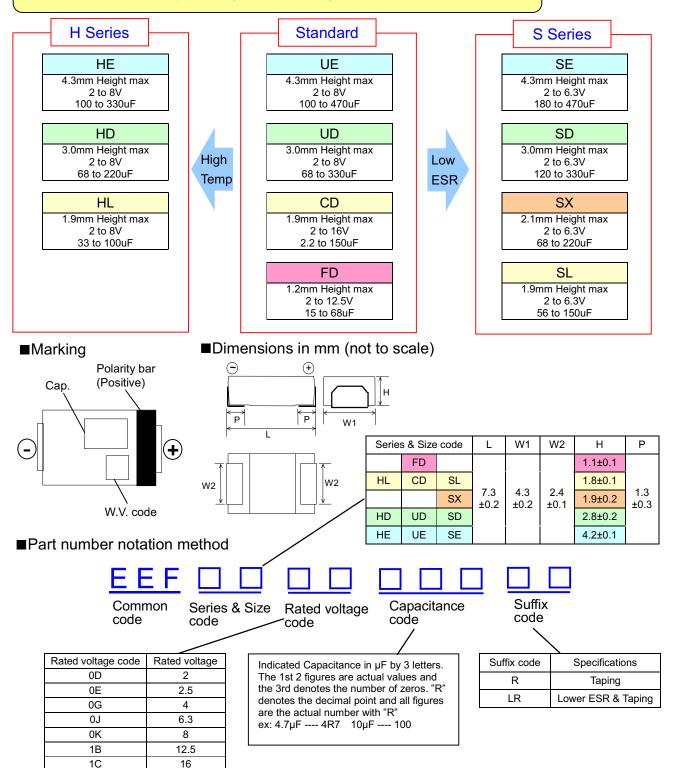

- The specialty polymer electrolyte has a conductivity higher than that of conventional electrolytes
 - * Approx. 10,000 times that of an aluminum capacitor (electrolyte : liquid)
 - * Approx. 1,000 times that of a tantalum capacitor (manganese dioxide : solid)

Basic configuration of an electrolytic capacitor

Product structure

With the adoption of our exclusive structure, surface mounting and reduced height have been achieved.

Component
Mold resin
Silver paint
Carbon
Specialty polymer
Aluminum foil
Internal terminal
External terminal



of Products

Product Line-up

Can easily replace tantalum capacitors due to its standardized D case size and same land pattern (7.3 x 4.3 mm).

Product tables

■ Sta	Standard products									F	-98) va	عمدا	· m() at	100	kH7/	20°C	
	V.DC 2 2.5								4			6.3	va	8		2 at			6
μF	V.D0	(0D)			0E)		(0G)		(0J)		(0K)		(1B)			Č)			
Sut	ffix				Series	R	LR	Series	R	LR	Series	R	LR					Series	
2.2(2	2R2)																	CD	110
4.7(4																CD	80	CD	80
6.8(6	6R8)																	CD	70
8.2(8														CD	55			CD	45
10(1	00)								1		CD	55				CD			
15(1														CD	40	FD			
																CD	50		
22(2	220)										CD	40		FD	28	CD	30		
															28				
33(3	30)											28		CD	18				
											CD	28							
39(3								FD	28										
47(4	,							FD	28		CD	18		CD	25				
56(5	,				FD	28		CD	18										
68(6		FD	28					CD	18		CD	18		UD	15				
82(8					CD	18		CD	18										
100(101)	CD	18		CD	18		CD	25		UD	15			18				
														UE	12				
120(CD	18		CD	18		UD	15		UD	15	9						
150(151)	CD	18		UD	15		UD	15	9	UD	18		UE	15				
											UE	12							
180(181)	UD	15		UD	15		UD	18		UE	12	7						
								UE	12										
220(221)	UD	15		UD	15	9	UE	12	7	UE	15							
					UE	12													
270(271)		15	9	UD	15	9	UE	15										
		UE	12		UE	12			<u> </u>								<u> </u>	<u> </u>	
330(331)		15	9	UE	12	7		<u> </u>								<u> </u>	<u> </u>	
000/	004)	UE	12	-		40	7												
390(UE	12	7	UE	12	7												
470(-	4/1)	UE	12	7															

ESR(mΩ 100kHz, 20°C) RC <Ripple Current > (Ar.m.s. 100kHz, 105°C)

	ESR	RC
FD	$40 \text{ m}\Omega$	1.4 Ar.m.s.
	28 mΩ	2.0 Ar.m.s.
CD	$110 \text{ m}\Omega$	1.0 Ar.m.s.
	80 mΩ	1.0 Ar.m.s.
	$70 \text{ m}\Omega$	1.0 Ar.m.s.
	$60 \text{ m}\Omega$	1.0 Ar.m.s.
	$55 \text{ m}\Omega$	1.4 Ar.m.s.
	$50 \text{ m}\Omega$	1.3 Ar.m.s.
	$45 \text{ m}\Omega$	1.3 Ar.m.s.
	40 mΩ	1.6 Ar.m.s.
	30 mΩ	1.6 Ar.m.s.
	28 mΩ	2.0 Ar.m.s.
	$25 \text{ m}\Omega$	1.8 Ar.m.s.
	18 mΩ	2.5 Ar.m.s.
	$15 \text{ m}\Omega$	2.7 Ar.m.s.
UD	18 mΩ	2.5 Ar.m.s.
	$15 \text{ m}\Omega$	3.0 Ar.m.s.
	12 mΩ	3.3 Ar.m.s.
	9 mΩ	3.4 Ar.m.s.
UE	$15 \text{ m}\Omega$	3.0 Ar.m.s.
	$12 \text{ m}\Omega$	3.3 Ar.m.s.
	10 mΩ	3.5 Ar.m.s.
	$7 \text{ m}\Omega$	3.7 Ar.m.s.

■ S series products

2	2.5	4	6.3
(0D)	(0E)	(0G)	(0J)
			SL
			SX
		SL SX	
SL	SL	SX	
SL	SL		SD
SL	SX	SD	
SL SX	SX		SE
SX	SD	SE	
SD	SD		
SD	SE		
SD SE	SE		
SE			
SE			
	() () () () () () () () () () () () () ((0 □) (0E) (0E) (0E) (0E) (0E) (0E) (0E) (0E)	()□) ()()E) ()()G) ()□) ()()E) ()()G) $ □ $ $ □ $ $ □ $ $ □ $ $ □ $

ESR(20°C)	Ripple Current (105°C)
$9 \text{ m}\Omega$	3.0 Ar.m.s.
9 mΩ	3.0 Ar.m.s.
7 mΩ	3.5 Ar.m.s.
5 mΩ	4.0 Ar.m.s.
	9 mΩ 9 mΩ 7 mΩ

() shows W.V. and capacitance code.

10

H series products

V.DC	2	2.5	4	6.3	8
μF	(0D)	(0E)	(0G)	(0J)	(0K)
33(330)					ΗL
47(470)				ΗL	
56(560)			HL		
68(680)			HL		HD
82(820)		HL			
100(101)	HL			HD	HE
120(121)			HD		
150(151)		HD		HE	
180(181)	HD	HD	HE		
220(221)	HD	HE			
270(271)	HE	HE			
330(331)	HE				

(100kHz)	ESR(20°C)	Ripple Current (125°C)	
HL	18 mΩ	1.8 Ar.m.s.	
HD	15 mΩ	2.5 Ar.m.s.	
HE	12 mΩ	3.0 Ar.m.s.	

Product Lists

Product Lists

∎Standa	rd products					*1: 100	kHz/ 20 to 105°C
Series & Size code	Part number	Rated Voltage (V.DC)	Cap. (µF)	tan δ max.	L.C. max. (µA)	ESR(mT) max (100kHz,20°C)	Permissible Ripple Current (A r.m.s)*1
FD	EEFFD0D680R	2	68	0.06	8.1	28	2.0
	EEFFD0E560R	2.5	56		8.4		
	EEFFD0G390R	4	39		9.3		
	EEFFD0G470R		47		11.2		
	EEFFD0J330R	6.3	33		8.3		
	EEFFD0K220R	8	22		7.0		
	EEFFD1B150R	12.5	15		7.5	40	1.4
CD	EEFCD0D101R	2	100	0.06	12.0	18	2.5
	EEFCD0D121R		120		14.4	18	2.5
	EEFCD0D151R		150		18.0	18	2.5
	EEFCD0E820R	2.5	82		12.3	18	2.5
	EEFCD0E101R		100		15.0	18	2.5
	EEFCD0E121R		120		18.0	18	2.5
	EEFCD0G560R	4	56		13.4	18	2.5
	EEFCD0G680R		68		16.3	18	2.5
	EEFCD0G820R		82		19.6	18	2.5
	EEFCD0G101R		100		24.0	25	1.8
	EEFCD0J100R	6.3	10		3.0	55	1.4
	EEFCD0J220R		22		5.5	40	1.6
	EEFCD0J330R		33		8.3	28	2.0
	EEFCD0J470R		47		11.8	18	2.5
	EEFCD0J680R		68		17.1	18	2.5
	EEFCD0K8R2R	8	8.2		3.0	55	1.4
	EEFCD0K150R		15		4.8	40	1.6
	EEFCD0K220R		22		7.0	28	2.0
	EEFCD0K330R		33		10.5	18	2.5
	EEFCD0K470R		47		15.0	25	2.5
	EEFCD1B4R7R	12.5	4.7		3.0	80	1.0
	EEFCD1B100R		10		5.0	60	1.0
	EEFCD1B150R		15		7.5	50	1.3
	EEFCD1B220R		22		11.0	30	1.6
	EEFCD1C2R2R	16	2.2		3.0	110	1.0
	EEFCD1C4R7R		4.7		3.0	80	
	EEFCD1C6R8R		6.8		4.3	70	
	EEFCD1C8R2R		8.2		5.2	45	1.3

TECHNICAL GUIDE Specialty Polymer Aluminum Electrolytic Capacitors (SP–Cap)

E E E	Part number EFUD0D181R EFUD0D221R EFUD0D271R	Rated Voltage (V.DC) 2	Cap. (µF)	tan δ max.	L.C. max.	$ESR(m\Omega)$ max	Permissible
Code E	EFUD0D181R EFUD0D221R EFUD0D271R	(V.DČ)	(µF)				Dimente Current
UD E E E E	EFUD0D221R EFUD0D271R				(µA)	(100kHz,20°C)	Ripple Current
E E E	EFUD0D221R EFUD0D271R	2					(A r.m.s)*1
E	EFUD0D271R		180	0.1	21.6	15	3.0
E			220		26.4	15	3.0
E		_	270		32.4	15	3.0
	EFUD0D271LR	_	270		32.4	9	3.4
E	EFUD0D331R		330		39.6	15	3.0
	EFUD0D331LR		330		39.6	9	3.4
	EFUD0E151R	2.5	150		22.5	15	3.0
	EFUD0E181R		180		27.0	15	3.0
	EFUD0E221R		220		33.0	15	3.0
	EFUD0E221LR		220		33.0	9	3.4
	EFUD0E271R	_	270		40.5	15	3.0
	EFUD0E271LR		270		40.5	9	3.4
	EFUD0G121R	4	120		28.8	15	3.0
	EFUD0G151R		150		36.0	15	3.0
	EFUD0G151LR		150		36.0	9	3.4
	EFUD0G181R		180		43.2	18	2.5
	EFUD0J101R	6.3	100		25.2	15	3.0
	EFUD0J121R		120		30.2	15	3.0
	EFUD0J121LR		120		30.2	9	3.4
	EFUD0J151R		150		37.8	18	2.5
	EFUD0K680R	8	68		21.7	15	3.0
	EFUD0K101R	-	100		32.0	18	2.5
	EFUE0D271R	2	270	0.1	32.4	12	3.3
	EFUE0D331R		330		39.6	12	3.3
	EFUE0D391R		390		46.8	12	3.3
	EFUE0D391LR		390		46.8	7	3.7
	EFUE0D471R		470		56.4	12	3.3
	EFUE0D471LR		470		56.4	7	3.7
	EFUE0E221R	2.5	220		33.0	12	3.3
	EFUE0E271R		270		40.5	12	3.3
	EFUE0E331R		330		49.5	12	3.3
	EFUE0E331LR		330		49.5	7	3.7
	EFUE0E391R		390		58.5	12	3.3
	EFUE0E391LR		390		58.5	7	3.7
	EFUE0G181R	4	180		43.2	12	3.3
	EFUE0G221R		220		52.8	12	3.3
E	EFUE0G221LR		220		52.8	7	3.7
E	EFUE0G271R		270		64.8	15	3.0
E	EFUE0J151R	6.3	150		37.8	12	3.3
E	EFUE0J181R		180		45.3	12	3.3
E	EFUE0J181LR		180		45.3	7	3.7
	EFUE0J221R		220		55.4	15	3.0
	EFUE0K101R	8	100		32.0	12	3.3
	EFUE0K151R		150		48.0	15	3.0

ළ Product Lista

■S se	ries products			*1	1: 100kHz/	20 to 105°C	
Size		Rated	Cap.	tons	L.C.	ESR(mΩ)	Permissible
& Size	Part number	Voltage	(μF)	tan δ max.	(µA)		Ripple Current
code		(V.DC)		-	max.	20°C)max.	(A r.m.s)*1
SL	EEFSL0D101R	2	100	0.06	12.0	9	3.0
	EEFSL0D121R		120		14.4		
	EEFSL0D151R		150		18.0		
	EEFSL0D181R		180		21.6		
	EEFSL0E101R	2.5	100		15.0		
	EEFSL0E121R		120		18.0		
	EEFSL0G820R	4	82		19.7		
	EEFSL0J560R	6.3	56		14.1		
SX	EEFSX0D181R	2	180	0.06	21.6	9	3.0
	EEFSX0D221R		220		26.4		
	EEFSX0E151R	2.5	150		22.5		
	EEFSX0E181R		180		27.0		
	EEFSX0G820R	4	82		19.7		
	EEFSX0G101R		100		24.0		
	EEFSX0J680R	6.3	68		17.1		
SD	EEFSD0D271R	2	270	0.10	32.4	7	3.5
	EEFSD0D331R		330		39.6		
	EEFSD0D391R		390		46.8		
	EEFSD0E221R	2.5	220		33.0		
	EEFSD0E271R	1	270		40.5		
	EEFSD0G151R	4	150		36.0		
	EEFSD0J121R	6.3	120		30.2		
SE	EEFSE0D391R	2	390	0.10	46.8	5	4.0
	EEFSE0D471R		470		56.4		
	EEFSE0D561R		560		67.2		
	EEFSE0E331R	2.5	330		49.5		
	EEFSE0E391R		390		58.5		
	EEFSE0G221R	4	220		52.8		
	EEFSE0J181R	6.3	180		45.3		

■H series products

*2: 100kHz/ 20 to 125°C

∎H se	ries products						20 to 125 C
Size & Size code	Part number	Rated Voltage (V.DC)	Cap. (µF)	tan δ max.	L.C. (µA) max.	ESR(mΩ) (100kHz, 20°C)max.	Permissible Ripple Current (A r.m.s)*2
HL	EEFHL0D101R	2	100	0.06	20.0	18	1.8
	EEFHL0E820R	2.5	82		20.5		
	EEFHL0G560R	4	56		22.4		
	EEFHL0G680R		68		27.2		
	EEFHL0J470R	6.3	47		29.6		
	EEFHL0K330R	8	33		26.4		
HD	EEFHD0D181R	2	180	0.10	36.0	15	2.5
	EEFHD0D221R		220		44.0		
	EEFHD0E151R	2.5	150		37.5		
	EEFHD0E181R		180		45.0		
	EEFHD0G121R	4	120		48.0	Ī	
	EEFHD0J101R	6.3	100		63.0		
	EEFHD0K680R	8	68		54.4		
HE	EEFHE0D271R	2	270	0.10	54.0	12	3.0
	EEFHE0D331R		330		66.0		
	EEFHE0E221R	2.5	220		55.0		
	EEFHE0E271R		270		67.5		
	EEFHE0G181R	4	180		72.0		
	EEFHE0J151R	6.3	150		94.5		
	EEFHE0K101R	8	100		80.0		

Design and specifications are subject to change without notice. Contact your nearest Panasonic sales office for the lastest specifications prior to purchase and/or use. Whenever any doubt or concern about safety arises for this product, please contact us immediately for engineering assistance. Specifications and Data are typical and may not apply to all applications.

13

Product Specifications

No	Item	Char	acteri	istics	Outline of test method	
1	Leakage current	(Standard) (S series) 2V to 4V I≤0.06CV(μA) or 6.3V to 16V I≤0.04CV(μA) or (Whichever is the greater) (H series) I≤0.1CV(μA)	3μΑ	Series resistor:1000Ω Applied voltage: Rated Voltage Measuring:2-minutes If you have any concerns about leakage current, please conduct pre-conditioning. Pre-conditioning ·Temperature:105°C ·Series resistor:1000Ω ·Applied voltage: Rated Voltage ·Charge time:1h ·Measuring :The tests in Sub-clause 1 shall be made after discharging the capacitors and storing them for a period of 24h to 48h at room temperature and low humidity.		
2	Capacitance tolerance	±20%		• .	ency:120Hz±10% t: Equivalent series circuit	
3	tanδ	See " Product Lists	•		e:+0.7 to 1.0V.DC, ≤0.5Vrms erature:20°C	
4	ESR	See " Product Lists	s " Measuring freque Measuring voltag		ency:100KHz±10% je:+0.7 to 1.0V.DC, ≤0.5Vrms erature:20°C	
5	Solderability	More than 75% of t	the te		Solder type:H60A or H63A	
		to be covered by n	ew so	lder.	Flux: About 25% rosin density melted ethanol.	
					Solder temperature: 230±5°C Immersing time:2±0.5s	
6	Solubility resistance of marking		oticeable abnormal Je shall occur.		Class of reagent: Extra grade 2-propanol (JIS K8839) or superior. Test temperature:20 to 25°C Immersing time:30±5s	
7	Solder heat	Leakage Current Capacitance	≤The value of item 1. ±10% of initial		The capacitor is heated to and held at 235±5°C in a high temperature oven for 200±10s.	
	resistance	Change	measured value.			
		tanδ Appearance	≤The value of item 3. No noticeable		Measurements of the following	
		Appearance	-		performance characteristics are made	
				ormal change	after the capacitor cools to room	
			snall	occur.	temperature.	

14

No	Item	(Characteristics	Outline of test method	
8	Adhesion	Appearance:		Push direction: Side	
			chanical damage such as	Force:5.0N	
		breaks after		Holding time:10±0.5s	
9	Damp heat,	Leakage Current	≤The value of item 1.	Test temperature:60±2°C Relative humidity:90%R.H.	
	Steady state	Capacitance Change	+70%,-20% (2V,2.5V) +60%,-20% (4V) +50%,-20% (6.3V) +40%,-20% (8V to 16V) of initial measured value.	Test time:500 ⁺²⁴ /-₀h	
		tanδ	<200% of item 3.	-	
		Appearance	No noticeable abnormal change shall occur.		
10	Damp heat, Steady	Leakage Current Capacitance	≤The value of item 1. +70%,-20% (2V,2.5V)	Test temperature:60±2°C Relative humidity:90%R.H. Applied voltage: Rated voltage	
	state (Applied voltage)	Change	+60%,-20% (4V) +50%,-20% (6.3V) +40%,-20% (8V to 16V) of initial measured value.	Test time:500 ⁺²⁴ /- ₀ h	
		tanδ	≤200% of item 3.		
		Appearance	No noticeable abnormal change shall occur.		
11	Endurance	Leakage Current	≤The value of item 1.	Test temperature:105±2°C Applied voltage: Rated voltage	
		Capacitance Change	±10% of initial measured value.	Test time:1000 ⁺⁴⁸ /- $_0$ h	
		tanδ	≤The value of item 3.	In case of H series,	
		Appearance	No noticeable abnormal change shall occur.	Test temperature:125±2°C Applied voltage: Rated voltage x0.75 Test time:1000 ⁺⁴⁸ /-0h	
12	Shelf life	Leakage Current	≤The value of item 1.	Test temperature:105±2°C Test time:500 ⁺²⁴ /- ₀ h	
		Capacitance Change	±10% of initial measured value.	In case of H series,	
	_		≤The value of item 3.	Test temperature:125±2°C	
		Appearance	No noticeable abnormal change shall occur.	Test time:500 ^{+24/} -0 h	

4 Product Specifications

No	Item		Characte	eristics	Outline of test method
13	Characteristics	Step	Chara	cteristics	Expose the capacitor at each
	at high and low	2	Capacitance	±15% of the value	temperature in following order and
	temperature			in step 1.	measure characteristics in step 2, 4
			ESR	≤115% times of	and 5 as described on the left.
				the value of item 4.	
		4	Capacitance	20% of the value	Step conditions
				in step 1.	See "Step Table "
		5	Leakage current	≤The value of item 1.	
			Capacitance	±5% of the value	
				in step 1.	
			tanδ	The value of item 3.	
14	Surge	Leaka	age current	≤The value of item 1.	Test temperature:15 to 35°C
		Capa	citance	±10% of initial	Series resister: 1000Ω
		C	change	measured value.	Test voltage: Surge voltage
		tanδ		The value of item 3.	See "Surge-voltage Table "
		Appe	arance	No noticeable	Applied voltage:1000 cycles of
				abnormal change	30±5s "ON" and 5 min 30s "OFF"
				shall occur.	
15	Vibration	Appe	arance: No notice		Frequency:10 to 2000 to 10 Hz
		_	Ų	hall occur.	(One cycle per 20 min)
		Capa	citance: During tes		Total amplitude:1.5mm
				e stabilized.	Direction and duration of vibration:
			(When measured several		2 hours for each of three
			times within 30 min,		right-angle directions,
			before co	mpletion of test.)	total 6 hours.
					Mounting method:
					The capacitor must be
					soldered in place.

Step Table

	Standard S series	H series
Step	Temperature	Temperature
1	20±2°C	20±2°C
2	-40±2°C	-40±2°C
3	20±2°C	20±2°C
4	105±2°C	125±2°C
5	20±2°C	20±2°C

Surge-voltage Table

Rated voltage (V)	2	2.5	4	6.3	8	12.5	16
Surge voltage (V)	2.5	3.1	5	8	10	16	20

Application Guidelines

Specialty Polymer Aluminum Electrolytic Capacitor should be used in compliance with the following guidelines.

1. Circuit Design

1.1 Prohibited Circuits for use

Do not use the capacitors in the following circuits.

- (1) Time-constant circuits
- (2) Coupling circuits
- (3) 2 or more capacitors connected serially
- (4) Circuits which are greatly affected by leakage current

1.2 Voltage

The application of over-voltage and reverse voltage described below can cause increases in leakage current and short circuits.

Applied voltage, refers to the voltage value including the peak value of the transient instantaneous voltage and the peak value of ripple voltage, not just steady state line voltage.

Design your circuit so that the peak voltage does not exceed the specified voltage.

[Over-voltage]

Do not apply voltage in excess of the rated voltage. Use at 85% or less of the rated voltage for H-Series 125°C rating, 15% voltage derating is required.

[Derating]

Voltage derating may be required depending on the operating temperature over 105 °C (25% voltage derating at 125 °C.

1.3 Ripple Current

Use the capacitors within the stipulated, permitted ripple current.

When excessive ripple current is applied to the capacitor, it causes increases in leakage current and short circuits due to self-heating.

Even when using the capacitor under the permissible ripple current, reverse voltage may occur if the DC bias voltage is low.

1.4 Leakage Current

There is a risk of leakage current characteristics increasing even if the following usage conditions or environments are within the stipulated range. However, even if leakage current increases once, it has the characteristic that leakage current becomes small in most cases after voltage is applied due to its self-correction mechanism.

- (1) After re-flow
- (2) Shelf conditions such as (1) high temperature with no load, (2) high temperature high humidity with no load and (3) sudden temperature changes.

1.5 Failure Rate

The majority of failure modes are short circuits or an increase in leakage current. The main factors of failure are mechanical stress, heat stress, and electrical stress due to re-flow heat and heat from the operating environment temperature. Even within the stipulated limits, it is possible to lower the failure rate by reducing usage conditions such as temperature and voltage. Please be sure to have ample safety margins in your design.

[Expected Failure Rate]

Data based on our reliability tests: 46FIT or less
 (Based on applied rated voltage at 105°C)
 (2) Market failure rate : 0.13FIT or less

(Based on c=0, Reliability standard : 60%)

Always consider safety when designing equipment and circuits. Plan for worst case failure modes such as short circuits and open circuits which might occur during use.

- (1) Provide protection circuits and protection devices to allow safe failure modes.
- (2) Design redundant or secondary circuits where possible to assure continued operation in case of main circuit failure.

2. Usage & Storage Conditions and Soldering

2.1 Storage

Products should be stored in a moisture proof environment. Storage conditions before and after opening the moisture proof packaging should be maintained as follows. (If these conditions are exceeded, the package may absorb moisture and there is a risk of damage to the exterior due to heat stress during mounting.)

[Environment of storage]

Temperature: 5° C to 30° C without direct sunlight Humidity : Less than 70%RH

Maximum storage term and condition before opening the package: 2 years after manufacture

(JEDEC J-STD-020B MSL: Level 2)

Maximum storage term and condition after opening the package: Less than 14 days*

(JEDEC J-STD-0208B MSL: Level 3)

* Series FD, H, and CD(12.5V & 16V) : 7 days or less

All products should be used within the storage term after opening the package.

After the storage limit, baking treatment is necessary to be able to use the products.

The storage conditions after baking are the same as those after opening the package.

[Baking conditions]

Temperature: $50 \pm 2^{\circ}C$ Time: 100 to 200 hours (Do not perform more than twice.)

TECHNICAL GUIDE Specialty Polymer Aluminum Electrolytic Capacitors (SP–Cap)

2.2 Temperature

Use at or under the rated (guaranteed) temperature. Operation at temperatures exceeding specifications causes large changes in the capacitors electrical properties, and deterioration that can potentially lead to failure.

When calculating the operating temperature of the capacitor, be sure to include not only the ambient temperature and internal temperature of the unit, but also radiation from heat generating elements inside the equipment (power transistors, resistors, etc.), and self-heating due to ripple current.

2.3 Capacitor Mounting

(1) Land Size

Refer to the land size table for appropriate design dimensions. Circuit board design requires examination of the most suitable dimensions taking conditions such as circuit

board, parts and re-flow into consideration. These products are designed specifically for re-flow soldering.

Consult with our factory before performing mounting processes other than re-flow soldering.

(2) Heat stress of re-flow, etc.

Specified re-flow conditions must be strictly observed. Soldering under other conditions can cause short circuits and increases in ESR.

(3) Repair and modification by soldering iron When using a soldering iron, set the tip temperature to no more than 350°C, and work in as short a time as possible under 10 seconds. While soldering, do not apply strong force to the capacitor.

(4) Mechanical stress

Do not apply excessive force to the capacitor, since this can damage the electrodes and adversely affect the capacitor's mountability. It can also cause an increase of leakage current, separation of the lead wire and element, and damage to the capacitor body, all of which can adversely affect the electrical performance of the capacitor.

2.4 Transportation

Take sufficient care during handling because excessive vibration, and/or shock can cause the reliability of the capacitor to decrease.

2.5 Circuit Board Cleaning

Products should be cleaned after soldering in accordance with the following conditions. Temperature: Less than 60°C Time: Within 5 minutes (Ultrasound OK) Be sure to sufficiently wash and dry (20 min. at 100°C) the board afterward.

[Recommended cleaning solvents]

Pine Alpha ST-100S, Sunelec B-12, DK beclear CW-5790, Aqua Cleaner 210SEP, Cold Cleaner P3-375, Telpen Cleaner EC-7R, Clean-thru 750H,

Clean-thru 750L, Clean-thru710M, Techno Cleaner 219, Techno Care FRW-17, Techno Care FRW-1, Techno care FRV-1, AXREL32

- Note 1 : Consult our factory when performing processes with cleaning solvents other than those listed above.
 - 2 : The use of ozone depleting cleaning agents are not recommended in the interest of protecting the environment.

3. Others

3.1 Precautions for using capacitors

Capacitors are not to be used in the following environments.

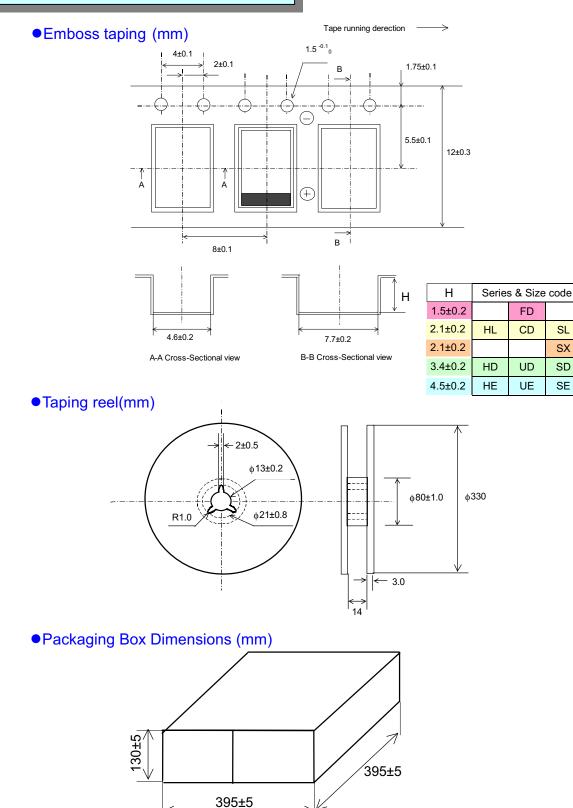
- (1)Environments where the capacitor is subject to direct contact with water, salt water or oil.
- (2)Environments where capacitors are exposed to direct sunlight.
- (3)High temperature, or humid environments where condensation can form on the surface of the capacitor.
- (4)Environments where the capacitor is in contact with chemically active gases.
- (5)Acidic or alkaline environments.
- (6)Environments subject to high-frequency induction. (7)Environments subject to excessive vibration and/or shock.

3.2 Emergency Procedures

If the capacitor is overheated, the resin case may emit smoke. If this occurs, immediately switch off the equipment's main power supply to stop operation. Keep your face and hands away from the capacitor, since the temperature may be high enough to cause the capacitor to ignite and burn.

3.3 Capacitor Disposal

Since capacitors are composed of various metals and resins, treat them as industrial waste when arranging for their disposal.


3.4 Using Capacitor for Applications which Can Affect Human Life

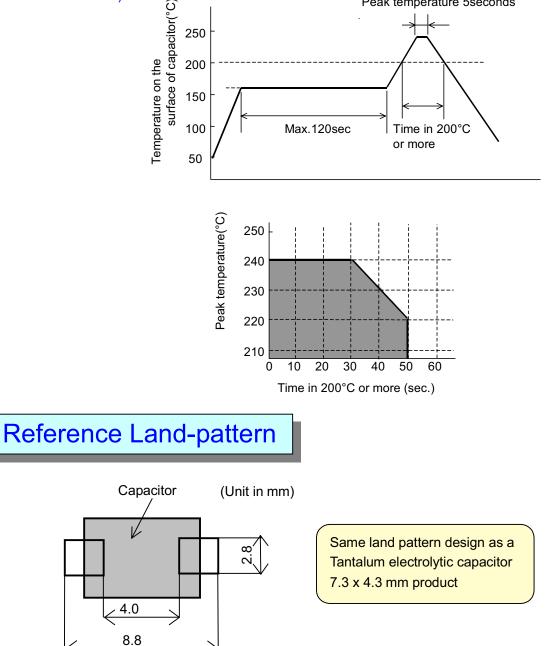
Consult with our factory before use in applications which can affect human life.

Don't use for control circuits which affect human life, such as medical equipment, airplanes, etc. without consent of our company.

Packaging Specifications

19

TECHNICAL GUIDE Specialty Polymer Aluminum Electrolytic Capacitors (SP–Cap)

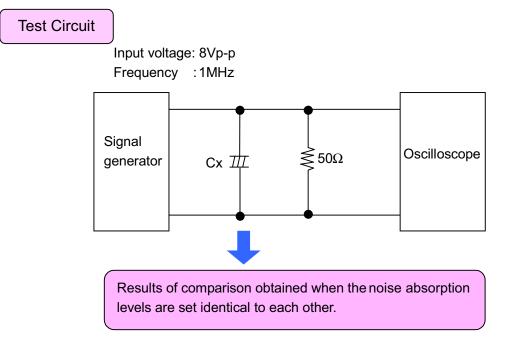

Soldering Specifications

We recommend soldering be done according to the following maximum permissible reflow soldering temperature profile.

Reflow soldering

(This is a method to heat parts and the substrate by hot air or infrared furnace.)

*Do not perform reflow soldering more than twice Please be sure to perform the second reflow soldering within 5days. (Please refer to item 5 of the Application Guidelines for the proper storing conditions prior to the second reflow) Peak temperature 5seconds



Special Capabilities

Excellent noise absorption

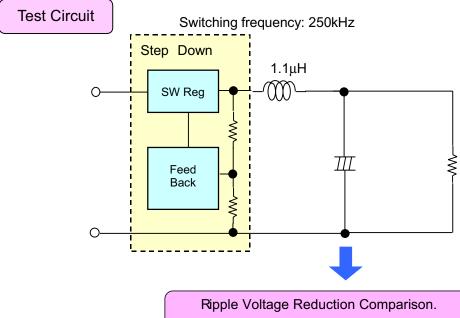
Noise absorption of the SP-Cap compared with other types of capacitors is shown below.

	Output waveform					
Input waveform	Aluminum capacitor	Tantalum capacitor	SP-Cap			
(1MHz)	$1000 \mu F \times 4$	100μF × 3	47μF × 1			
			36.]			
	•		•			
8V p-p	54mV p-p	40mV p-p	30mV p-p			

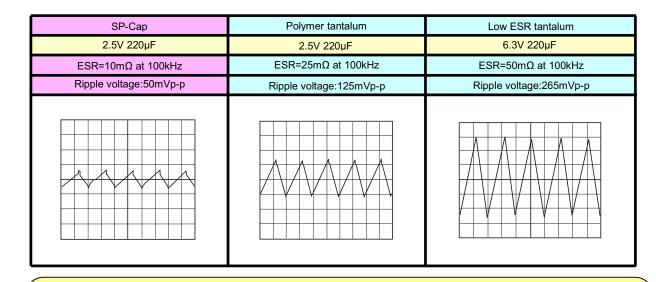
ດ Special Capabilities

The SP-Cap is excellent for noise absorption and capable of reducing the number of parts, thus reducing overall circuit size.

Design and specifications are subject to change without notice. Contact your nearest Panasonic sales office for the lastest specifications prior to purchase and/or use. Whenever any doubt or concern about safety arises for this product, please contact us immediately for engineering assistance. Specifications and Data are typical and may not apply to all applications.


21

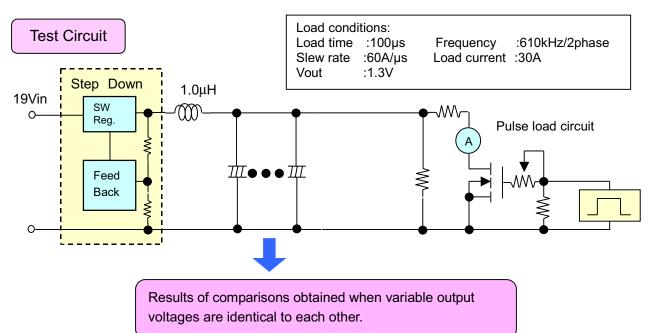
TECHNICAL GUIDE Specialty Polymer Aluminum Electrolytic Capacitors (SP–Cap)



Excellent ripple voltage reduction

The voltage smoothing capability of the SP-Cap on the switching power supply output side compared with that of other types of capacitors is shown below.

All capacitors valued identically at 220µF.


To reduce ripple voltage, an SP-Cap with a very low ESR is more suitable. For the same capacitance, an SP-Cap allows the ripple voltage to be reduced to approximately 1/3 that of a polymer tantalum capacitor and approximately 1/5 that of a low ESR tantalum capacitor.

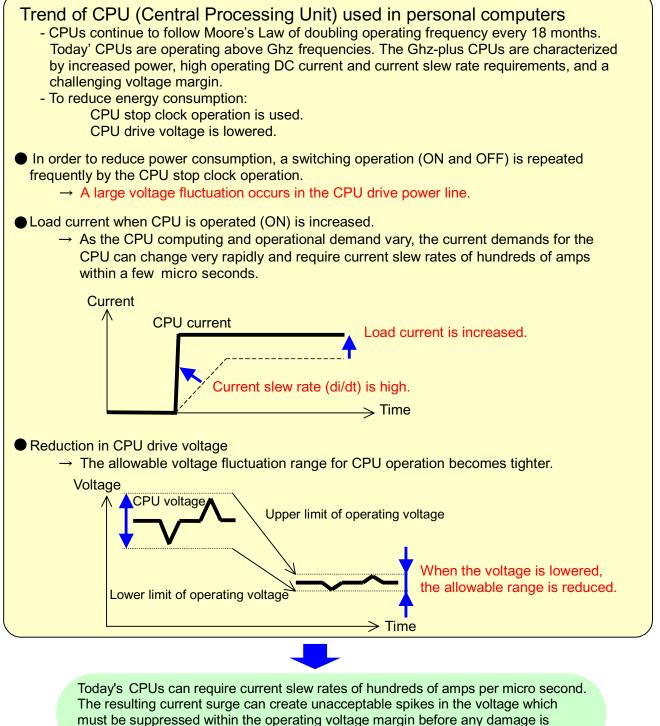
6 Special Capabilities

Excellent transient response

The transient response of the SP-Cap as the load varies in a high speed condition compared with that of other types of capacitors is shown below.

Specialty Polymer A	luminum (SP-Cap)	Specialty Polymer Tantalum		
2V 270µF x5 pcs	2V 220µF x8 pcs	4V 470µF x5 pcs	2.5V 330µF x8 pcs	
Total Cap. = <mark>1350</mark> µF at 120Hz	Total Cap. =1760µF at 120Hz	Total Cap. =2350µF at 120Hz	Total Cap. =2640µF at 120Hz	
ESR=3mΩmax.at 100kHz	ESR=1.9mΩmax.at 100kHz	ESR=3mΩmax.at 100kHz	ESR=1.9mΩmax.at 100kHz	
Пек <u>мо</u> 2300 X5 1362 AQ5	Tek <u>2009</u> 2.50M5/5 1119 Acqs	Bek 2000 2: 500/5/5 802 ArQ3 Construction ArQ3 Construction ArQ3 Construction ArQ3 Construction ArQ3 Construction ArQ3 Construction M 20.0µs Ch1 Z -10mV arg	Tek 1002 2.50MS/s 1285 Acqs	

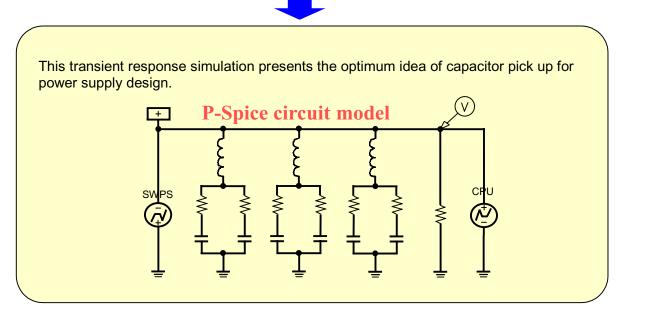
Because the SP-Cap provides a very low ESR, the same transient response can be obtained with less capacitance. To obtain the same transient response with polymer tantalum, higher capacitance is required than with the polymer aluminum.


9 Special Capabilities

TECHNICAL GUIDE Specialty Polymer Aluminum Electrolytic Capacitors (SP–Cap)

Transient Response Simulation

Application Example (CPU)


done to the CPU.

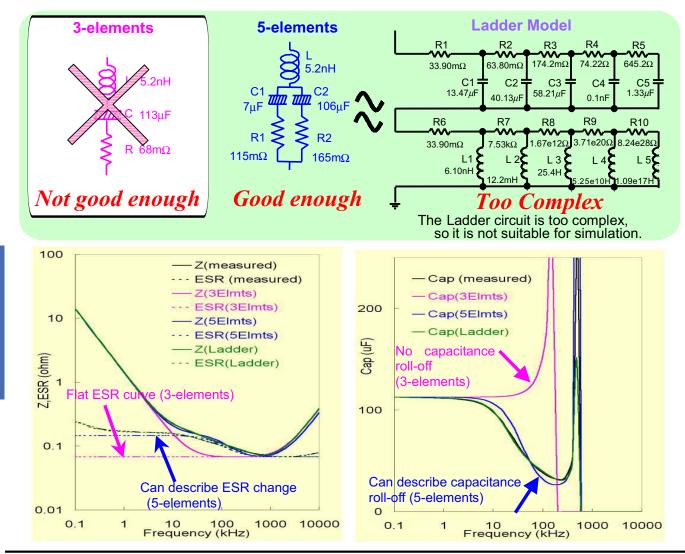
24

SP-Cap

The performance requirements for bulk capacitors have increased due to the increase in the transient response and power requirements of the CPU.

10 Transient Response Simulation

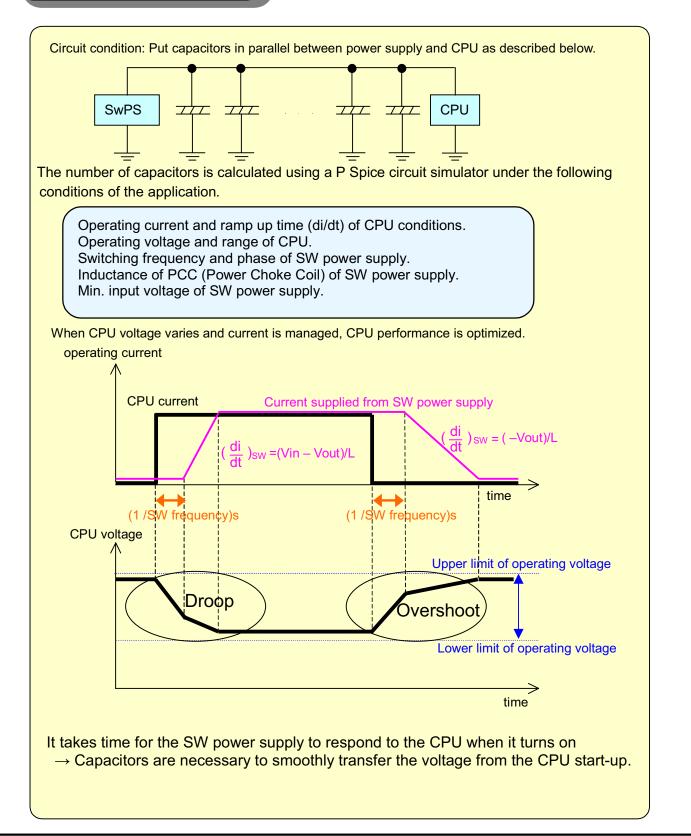
TECHNICAL GUIDE Specialty Polymer Aluminum Electrolytic Capacitors (SP–Cap)


Simulation method

For the simulation of CPU transient response characteristics, a capacitor-equivalent circuit model must be created and the circuit conditions must be set up.

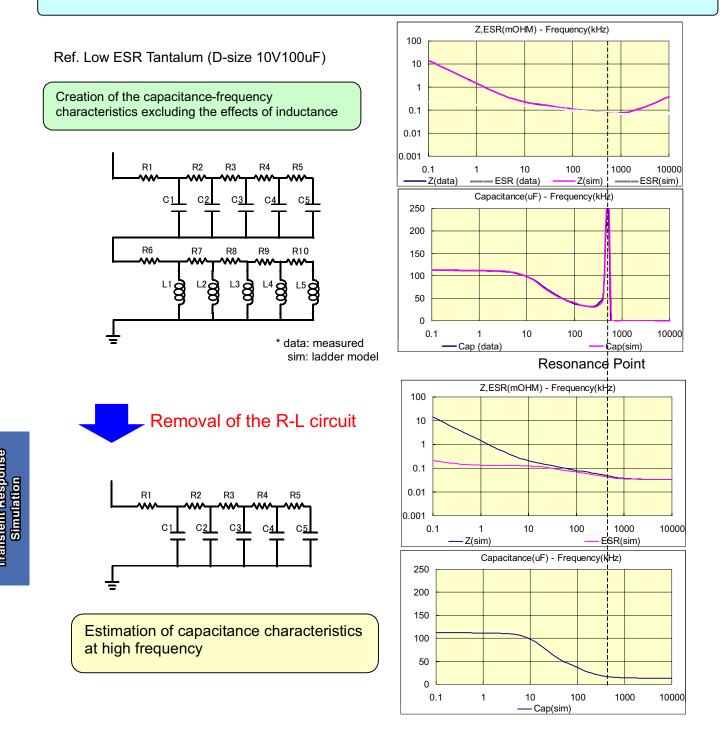
In order to simulate the transient response characteristics of a capacitor, an equivalent circuit model is needed that is capable of indicating the variation in ESR* and the reduction in capacitance in the high frequency range.

* ESR: Equivalent Series Resistance


Example of a reproduction of frequency characteristics using an equivalent circuit model

TECHNICAL GUIDE Specialty Polymer Aluminum Electrolytic Capacitors (SP–Cap)

Setting of circuit conditions



TECHNICAL GUIDE Specialty Polymer Aluminum Electrolytic Capacitors (SP–Cap)

Estimation of capacitance-frequency characteristics using the Ladder model

LCR meters are unable to measure capacitance at the resonance point frequencies and above. Using an LCR 20-element ladder model, we propose estimating the behavior of the measured capacitance-frequency characteristics around the point of resonance.

Safety and Reliability

Safety

The specialty polymer aluminum electrolytic capacitor (SP-Cap) is more difficult to "smoke" and ignite than a tantalum capacitor. The capacitor will not "red-heat" or ignite even if a 10A current is applied; even in the case of a short circuit.

Safety test

A constant current was passed through a short-circuited capacitor, and the capacitor was observed to check for smoking and ignition.

Test conditions

To short-circuit, an overvoltage of 30 V DC was applied to a capacitor at room temperature, and then a constant current was applied to the capacitor for two minutes.

Test results

The presence or absence of smoke and the number of capacitors that red-heated and ignited are shown below (unit: piece)

Current (A)	Test times	Not smoked	Smoked	Red-heated and ignited
1	50	50	0	0
3	50	50	0	0
5	50	35	15	0
7	50	8	42	0
10	50	2	48	0

Specialty polymer aluminum electrolytic capacitor 6.3V 33µF (7.3 x 4.3 x 1.8)

In the conditions shown above, red-heating and ignition were not induced.

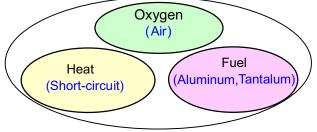
The smoke emitted in the tests above was analyzed and harmful substances were not detected. (Detail: carbon dioxide <0.34mg, carbon monoxide <0.53mg, methane gas < 0.19mg/piece)

Tantalum electrolytic capacitor 6.3V150µF (7.3 x 4.3 x 2.8)

	2 1		,	
Current (A)	Test times	Not smoked	Smoked	Red-heated and ignited
1	50	50	0	0
2	50	25	25	0
3	50	8	8	34
4	50	0	0	50
5	50	0	0	50

*These test data are simply the results obtained from the reference tests and actual data may vary in actual applications.

Safety (Reliabili



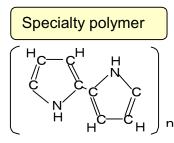
The Specialty Polymer Capacitor is difficult to "smoke" and ignite

It is because:

- Aluminum is more difficult to burn than tantalum.
- Specialty polymer emits less oxygen than manganese dioxide.

Three elements of combustion

*For substances to burn,


the three elements of combustion - heat, fuel, oxygen - are mandatory. If one of them is not present, burning will not occur.

Aluminum is more difficult to burn than tantalum.

	SP-Cap	Tantalum capacitor
Burning reaction	Al + O2	Ta + O2
Reaction start temperature	400°C ~ 600°C	250°C ~ 450°C
Activation energy	170kJ/mol	115kJ/mol

*Reaction becomes easier when the activation energy is lower.

 \rightarrow Tantalum is more readily bound to oxygen (O₂), and burns at lower temperatures than aluminum.

Manganese dioxide

MnO2 Example of the oxygen release reaction of manganese dioxide

 $4MnO_2 \rightarrow 2Mn_2O_3 + O_2$

 \rightarrow Manganese dioxide releases oxygen to cause combustion.

Aluminum is more difficult to bind with oxygen than tantalum, and the specialty polymer will release less oxygen than manganese dioxide.

As a result, the SP-Cap is more difficult to "smoke" and ignite than a tantalum capacitor.

Reliability

The Specialty Polymer Aluminum Electrolytic Capacitor (SP-Cap) is more difficult to short-circuit than a tantalum capacitor.

Reliability test

Capacitors were tested for possible short-circuiting or burnout when voltage is applied in a high temperature environment.

- Test conditions
 - Test temperature : 85 to 145°C

Applied voltage : Rated voltage (W.V.) x (0.8 to 1.25)

Test time : 1,000 hours (without protective resistance)

Quantity of specimens: n = 20 for each condition

Test results

The number of capacitors short-circuited or burned out are shown below.

Specialty polymer aluminum electrolytic capacitor $6.3V 47\mu F(7.3 \times 4.3 \times 1.8)$

	0.8 x W.V.	W.V.	1.1 x W.V.	1.25 x W.V.
85°C	0	0	0	0
105°C	0	0	0	0
125°C	0	0	0	0
145°C	0	0	0	0

During the test, short-circuits did not occur under any of the conditions.

Tantalum capacitor 6.3V 220µF(7.3 x 4.3 x 2.8)

	0.8 x W.V.	W.V.	1.1 x W.V.	1.25 x W.V.
85°C	0	0	0	0
105°C	0	0	0	1
125°C	0	0	0	3
145°C	1	0	0	0

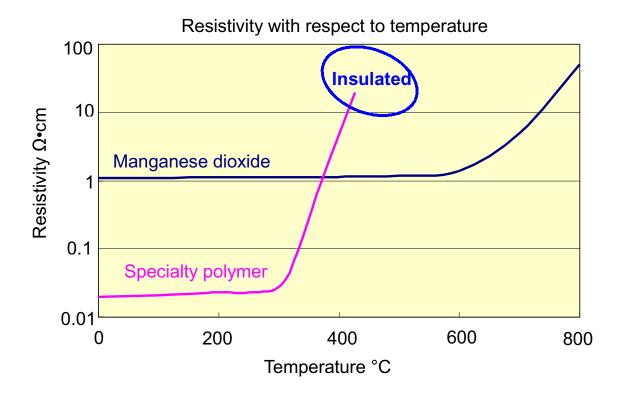
The short-circuited products were all burned out.

Normally, when the atmospheric temperature and voltage become higher, a product tends to short-circuit.

Predicted failure rate of SP-Cap*

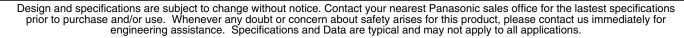
- •As a result of our reliability test, the following data were obtained. Failure rate resulting from the temperature accelerated test: 46 FIT or less (Predicted failure rate when the temperature is 105°C and the rated voltage is applied)
- Predicted market failure rate: 0.13 FIT or less (c = 0, predicted failure rate when reliability level is 60%)

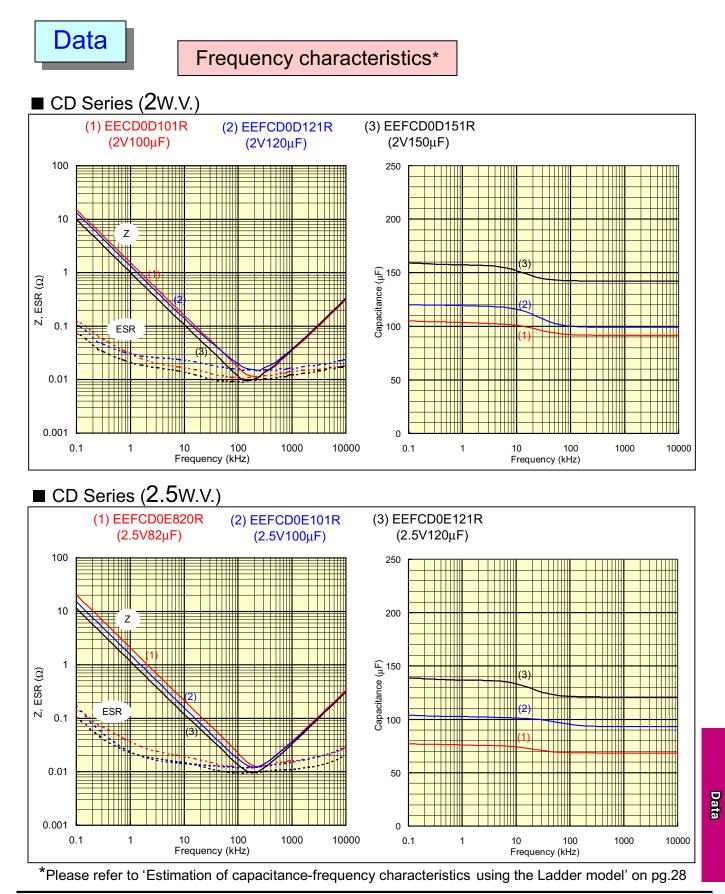
*This failure rate is for reference only. Actual failure rates may vary in actual applications.


TECHNICAL GUIDE Specialty Polymer Aluminum Electrolytic Capacitors (SP–Cap)

The SP Cap is difficult to short-circuit

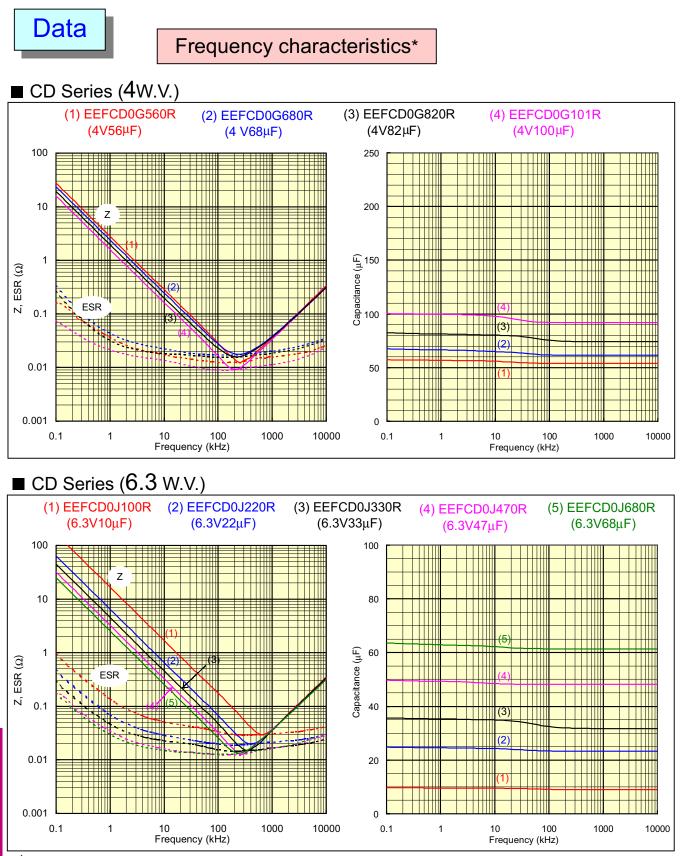
The specialty polymer is a substance (electrolyte) whose resistance rises with temperature.


When a defect occurs in the dielectric, the joule heat of the current flowing through the defect raises the resistance of the polymer to the point that it becomes self-insulating and shuts off the current flow.



The specialty polymer insulates itself at a lower temperature compared with manganese dioxide.

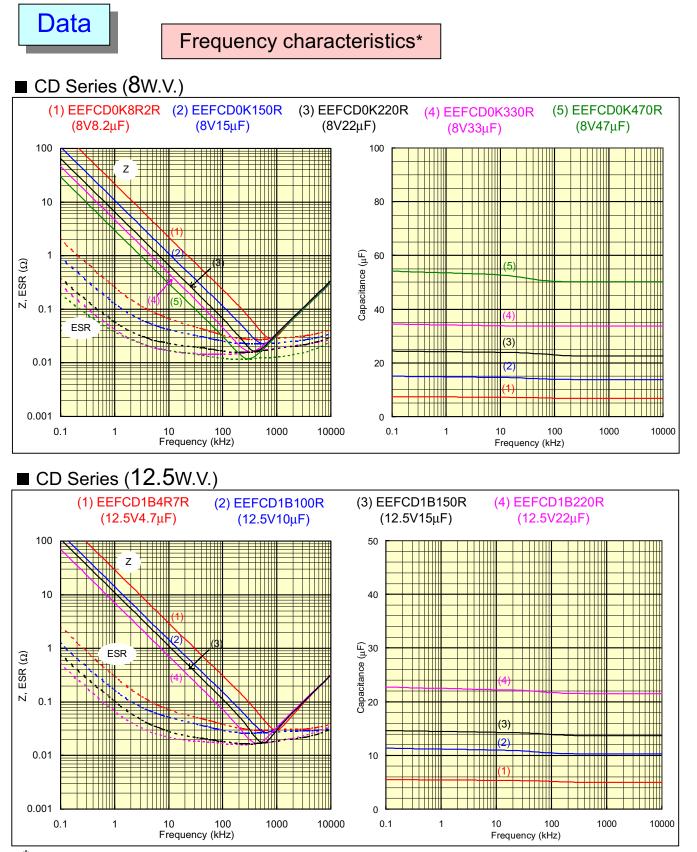
As a result, SP-AI is more difficult to short-circuit than a tantalum capacitor.


Design and specifications are subject to change without notice. Contact your nearest Panasonic sales office for the lastest specifications prior to purchase and/or use. Whenever any doubt or concern about safety arises for this product, please contact us immediately for engineering assistance. Specifications and Data are typical and may not apply to all applications.

33

12

TECHNICAL GUIDE Specialty Polymer Aluminum Electrolytic Capacitors (SP–Cap)

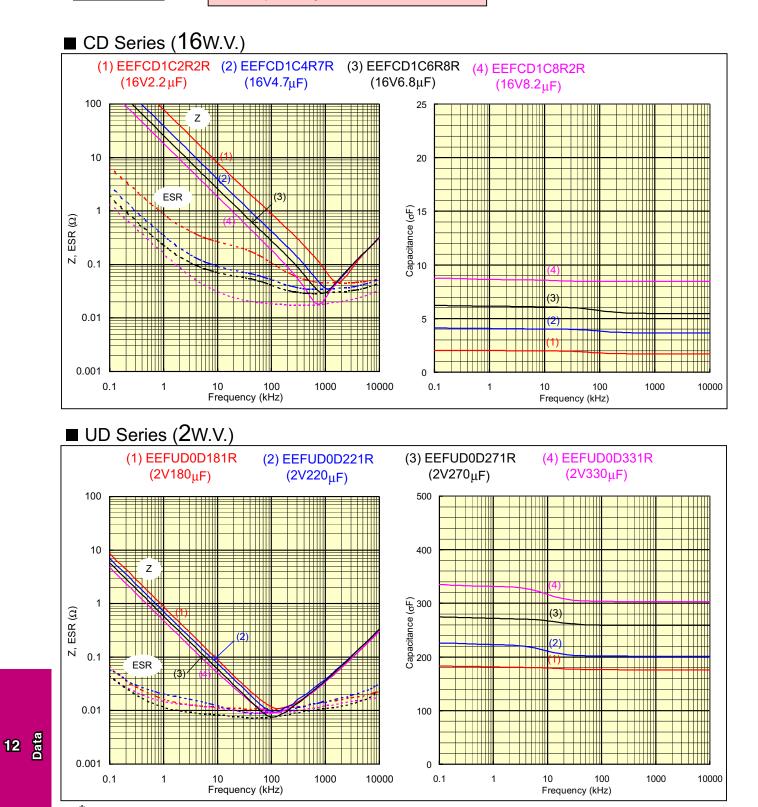

*Please refer to 'Estimation of capacitance-frequency characteristics using the Ladder model' on pg.28

Design and specifications are subject to change without notice. Contact your nearest Panasonic sales office for the lastest specifications prior to purchase and/or use. Whenever any doubt or concern about safety arises for this product, please contact us immediately for engineering assistance. Specifications and Data are typical and may not apply to all applications.

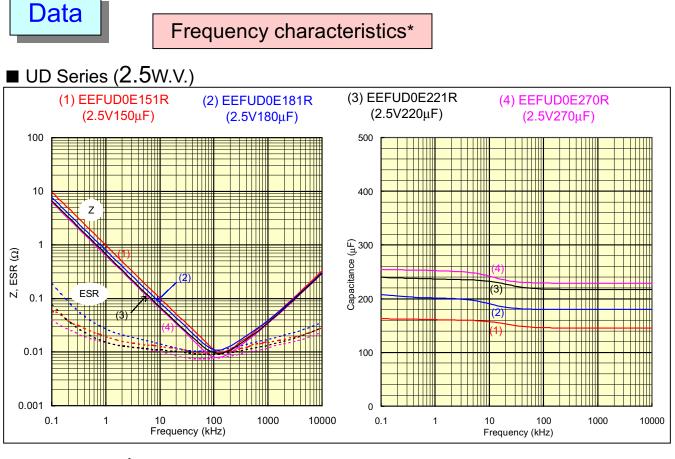
12 Data

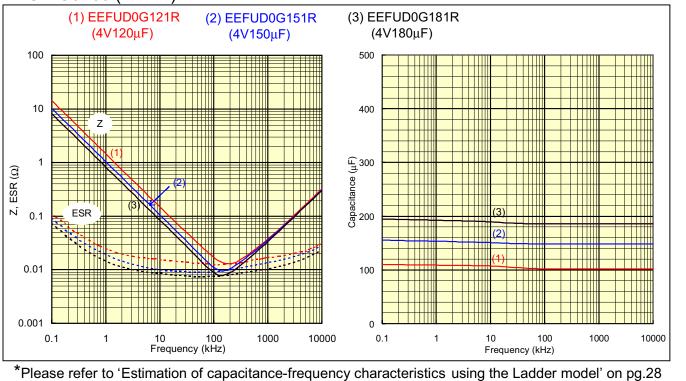
TECHNICAL GUIDE Specialty Polymer Aluminum Electrolytic Capacitors (SP–Cap)

*Please refer to 'Estimation of capacitance-frequency characteristics using the Ladder model' on pg.28


Data

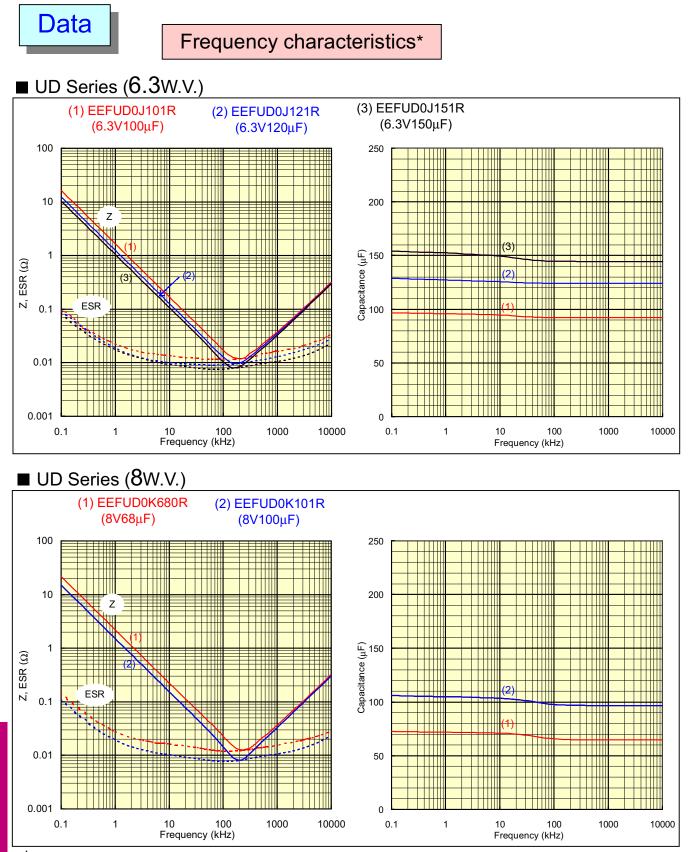
TECHNICAL GUIDE Specialty Polymer Aluminum Electrolytic Capacitors (SP–Cap)


Frequency characteristics*


*Please refer to 'Estimation of capacitance-frequency characteristics using the Ladder model' on pg.28

TECHNICAL GUIDE Specialty Polymer Aluminum Electrolytic Capacitors (SP–Cap)

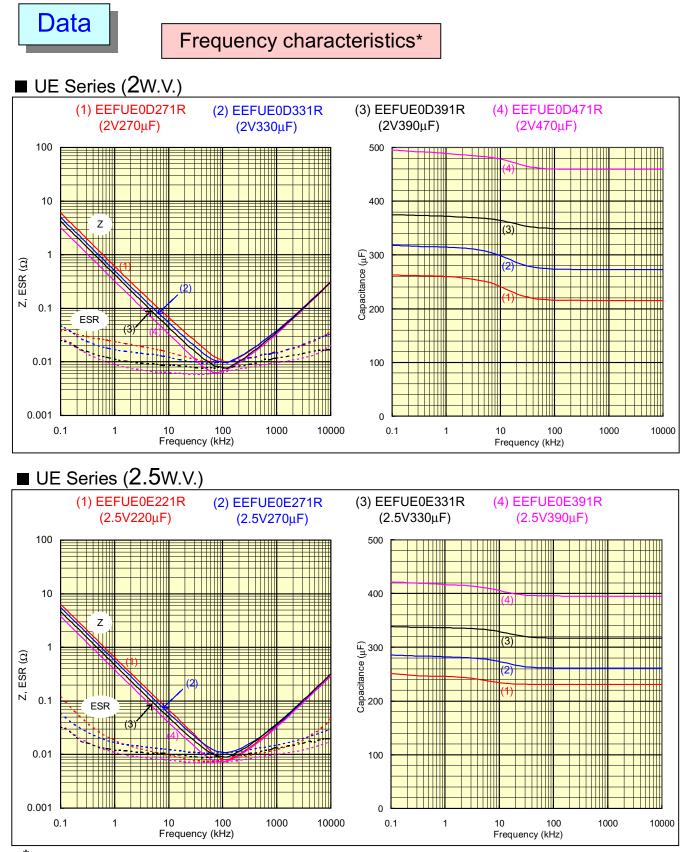
■ UD Series (4W.V.)



Design and specifications are subject to change without notice. Contact your nearest Panasonic sales office for the lastest specifications prior to purchase and/or use. Whenever any doubt or concern about safety arises for this product, please contact us immediately for engineering assistance. Specifications and Data are typical and may not apply to all applications.

Data

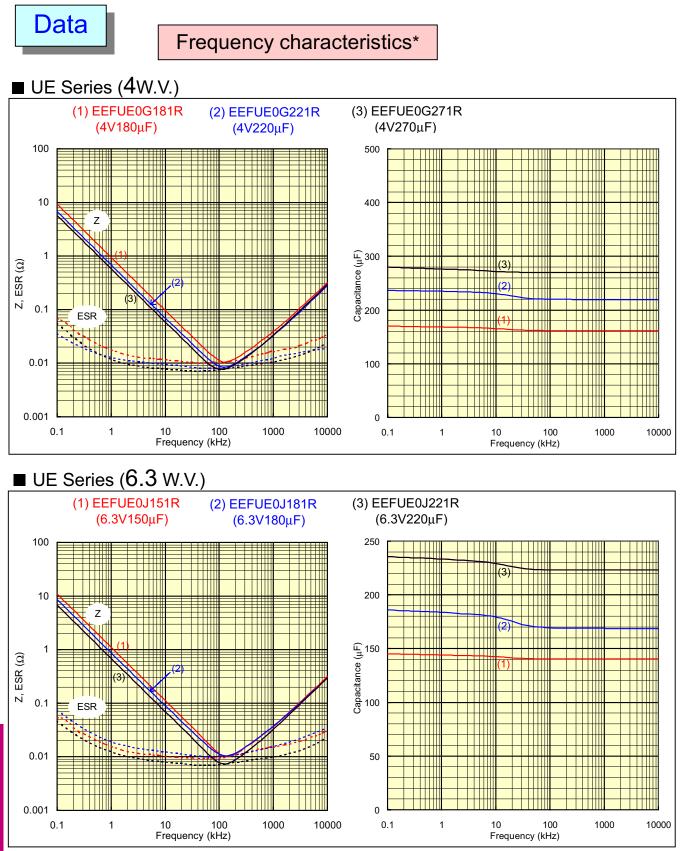
TECHNICAL GUIDE Specialty Polymer Aluminum Electrolytic Capacitors (SP–Cap)



*Please refer to 'Estimation of capacitance-frequency characteristics using the Ladder model' on pg.28

Design and specifications are subject to change without notice. Contact your nearest Panasonic sales office for the lastest specifications prior to purchase and/or use. Whenever any doubt or concern about safety arises for this product, please contact us immediately for engineering assistance. Specifications and Data are typical and may not apply to all applications.

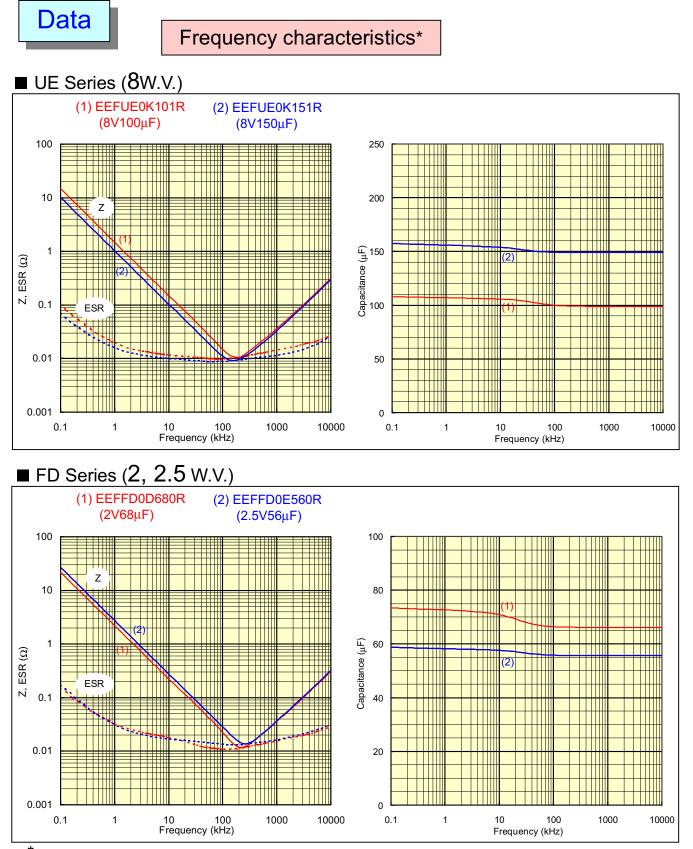
TECHNICAL GUIDE Specialty Polymer Aluminum Electrolytic Capacitors (SP–Cap)



*Please refer to 'Estimation of capacitance-frequency characteristics using the Ladder model' on pg.28

Data

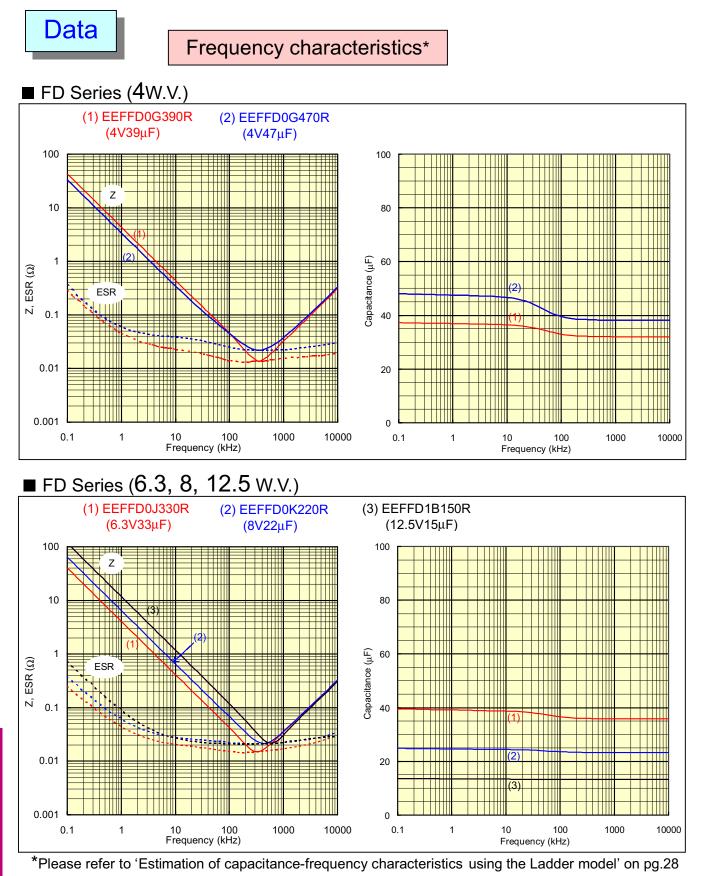
TECHNICAL GUIDE Specialty Polymer Aluminum Electrolytic Capacitors (SP–Cap)


*Please refer to 'Estimation of capacitance-frequency characteristics using the Ladder model' on pg.28

Design and specifications are subject to change without notice. Contact your nearest Panasonic sales office for the lastest specifications prior to purchase and/or use. Whenever any doubt or concern about safety arises for this product, please contact us immediately for engineering assistance. Specifications and Data are typical and may not apply to all applications.

Data 21

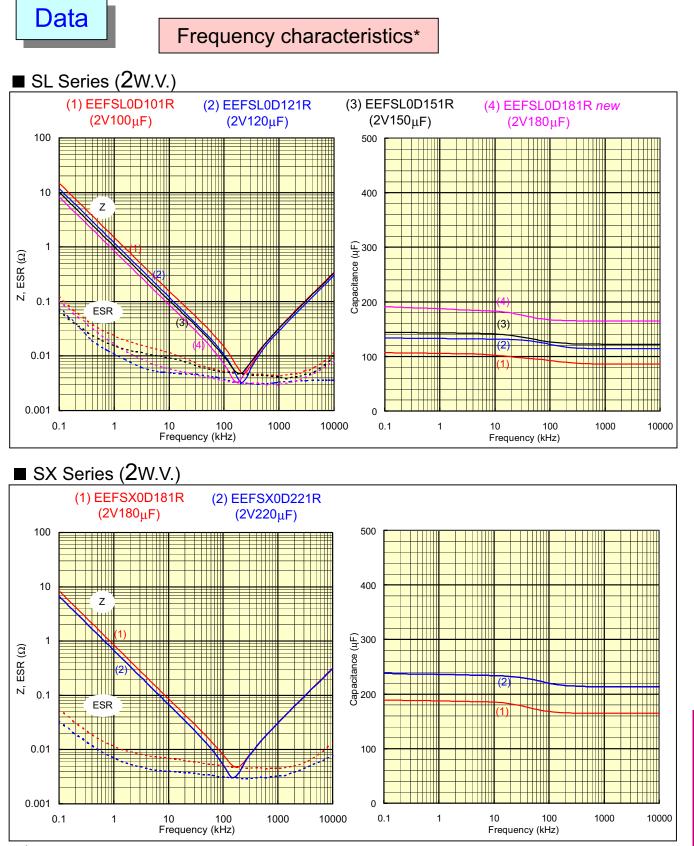
TECHNICAL GUIDE Specialty Polymer Aluminum Electrolytic Capacitors (SP–Cap)



*Please refer to 'Estimation of capacitance-frequency characteristics using the Ladder model' on pg.28

Design and specifications are subject to change without notice. Contact your nearest Panasonic sales office for the lastest specifications prior to purchase and/or use. Whenever any doubt or concern about safety arises for this product, please contact us immediately for engineering assistance. Specifications and Data are typical and may not apply to all applications.

TECHNICAL GUIDE Specialty Polymer Aluminum Electrolytic Capacitors (SP–Cap)

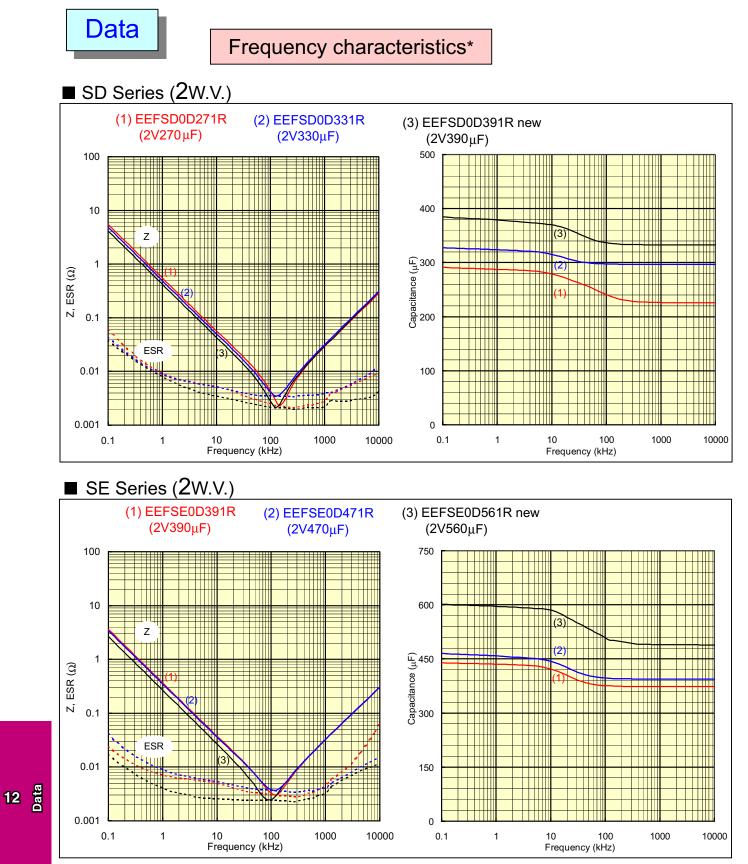


Design and specifications are subject to change without notice. Contact your nearest Panasonic sales office for the lastest specifications prior to purchase and/or use. Whenever any doubt or concern about safety arises for this product, please contact us immediately for engineering assistance. Specifications and Data are typical and may not apply to all applications.

Data Data

TECHNICAL GUIDE Specialty Polymer Aluminum Electrolytic Capacitors (SP–Cap)

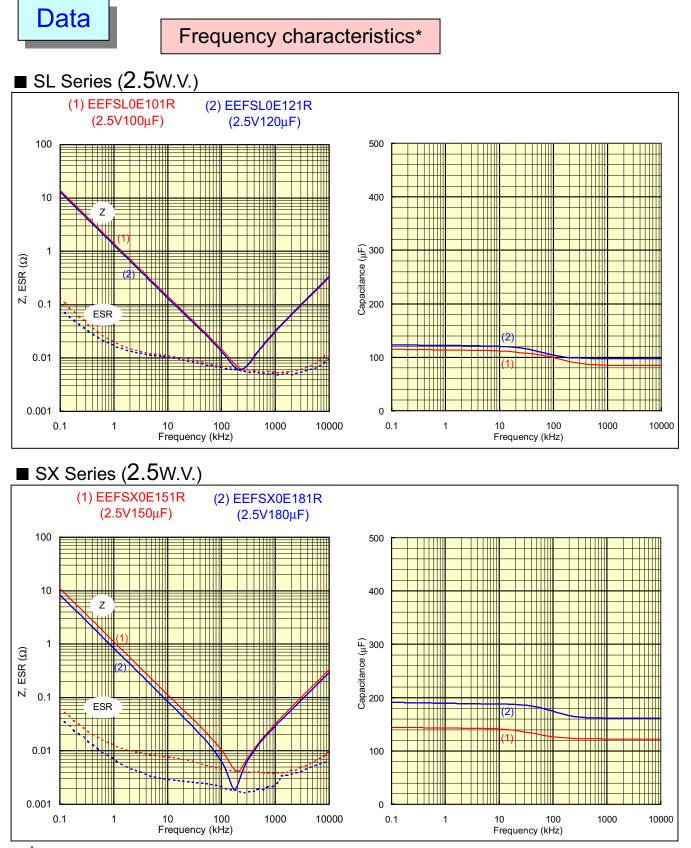
*Please refer to 'Estimation of capacitance-frequency characteristics using the Ladder model' on pg.28


Design and specifications are subject to change without notice. Contact your nearest Panasonic sales office for the lastest specifications prior to purchase and/or use. Whenever any doubt or concern about safety arises for this product, please contact us immediately for engineering assistance. Specifications and Data are typical and may not apply to all applications.

Data 12

44

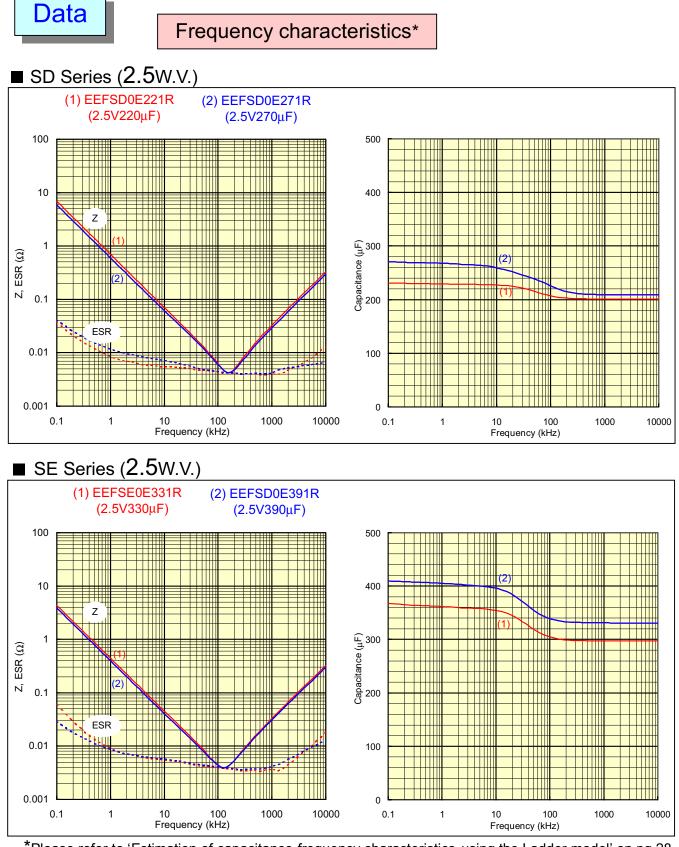
TECHNICAL GUIDE Specialty Polymer Aluminum Electrolytic Capacitors (SP–Cap)



*Please refer to 'Estimation of capacitance-frequency characteristics using the Ladder model' on pg.28

TECHNICAL GUIDE Specialty Polymer Aluminum Electrolytic Capacitors (SP–Cap)

*Please refer to 'Estimation of capacitance-frequency characteristics using the Ladder model' on pg.28


Design and specifications are subject to change without notice. Contact your nearest Panasonic sales office for the lastest specifications prior to purchase and/or use. Whenever any doubt or concern about safety arises for this product, please contact us immediately for engineering assistance. Specifications and Data are typical and may not apply to all applications.

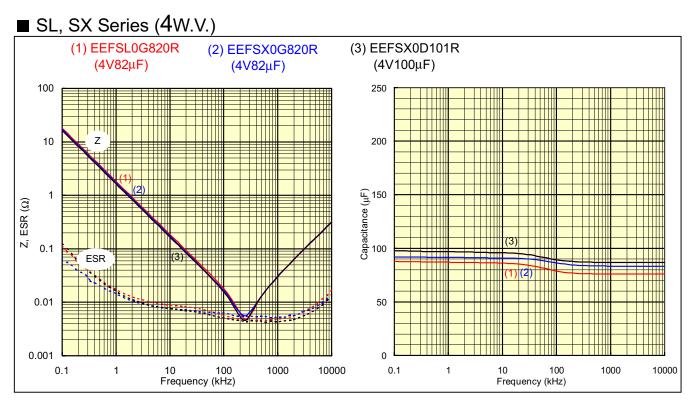
45

Data 12

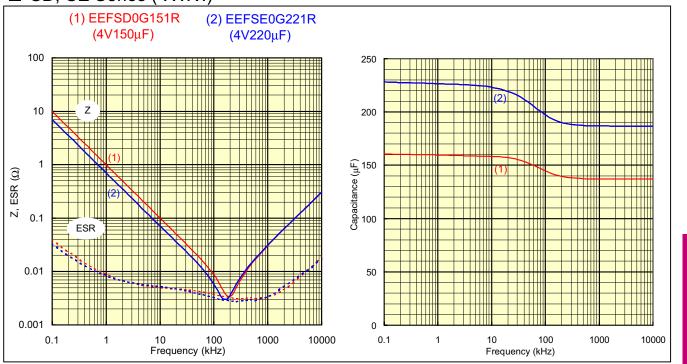
TECHNICAL GUIDE Specialty Polymer Aluminum Electrolytic Capacitors (SP–Cap)

*Please refer to 'Estimation of capacitance-frequency characteristics using the Ladder model' on pg.28

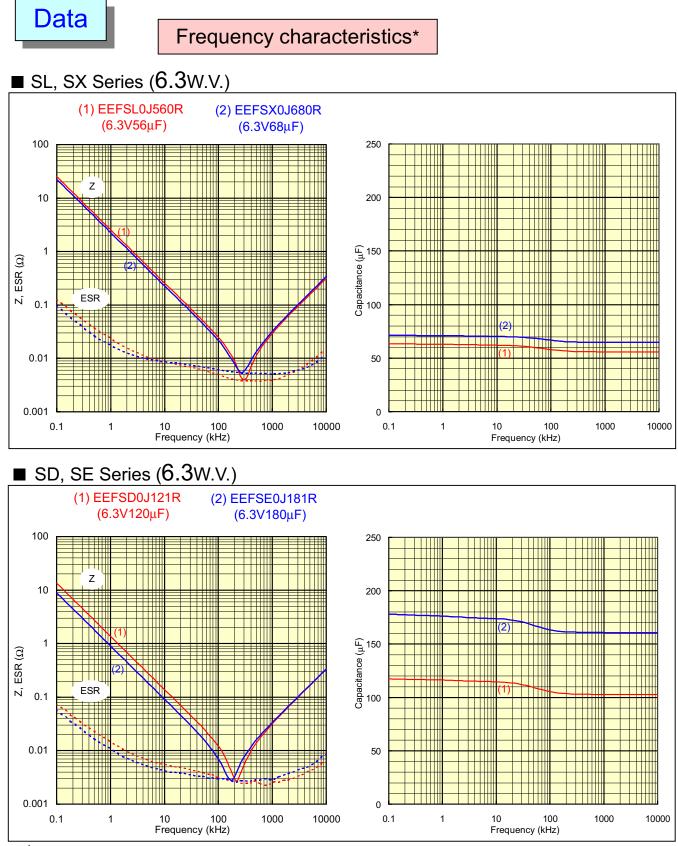
Design and specifications are subject to change without notice. Contact your nearest Panasonic sales office for the lastest specifications prior to purchase and/or use. Whenever any doubt or concern about safety arises for this product, please contact us immediately for engineering assistance. Specifications and Data are typical and may not apply to all applications.


Data Data

TECHNICAL GUIDE Specialty Polymer Aluminum Electrolytic Capacitors (SP–Cap)

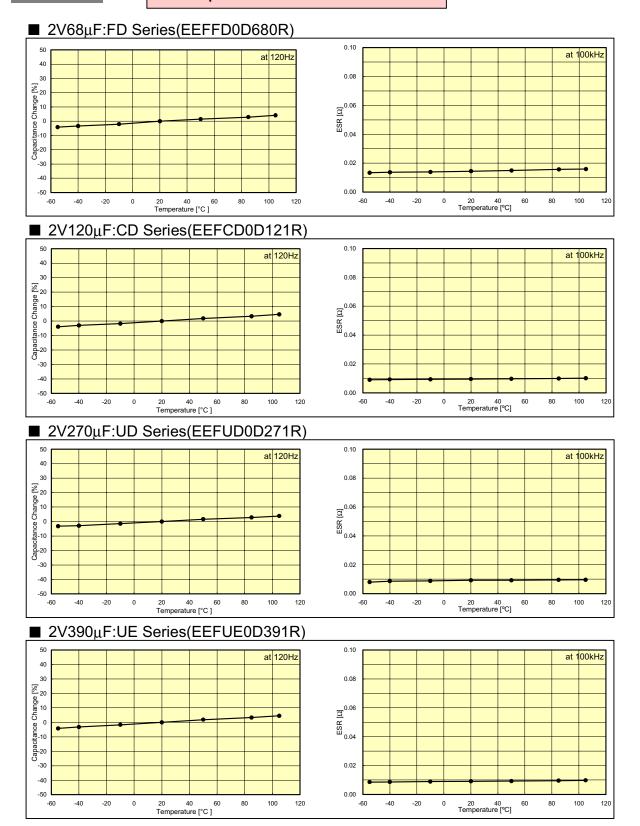


Frequency characteristics*


■ SD, SE Series (4W.V.)

*Please refer to 'Estimation of capacitance-frequency characteristics using the Ladder model' on pg.28

Design and specifications are subject to change without notice. Contact your nearest Panasonic sales office for the lastest specifications prior to purchase and/or use. Whenever any doubt or concern about safety arises for this product, please contact us immediately for engineering assistance. Specifications and Data are typical and may not apply to all applications.


*Please refer to 'Estimation of capacitance-frequency characteristics using the Ladder model' on pg.28

TECHNICAL GUIDE Specialty Polymer Aluminum Electrolytic Capacitors (SP–Cap)

Data

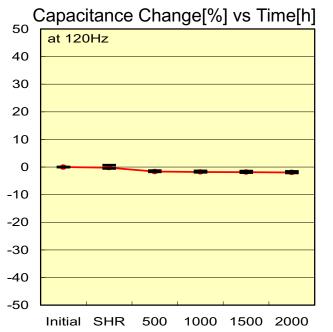
Temperature characteristics

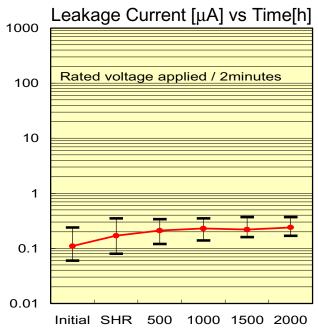
Data 12

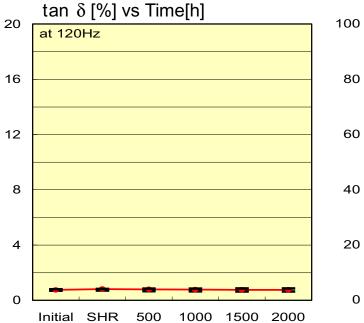
Data

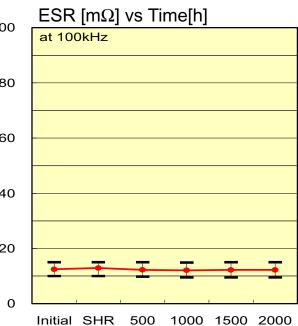
Endurance (with rated voltage applied at +105°C)

CD Series EEFCD0D121R (2V120µF)


TECHNICAL GUIDE Specialty Polymer Aluminum Electrolytic Capacitors (SP–Cap)

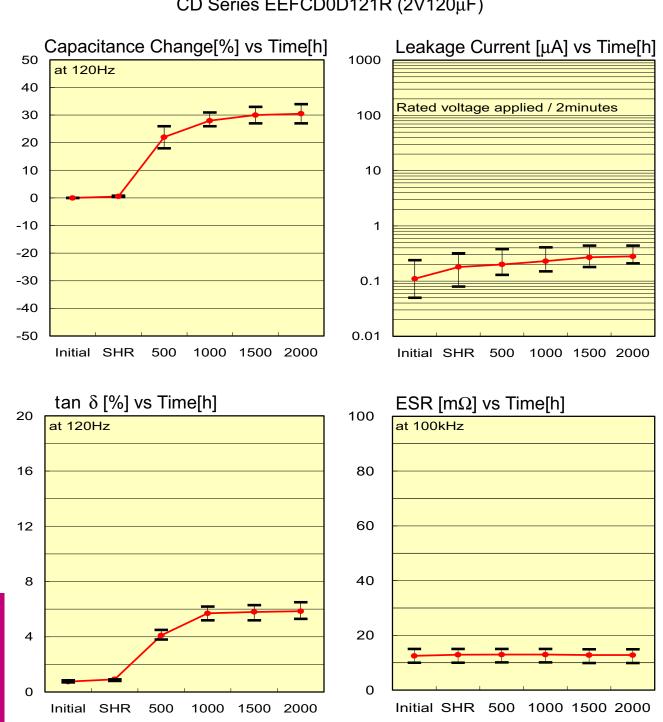



Data


Shelf Life (with no load at +105°C)

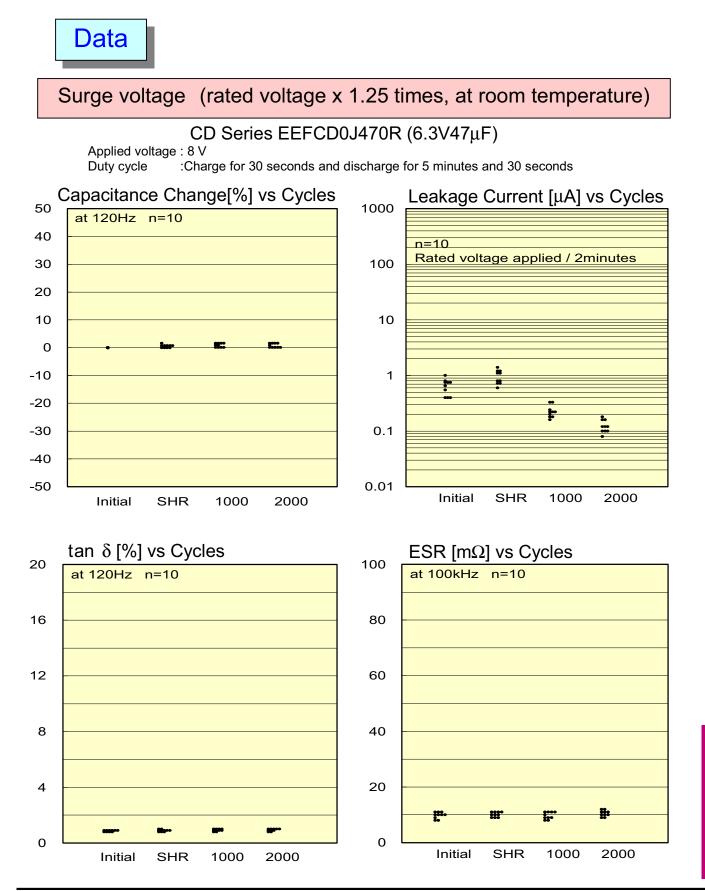
CD Series EEFCD0D121R (2V120µF)

Data


Data

Data

52

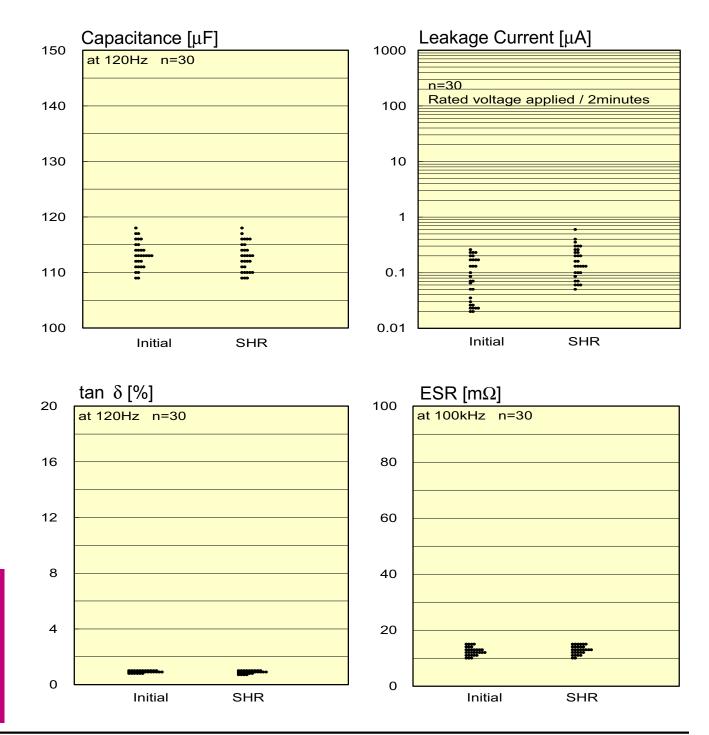


Damp heat, Steady state (with no load at +60°C, 90%R.H.)

CD Series EEFCD0D121R (2V120µF)

Design and specifications are subject to change without notice. Contact your nearest Panasonic sales office for the lastest specifications prior to purchase and/or use. Whenever any doubt or concern about safety arises for this product, please contact us immediately for engineering assistance. Specifications and Data are typical and may not apply to all applications.

TECHNICAL GUIDE Specialty Polymer Aluminum Electrolytic Capacitors (SP–Cap)



Data

Resistance to Soldering Heat

CD Series EEFCD0D121R (2V120µF)

SHR : Peak temperature 240°C, 200°C or higher, 30 seconds, 2 times

12 Data

Panasonic Industrial Company

REGIONAL SALES OFFICES

CENTRAL REGION:

Panasonic Industrial Co.

WESTERN REGION:

Panasonic Industrial Co. 15455 N.W. Greenbrier Parkway Suite 1125 Beaverton, OR 97006

WESTERN REGION:

Panasonic Industrial Co. 2033 Gateway Place Suite 200 San Jose, CA 95115

San Jose, CA

Cypress, CA

San Diego, CA

CENTRAL REGION:

9430 Research Blvd

Echelon IV, Suite 308

Austin, TX 78759

Panasonic Industrial Co.

0

WESTERN REGION: Panasonic Industrial Co. 6550 Katella Ave. Cypress, CA 90630

WESTERN REGION:

Panasonic Industrial Co. 9444 Balboa Ave. Suite 185 San Diego, CA 92123 1707 North Randall Rd. Elgin, IL 60123-7847 Beaverton, OR Elgin, IL

Irving, TX

•••

Houston, TX

Austin, TX

CENTRAL REGION: Panasonic Industrial Co. 1405 S Beltline Rd. Suite 300 Coppell, TX 75019 EASTERN REGION:

Panasonic Industrial Co. Two Panasonic Way Secaucus, NJ 07094

EASTERN REGION:

Secaucus, NJ

Durham, NC

Suwanee, GA

CENTRAL REGION:

8300 West FM 1960

Houston, TX 77070

Suite 200

Panasonic Industrial Co.

Huntersville, NC

Panasonic Industrial Co. 1000 Park 40 Plaza Suite 220 Durham, NC 27713

EASTERN REGION: Panasonic Industrial Co. 10115 Kincey Ave. Storrs Bldg, Suite 100 Huntersville, NC 28078

EASTERN REGION: Panasonic Industrial Co. 1225 Northbrook Parkway Suite # 1-151 Suwanee, GA 30024

Panasonic Industrial Company

Two Panasonic Way O Secaucus, NJ 07094 www.panasonic.com/pic/ 1-800-344-2112