

Address: Telephone: Fax: Email: Website:

+44 (0)1493 665111 sales@midascomponents.co.uk www.midascomponents.co.uk

Specification

MC122032C6W-SPR

122x32 Wide Temp. STN Positive Y/G Reflective

Contents

		Page
1.	Revision History	3
2.	General Specification	4
3.	Module Coding System	5
4.	Interface Pin Function	6
5.	Outline dimension & Block Diagram	7
6.	Display Control Instruction	8
7.	Timing Characteristics	15
8.	Optical Characteristics	19
9.	Absolute Maximum Ratings	20
10.	Electrical Characteristics	20
11.	Reliability	21
12.	Inspection specification	22
13.	Precautions in use of LCD Modules	26
14.	Material List of Components for RoHs	27
15.	Recommendable storage	27

1. Revision History

DATE	VERSION	REVISED PAGE NO.	Note
2011/05/30	1		First issue

2. General Specification

The Features is described as follow:

■ Module dimension: 59.0 x 29.3 x 5.5 (max.) mm³

■ View area: 52.0 x 15 mm²

Active area: 45.72x 11.97 mm²

■ Number of Dots: 122 x 32

■ Dot size: 0.345 x 0.345 mm²

■ Dot pitch: 0.375 x 0.375 mm²

■ LCD type: STN Positive, Yellow Green Reflective

■ Duty: 1/32

■ View direction: 6 o'clock

■ Backlight Type: Without backlight

Address: Telephone: Fax: Email: Website:

+44 (0)1493 665111 sales@midascomponents.co.uk www.midascomponents.co.uk

Midas LCD Part Number System

MC COG 132033 A * 6 W * * - S N T L W * *
1 2 3 4 5 6 7 8 9 - 10 11 12 13 14 15 16

1 = MC: Midas Components

2 = **Blank:** COB (chip on board) **COG**: chip on glass

3 = No of dots (e.g. $240064 = 240 \times 64 \text{ dots}$) (e.g. $21605 = 2 \times 16 \text{ 5mm C.H.}$)

4 = Series

5 = Series Variant: A to Z - see addendum

6 = **3:** 3 o'clock **6:** 6 o'clock **9:** 9 o'clock **12:** 12 o'clock

7 = S: Normal (0 to + 50 deg C) W: Wide temp. (-20 to + 70 deg C) X: Extended temp (-30 + 80 Deg C)

8 = Character Set

Blank: Standard (English/Japanese)

C: Chinese Simplified (Graphic Displays only)

CB: Chinese Big 5 (Graphic Displays only)

H: Hebrew

K: European (std) (English/German/French/Greek)

L: English/Japanese (special)

M: European (English/Scandinavian)

R: Cyrillic

W: European (English/Greek)

U: European (English/Scandinavian/Icelandic)

9 = Bezel Height (where applicable / available)

	T C D 1 + . T	Common	Array
	Top of Bezel to Top of PCB	(via pins 1	or Edge
	OI I CD	and 2)	Lit
Blank	9.5mm / not applicable	Common	Array
2	8.9 mm	Common	Array
3	7.8 mm	Separate	Array
4	7.8 mm	Common	Array
5	9.5 mm	Separate	Array
6	7 mm	Common	Array
7	7 mm	Separate	Array
8	6.4 mm	Common	\mathbf{Edge}
9	6.4 mm	Separate	Edge
\mathbf{A}	5.5 mm	Common	Edge
В	5.5 mm	Separate	Edge
D	6.0mm	Separate	Edge
\mathbf{E}	5.0mm	Separate	Edge
F	4.7mm	Common	Edge
G	3.7mm	Separate	$\widetilde{\mathbf{EL}}$

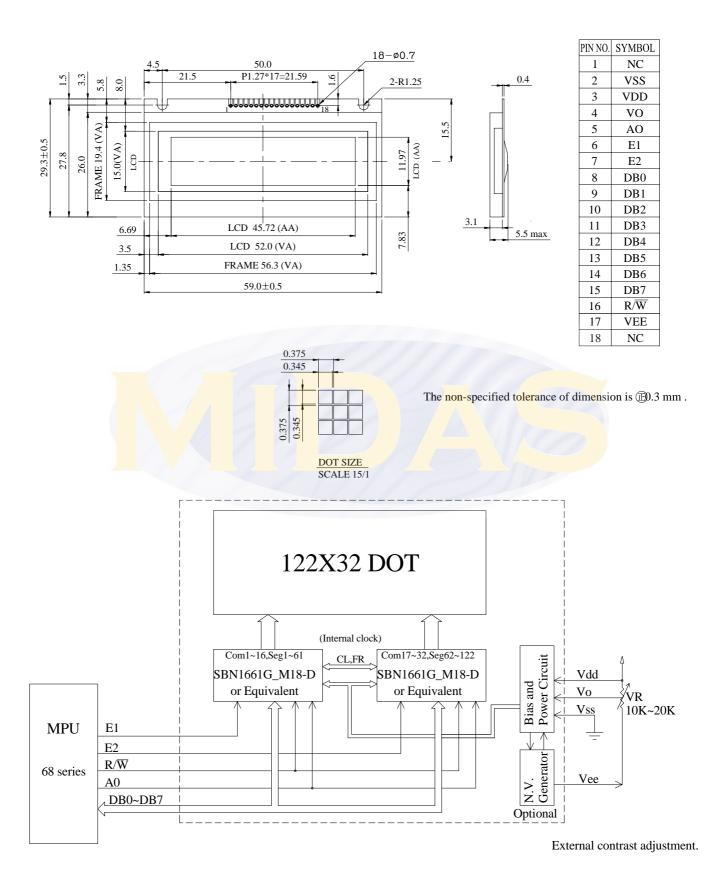
10 = **T:** TN **S:** STN **B:** STN Blue **G:** STN Grey **F:** FSTN **F2:** FFSTN

11 = **P:** Positive **N**: Negative

12 = **R:** Reflective **M:** Transmissive **T:** Transflective

13 = **Backlight: Blank:** Reflective **L:** LED

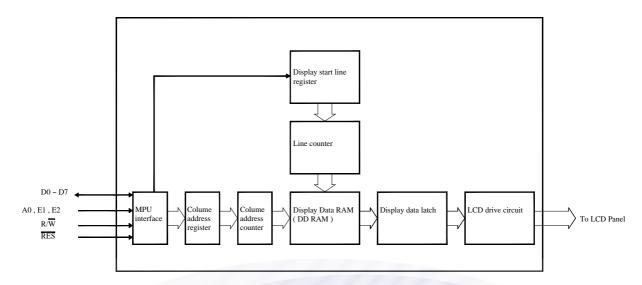
14 = Backlight Colour: Y: Yellow-Green W: White B: Blue R: Red A: Amber O: Orange G: Green RGB: R.G.B.


15 = Driver Chip: Blank: Standard I: I²C T: Toshiba T6963C A: Avant SAP1024B R: Raio RA8835

16 = Voltage Variant: e.g. 3 = 3v

4. Interface Pin Function

Pin No.	Symbol	Level	Description
1	NC		NC
2	V _{ss}	0V	Ground
3	V_{dd}	5.0V	Power supply for logic
4	Vo	(Variable)	Operating voltage for LCD
5	A0	H/L	H : Data L : Instruction
6	E1	H/L	Chip select signal for IC1 (left 61*32 dots) active "H"
7	E2	H/L	Chip select signal for IC2 (right 61*32 dots) active "H"
8	DB0	H/L	Data bus line
9	DB1	H/L	Data bus line
10	DB2	H/L	Data bus line
11	DB <mark>3</mark>	H/L	Data bus line
12	DB <mark>4</mark>	H/L	D <mark>ata bus l</mark> ine
13	DB <mark>5</mark>	H/L	Data bus line
14	DB <mark>6</mark>	H/L	Data bus line
15	DB7	H/L	Data bus line
16	R/W	H/L	H : Read ; L : Write
17	VEE		Negative Voltage Output
18	NC		NC


5. Outline Dimension & Block Diagram

6. Display Control Instruction

♦Block Diagram

This 122×32 dots LCD Module built in two SBN1661G_M18-D LSI controller.

◆MPU interface

The SBN1661G_M18-D controller transfers data via 8-bit bidirecional data buses (Do to D7), it can fit any MPU if it corresponds to SBN1661G_M18-D Read and Write Timing Characteristics.

◆Data transfer

The SBN1661G_M18-D driver uses the A0, E and R/W signals to transfer data between the system MPU and internal registers, The combinations used are given in the table below.

A0	R/W	Function				
1	1	lead display data				
1	0	Vrite display data				
0	1	Read status				
0	0	/rite to internal register (command)				

◆Busy flag

When the Busy flag is logical 1, the SBN1661G_M18-D series is executing its internal operations. Any command other than Status Read is rejected during this time. The Busy flag is output at pin D7 by the Status Read command. If an appropriate cycle time (t_{CYC}) is given, this flag needs not be checked at the beginning of each command and, therefore, the MPU processing capacity can greatly be enhanced.

◆Display Start Line and Line Count Registers

The contents of this register form a pointer to a line of data in display data RAM corresponding to the first line of the display (COM0), and are set by the Display Start Line command.

◆Column Address Counter

The column address counter is a 7-bit presettable counter that supplies the column address for MPU access to the display data RAM. See Figure 1. The counter is incremented by one every time the driver receives a Read or Write Display Data command. Addresses above 50H are invalid, and the counter will not increment past this value. The contents of the column address counter are set with the Set Column Address command.

Display Data RAM

The display data RAM stores the LCD display data, on a 1-bit per pixel basis. The relation-ship between display data, display address and the display is shown in Figure 1.

◆Page Register

The page register is a 2-bit register that supplies the page address for MPU access to the display data RAM. See the follow Figure. The contents of the page register are set by the Set Page Register command.

Page address		DATA									Line	address	Common output
		D0										00H	COM 0
		D1										01H	COM 1
		D2										02H	COM 2
D1,D2=		D3										03H	COM 3
0,0		D4										04H	COM 4
		D5										05H	COM 5
		D6										06H	COM 6
		D7										07H	COM 7
		D0										08H	COM 8
		D1										09H	COM 9
		D2										0AH	COM 10
0,1		D3										0BH	COM 11
- y=		D4										0CH	COM 12
		D5										0DH	COM 13
		D6		1								0EH	COM 14
		D7										0FH	COM 15
		D0										10H	COM 16
		D1										11H	COM 17
		D2										12H	COM 18
1,0		D3										13H	COM 19
1,0		D4										14H	COM 20
		D5										15H	COM 21
		D6							7			16H	COM 22
		D7		/								17H	COM 23
		D0			A							18H	COM 24
		D1	$\overline{}$									19H	COM 25
		D2										1AH	COM 26
1,1		D3								2		1BH	COM 27
1,1		D4										1CH	COM 28
		D5										1DH	COM 29
		D6		+								1EH	COM 30
		D7		+								1FH	COM 31
	a		D	10	0	0	0	0	0	0			
	Colou		D0=0	H00	01H	02H	03H	04H	05H	H90	33H 3CH 3AH		
	mm 	ADC	D0=1	1.	1	4	4	_	4	4			
	adc	Ŏ		4FH	4EH	4DH	4CH	4BH	4AH	49H	——————————————————————————————————————		
	ım address		seg pin	_	2	3	4	5	6	7			
			in										
				-							SED1520		
				-							SED1521		

Page and column address

* The 122*32 dots display area is consist of two 61*32, The interface control pin E1 enable the left 61*32,E2 enable the right 61*32.

♦ Commands Descriptions

The host microcontroller can issue commands to the SBN1661G_X. Table 27 lists all the commands. When issuing a command, the host microcontroller should put the command code on the data bus. The host microcontroller should also give the control bus C/D, E(RD), and R/W(WR) proper value and timing.

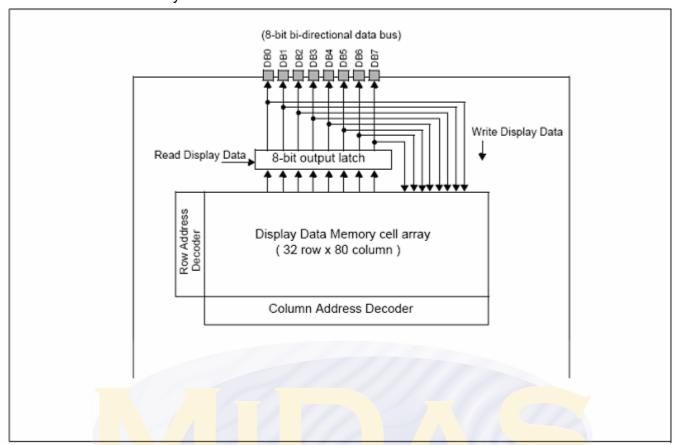
Commands

COMMAND			CO	IAMN	ND C	ODE			FUNCTION
COMMAND	D7	D6	D5	D4	D3	D2	D1	D0	FUNCTION
Write Display Data	ı	Data to be written into the Display Data Memory.							Write a byte of data to the Display Data Memory.
Read Display Data	1	Data read from the Display Data Memory.							Read a byte of data from the Display Data Memory.
Read-Modify-Write	1	1 1 1 0 0 0 0 0		0	Start Read-Modify-Write operation.				
END	1 1 1 0 1 1 0		0	Stop Read-Modify-Write operation.					
Software Reset	1 1 1 0 0 0 1 0		0	Software Reset.					

Write Display Data

The Write Display Data command writes a byte (8 bits) of data to the Display Data Memory. Data is put on the data bus by the host microcontroller. The location which accepts this byte of data is pointed to by the Page Address Register and the Column Address Register. At the end of the command operation, the content of the Column Address Register is automatically incremented by 1.

The setting of the control bus for issuing Write Display Data command


C/D	E/(RD)	R/W(WR)
1	1	0

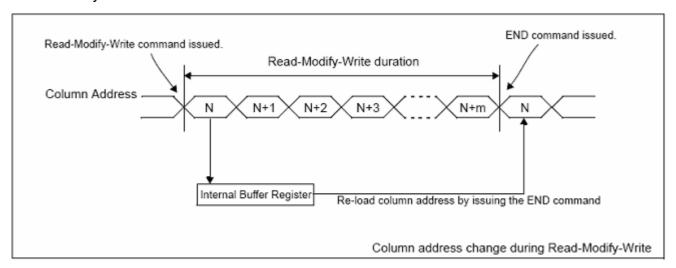
Read Display Data

The Read Display Data command starts a 3-step operation.

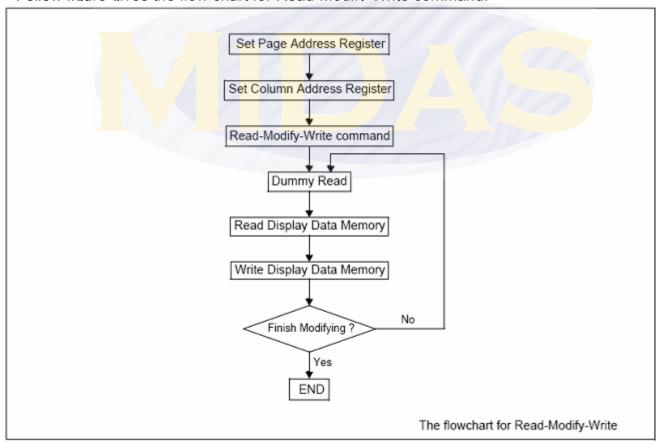
- 1. First, the current data of the internal 8-bit output latch of the Display Data Memory is read by the microcontroller, via the 8-bit data bus DB0~DB7.
- 2. Then, a byte of data of the Display Data Memory is transferred to the 8-bit output latch from a location specified by the Page Address Register and the Column Address Register.
- 3. Finally, the content of the Column Address Register is automatically incremented by one. Follow figure shows the internal 8-bit output latch located between the 8-bit I/O data bus and the Display Data Memory cell array. Because of this internal 8-bit output latch, a dummy read is needed to obtain correct data from the Display Data Memory. For Display Data Write operation, a dummy write **is not** needed, because data can be directly written from the data

bus to internal memory cells.

The setting of the control bus for issuing Read Display Data command


C/D	E/(RD)	R/W(WR)
1	0	1

Read-Modify-Write


When the Read-Modify-Write command is issued, the SBN1661G_X enters into Read-Modify-Write mode. In normal operation, when a Read Display Data command or a Write Display Data command is issued, the content of the Column Address Register is automatically incremented by one after the command operation is finished. However, during Read-Modify-Write mode, the content of the Column Address Register is not incremented by one after a Read Display Data command is finished; only the Write Display Data command can make the content of the Column Address Register automatically incremented by one after the command operation is finished.

During Read-Modify-Write mode, any other registers, except the Column Address Register, can be modified. This command is useful when a block of the Display Data Memory needs to be repeatedly read and updated.

Follow figure gives the change sequence of the Column Address Register during Read-Modify-Write mode.

Follow figure gives the flow chart for Read-Modify-Write command.

The setting of the control bus for the Read-Modify-Write command

C/D	E/(RD)	R/W(WR)
0	1	0

The setting of the data bus for the Read-Modify-Write command

D7(MSB)	D6	D5	D4	D3	D2	D1	D0(LSB)
1	1	1	0	0	0	0	0

The END command

The END command releases the Read-Modify-Write mode and re-loads the Column Address Register with the value previously stored in the internal buffer (refer to Fig. 17) when the Read-Modify-Write command was issued.

The setting of the control bus for the END command

C/D	E/(RD)	R/W(WR)
0	1	0

The setting of the data bus for the END command

D7(MSB)	D6	D5	D4	D3	D2	D1	D0(LSB)
1	1	1	0	1	1	1	0

The command code is EE Hex.

Software RESET command

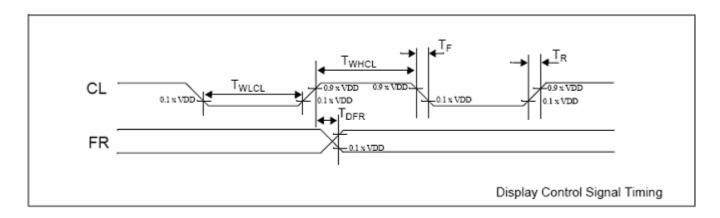
The Software Reset command is different from the hardware reset and can not be used to replace hardware reset.

When Software Reset is issued by the host microcontroller,

- the content of the Display Start Line Register is cleared to zero(A4~A0=00000),
- the Page Address Register is set to 3 (A1 A0 = 11),
- the content of the Display Data Memory remains unchanged.
- the content of all other registers remains unchanged.

The setting of the control bus for Software RESET

C/D	E/(RD)	R/W(WR)
0	1	0


The setting of the data bus for Software RESET

D7(MSB)	D6	D5	D4	D3	D2	D1	D0(LSB)
1	1	1	0	0	0	1	0

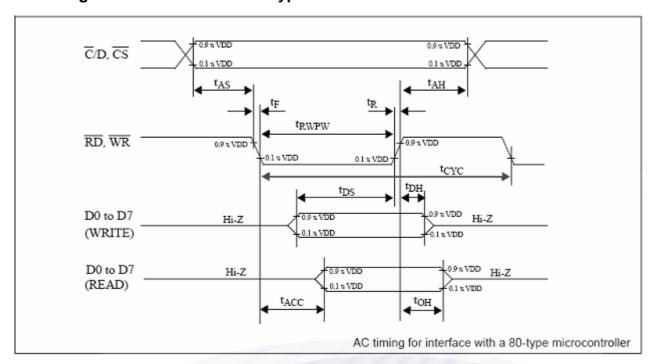
The command code is E2 Hex.

7. Timing Characteristics

CL and FR timing

CL and FR timing characteristics at VDD=5 volts

VDD = 5 V $\pm 10\%$; VSS = 0 V; all voltages with respect to VSS unless otherwise specified; Tamb = -20 to +75 °C.


SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
T _{WHCL}	CL clock high pulse width		33			μs
T _{WLCL}	CL cock low pulse width		33			μs
T _R	C <mark>L cl</mark> ock rise time			28	120	ns
T _F	CL clock fall time			28	120	ns
T _{DFR(input)}	FR delay time (input)	When used as input in Slave Mode application	-2.0	0.2	1.6	μS
T _{DFR(output)}	FR delay time (output)	When used as output in Master Mode application, with CL= 100 pF.		0.2	0.36	μS

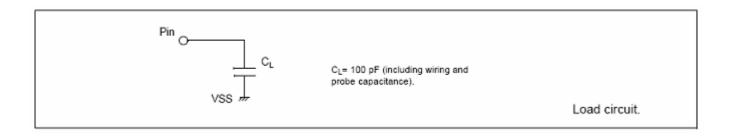
CL and FR timing characteristics at VDD=3 volts

VDD = 3 V $\pm 10\%$; VSS = 0 V; all voltages with respect to VSS unless otherwise specified; Tamb = -20 to +75 °C.

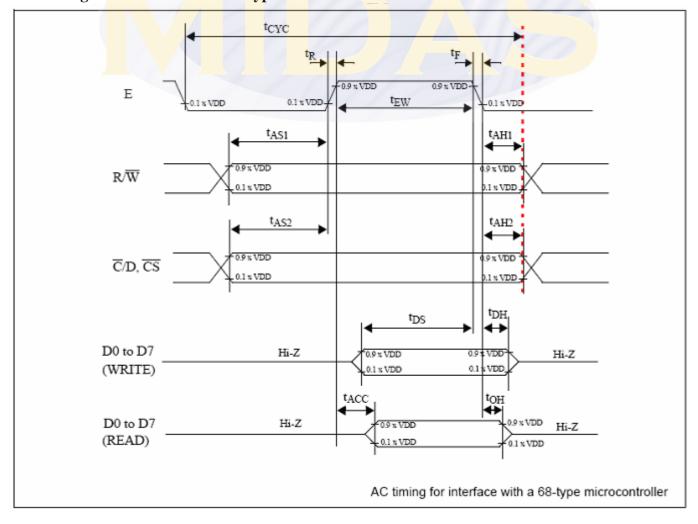
SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
T _{WHCL}	CL clock high pulse width		65			μs
T _{WLCL}	CL cock low pulse width		65			μs
T _R	CL clock rise time			50	220	ns
T _F	CL clock fall time			50	220	ns
T _{DFR(input)}	FR delay time (input)	When used as input in Slave Mode application	-3.6	0.36	3.6	μS
T _{DFR(output)}	FR delay time (output)	When used as output in Master Mode application, with CL= 100 pF.		0.32	0.6	μS

AC timing for interface with an 80-type microcontroller

AC timing for interface with a 80-type microcontorller at VDD=5 volts VDD = $5 \text{ V} \pm 10\%$; VSS = 0 V; Tamb = -20 °C to +75 °C.


symbol	parameter	min.	max.	test conditons	unit
t _{AS}	Address set-up time	20			ns
t _{AH}	Address hold time	10			ns
t _F , t _R	Read/Write pulse falling/rising time		15		ns
t _{RWPW}	Read/Write pulse width	200			ns
t _{CYC}	System cycle time	1000			ns
t _{DS}	Data setup time	80			ns
t _{DH}	Data hold time	10			ns
t _{ACC}	Data READ access time		90	CL= 100 pF.	ns
t _{он}	Data READ output hold time	10	60	Refer to Fig. 23.	ns

AC timing for interface with an 80-type microcontorller at VDD=3 volts VDD = $3 \text{ V} \pm 10\%$; VSS = 0 V; Tamb = -20 °C to +75 °C.


. ,					
symbol	parameter	min.	max.	test conditons	unit
t _{AS}	Address set-up time	40			ns
t _{AH}	Address hold time	20			ns
t _F , t _R	Read/Write pulse falling/rising time		15		ns
t _{RWPW}	Read/Write pulse width	400			ns
t _{CYC}	System cycle time	2000			ns
t _{DS}	Data setup time	160			ns

symbol	parameter	min.	max.	test conditons	unit
t _{DH}	Data hold time	20			ns
t _{ACC}	Data READ access time		180	CL= 100 pF,	ns
t _{OH}	Data READ output hold time	20	120	Refer to 23.	ns

Note: The measurement is with the load circuit connected. The load circuit is shown in Fig. 23.

AC timing for interface with a 68-type microcontroller

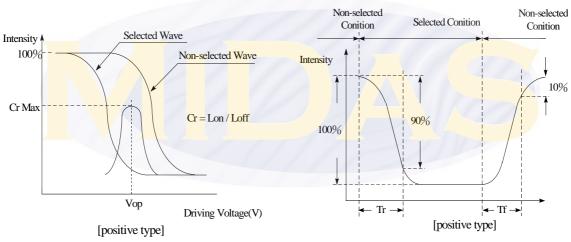
AC timing for interface with a 68-type microcontroller at VDD=5 volts VDD = 5 V \pm 10%; VSS = 0 V; Tamb = -20 °C to +75°C.

symbol	parameter	min.	max.	test conditons	unit
t _{AS1}	Address set-up time with respect to R/W	20			ns
t _{AS2}	Address set-up time with respect to C/D, CS	20			ns
t _{AH1}	Address hold time with respect to R/W	10			ns
t _{AH2}	Address hold time respect with to C/D, CS	10			ns
t _F , t _R	Enable (E) pulse falling/rising time		15		ns
tcyc	System cycle time	1000		Note 1	ns
t _{EWR}	Enable pulse width for READ	100			ns
t _{EWW}	Enable pulse width for WRITE	80			ns
t _{DS}	Data setup time	80			ns
t _{DH}	Data hold time	10			ns
t _{ACC}	Data access time		90	CL= 100 pF.	ns
toH	Data output hold time	10	60	Refer to Fig. 23.	ns

AC timing for interface with a 68-type microcontroller at VDD=3 volts VDD = $3 \text{ V} \pm 10\%$; VSS = 0 V; Tamb = -20 °C to +75 °C.

symbol	parameter	min.	max.	test conditons	unit
t _{AS1}	Address set-up time with respect to R/W	40			ns
t _{AS2}	Address set-up time with respect to C/D, CS	40			ns
t _{AH1}	Address hold time with respect to R/W	20			ns
t _{AH2}	Address hold time respect with to C/D, CS	20		1	ns
t _F , t _R	Enable (E) pulse falling/rising time		15		ns
tcyc	System cycle time	2000		Note 1	ns
t _{EWR}	Enable pulse width for READ	200			ns
t _{EWW}	Enable pulse width for WRITE	160			ns
t _{DS}	Data setup time	160			ns
t _{DH}	Data hold time	20			ns
t _{ACC}	Data access time		180	CL= 100 pF.	ns
tон	Data output hold time	20	120	Refer to Fig. 23.	ns

Note:

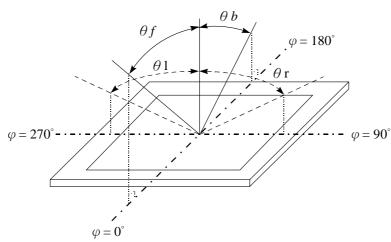

1. The system cycle time(tCYC) is the time duration from the time when Chip Enable is enabled to the time when Chip Select is released.

8. Optical Characteristics

Item	Symbol	Condition	Min	Тур	Max	Unit
No. A. de	(V)θ	CR≧2	20	_	40	deg
View Angle	(Η)φ	CR≧2	-30	_	30	deg
Contrast Ratio	CR	_	_	3		
	T rise	_	_	100	150	ms
Response Time	T fall	_	_	100	150	ms

Definition of Operation Voltage (Vop)

Definition of Response Time (Tr, Tf)



Conditions:

Operating Voltage : Vop Viewing Angle(θ , ϕ) : 0° , 0°

Frame Frequency: 64 HZ Driving Waveform: 1/N duty, 1/a bias

Definition of viewing angle($CR \ge 2$)

9. Absolute Maximum Ratings

Item	Symbol	Min	Тур	Max	Unit
Operating Temperature	T _{OP}	-20	_	+70	$^{\circ}\!\mathbb{C}$
Storage Temperature	T _{ST}	-30	_	+80	$^{\circ}\!\mathbb{C}$
Input Voltage	VI	0	_	V_{DD}	V
Supply Voltage For Logic	V_{DD}	0	_	6.7	V
Supply Voltage For LCD	V _{DD} -V _{LCD}	0		-10	V

10. Electrical Characteristics

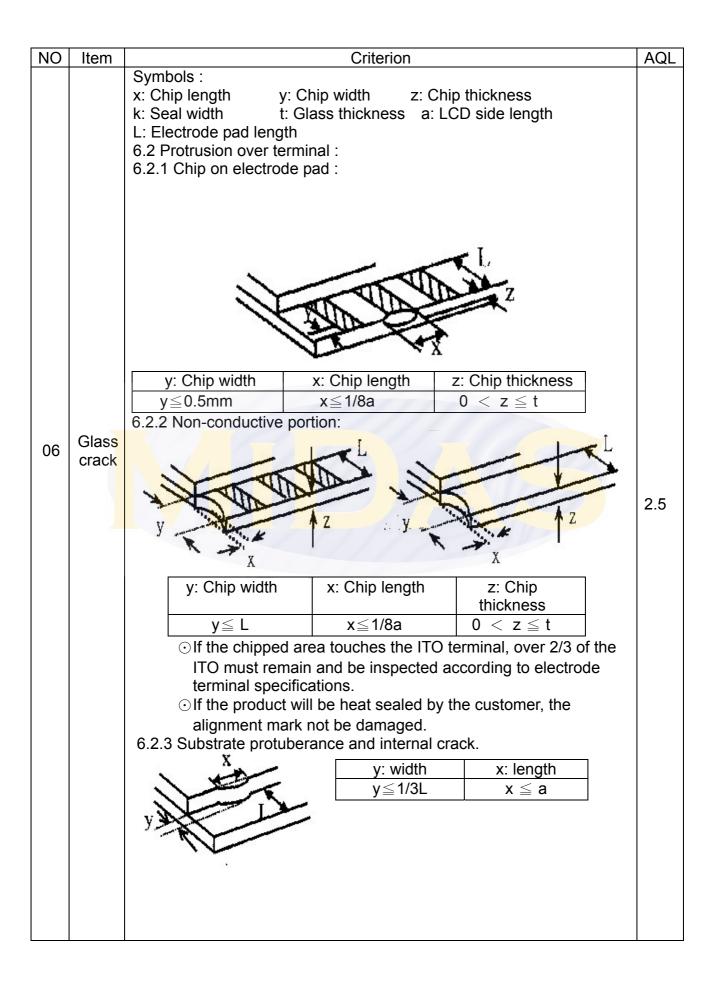
Item	Symbol	Condition	Min	Тур	Max	Unit
Supply Voltage For	V _{DD} -V _{SS}		4.75	5.0	5.25	V
Logic	עט עס א		4.70	0.0	0.20	,
		Ta=-2 <mark>0℃</mark>			_	V
Supply Voltage For LCD *Note	V_{DD} - V_{O}	Ta=2 <mark>5</mark> ℃	4.2	4.35	4.5	V
Note		Ta=70°C		771	_	V
Input High Volt.	V _{IH}	_	2.0	_	V_{DD}	V
Input Low Volt.	V _{IL}	_	0	_	8.0	V
Output High Volt.	V _{OH}	_	2.7	_	V_{DD}	V
Output Low Volt.	V _{OL}		0		0.4	V
Supply Current	I _{DD}	_	_	0.5	1.5	mA

11. Reliability

Content of Reliability Test (wide temperature, -20°C~70°C)

	Environmental Test						
Test Item	Content of Test	Test Condition	Note				
High Temperature storage	80°ℂ 200hrs	2					
Low Temperature storage	Endurance test applying the high storage temperature for a long time.	-30℃ 200hrs	1,2				
High Temperature Operation	Endurance test applying the electric stress (Voltage & Current) and the thermal stress to the element for a long time.	70℃ 200hrs					
Low Temperature Operation	Endurance test applying the electric stress under low temperature for a long time.	-20℃ 200hrs	1				
High Temperature/ Humidity Operation	The module should be allowed to stand at 60°C,90%RH max For 96hrs under no-load condition excluding the polarizer, Then taking it out and drying it at normal temperature.	60°C,90%RH 96hrs	1,2				
Thermal shock res <mark>ista</mark> nce	The sample should be allowed stand the following 10 cycles of operation -20°C 25°C 70°C 30min 5min 30min 1 cycle	-20°C/70°C 10 cycles					
Endurance test applying the vibration during transportation and using.		Total fixed amplitude: 15mm Vibration Frequency: 10~55Hz One cycle 60 seconds to 3 directions of X,Y,Z for Each 15 minutes					
Static electricity test	Endurance test applying the electric stress to the terminal.	VS=800V,RS=1.5kΩ CS=100pF 1 time					

Note1: No dew condensation to be observed.


Note2: The function test shall be conducted after 4 hours storage at the normal Temperature and humidity after remove from the test chamber.

Note3: Vibration test will be conducted to the product itself without putting it in a container.

12. Inspection specification

NO	Item	Criterion					
01	Electrical Testing	 1.1 Missing vertical, horizontal segment, segment contrast defect. 1.2 Missing character, dot or icon. 1.3 Display malfunction. 1.4 No function or no display. 1.5 Current consumption exceeds product specifications. 1.6 LCD viewing angle defect. 1.7 Mixed product types. Contrast defect. 					
02	Black or white spots on LCD (display only)	than three w	 2.1 White and black spots on display ≤0.25mm, no more than three white or black spots present. 2.2 Densely spaced: No more than two spots or lines within 3mm 				
03	LCD black spots, white spots, contaminatio	3.1 Round type Φ=(x + y) /		wing drawing		2.5	
	n (non-display)	3.2 Line type : (Length	Width W≦0.02	Acceptable Q TY Accept no dense	2.5	
			L≦3.0 L≦2.5	0.02 <w≦0.03 0.03<w≦0.05 0.05<w< td=""><td>2 As round type</td><td></td></w<></w≦0.05 </w≦0.03 	2 As round type		
04	Polarizer bubbles	If bubbles are visible, judge using black spot specifications, not easy to find, must check in specify direction.		Size Φ $\Phi \le 0.20$ $0.20 < \Phi \le 0.50$ $0.50 < \Phi \le 1.00$ $1.00 < \Phi$ Total Q TY	Acceptable Q TY Accept no dense 3 2 0 3	2.5	

NO	Item	Criterion	AQL		
05	Scratches	Follow NO.3 LCD black spots, white spots, contamination			
05	Scratches	Follow NO.3 LCD black spots, white spots, contamination Symbols Define: x: Chip length y: Chip width z: Chip thickness k: Seal width t: Glass thickness a: LCD side length L: Electrode pad length: 6.1 General glass chip: 6.1.1 Chip on panel surface and crack between panels:			
06	Chipped glass		2.5		

NO	Item	Criterion	AQL
07	Cracked glass	The LCD with extensive crack is not acceptable.	2.5
08	Backlight elements	 8.1 Illumination source flickers when lit. 8.2 Spots or scratched that appear when lit must be judged. Using LCD spot, lines and contamination standards. 8.3 Backlight doesn't light or color wrong. 	0.65 2.5 0.65
09	Bezel	9.1 Bezel may not have rust, be deformed or have fingerprints, stains or other contamination. 9.2 Bezel must comply with job specifications.	2.5 0.65
10	PCB · COB	 10.1 COB seal may not have pinholes larger than 0.2mm or contamination. 10.2 COB seal surface may not have pinholes through to the IC. 10.3 The height of the COB should not exceed the height indicated in the assembly diagram. 10.4 There may not be more than 2mm of sealant outside the seal area on the PCB. And there should be no more than three places. 10.5 No oxidation or contamination PCB terminals. 10.6 Parts on PCB must be the same as on the production characteristic chart. There should be no wrong parts, missing parts or excess parts. 10.7 The jumper on the PCB should conform to the product characteristic chart. 10.8 If solder gets on bezel tab pads, LED pad, zebra pad or screw hold pad, make sure it is smoothed down. 10.9 The Scraping testing standard for Copper Coating of PCB X * Y<=2mm²	2.5 2.5 0.65 2.5 2.5 0.65 2.5 2.5
11	Soldering	 11.1 No un-melted solder paste may be present on the PCB. 11.2 No cold solder joints, missing solder connections, oxidation or icicle. 11.3 No residue or solder balls on PCB. 11.4 No short circuits in components on PCB. 	2.5 2.5 2.5 0.65

NO	Item	Criterion	AQL
12	General appearance	 12.1 No oxidation, contamination, curves or, bends on interface Pin (OLB) of TCP. 12.2 No cracks on interface pin (OLB) of TCP. 12.3 No contamination, solder residue or solder balls on product. 12.4 The IC on the TCP may not be damaged, circuits. 12.5 The uppermost edge of the protective strip on the interface pin must be present or look as if it cause the interface pin to sever. 12.6 The residual rosin or tin oil of soldering (component or chip component) is not burned into brown or black color. 12.7 Sealant on top of the ITO circuit has not hardened. 12.8 Pin type must match type in specification sheet. 12.9 LCD pin loose or missing pins. 12.10 Product packaging must the same as specified on packaging specification sheet. 12.11 Product dimension and structure must conform to product specification sheet. 	2.5 0.65 2.5 2.5 2.5 2.5 2.5 0.65 0.65 0.65

13. Precautions in use of LCD Modules

- (1)Avoid applying excessive shocks to the module or making any alterations or modifications to it.
- (2)Don't make extra holes on the printed circuit board, modify its shape or change the components of LCD module.
- (3)Don't disassemble the LCM.
- (4)Don't operate it above the absolute maximum rating.
- (5)Don't drop, bend or twist LCM.
- (6) Soldering: only to the I/O terminals.
- (7)Storage: please storage in anti-static electricity container and clean environment.
- (8).T aaæ AO[{] [} ^} have the right to change the passive components (Resistors,capacitors and other passive components will have different appearance and color caused by the different supplier.)
- (9). T aaæ ÁÔ[{] [} ^} Anave the right to change the PCB Rev.

14. Material List of Components for RoHs

1. T aæ ÁD[{] [} ^ } o Ltd. hereby declares that all of or part of products, including, but not limited to, the LCM, accessories or packages, manufactured and/or delivered to your company (including your subsidiaries and affiliated company) directly or indirectly by our company (including our subsidiaries or affiliated companies) do not intentionally contain any of the substances listed in all applicable EU directives and regulations, including the following substances.

Exhibit A: The Harmful Material List

Material	(Cd)	(Pb)	(Hg)	(Cr6+)	PBBs	PBDEs
Limited Value	100 ppm	1000 ppm	1000 ppm	1000 ppm	1000 ppm	1000 ppm
Above limited value is set up according to RoHS.						

2. Process for RoHS requirement:

- (1) Use the Sn/Ag/Cu soldering surface; the surface of Pb-free solder is rougher than we used before.
- (2) Heat-resistance temp. :

Reflow: 250°C,30 seconds Max.;

Connector soldering wave or hand soldering : 320°C, 10 seconds max.

(3) Temp. curve of reflow, max. Temp. : 235±5°€;

Recommended customer's soldering temp. of connector : 280°C, 3 seconds.

15. Recommendable storage

- 1. Place the panel or module in the temperature 25°C±5°C and the humidity below 65% RH
- 2. Do not place the module near organics solvents or corrosive gases.
- 3. Do not crush, shake, or jolt the module