




# **PIC-32MX** development board

# **Users Manual**



Pb-free, Green All boards produced by Olimex are ROHS compliant

Rev.A, June 2008

Copyright(c) 2008, OLIMEX Ltd, All rights reserved

## **INTRODUCTION:**

The **NEW PIC-32MX** board uses the new PIC32 32 bit MIPS 4K core processor from Microchip which offers speed and performance at low cost. This board has PIC32MX340F512 microcontroller on it with its 512 KB of Flash, 32KB RAM, 80MHz clock, UARTs, PWMs, DMAs. The board has both ICSP and JTAG connectors so it can be programmed with PIC-ICD2 or JTAG tool

## **BOARD FEATURES:**

- PIC32MX340F512 microcontroller
- UEXT connector for other Olimex modules like MOD-MP3, MOD-NRF24Lx, MOD-SMB380, MOD-RFID125 etc.
- ICSP/ICD connector for programming with PIC-ICD2 or PIC-ICD2-POCKET.
- JTAG connector
- RS232 interface with driver
- Quartz crystalls 8 MHz and 32768 Hz
- Status LED
- User Button
- Reset button
- Power plug-in jack with diode bridge can be powered with AC or DC power supply
- 3.3V voltage regulator
- Extension slot on every uC pin
- Gird 100 mils
- GND bus
- Vcc bus
- Four mounting holes 3,3 mm (0,13")
- FR-4, 1.5 mm (0,062"), green soldermask, white silkscreen component print
- Dimensions 100x80 mm (3,9x3,15")

### **ELECTROSTATIC WARNING:**

The PIC-32MX board is shipped in protective anti-static packaging. The board must not be subject to high electrostatic potentials. General practice for working with static sensitive devices should be applied when working with this board.

### **BOARD USE REQUIREMENTS:**

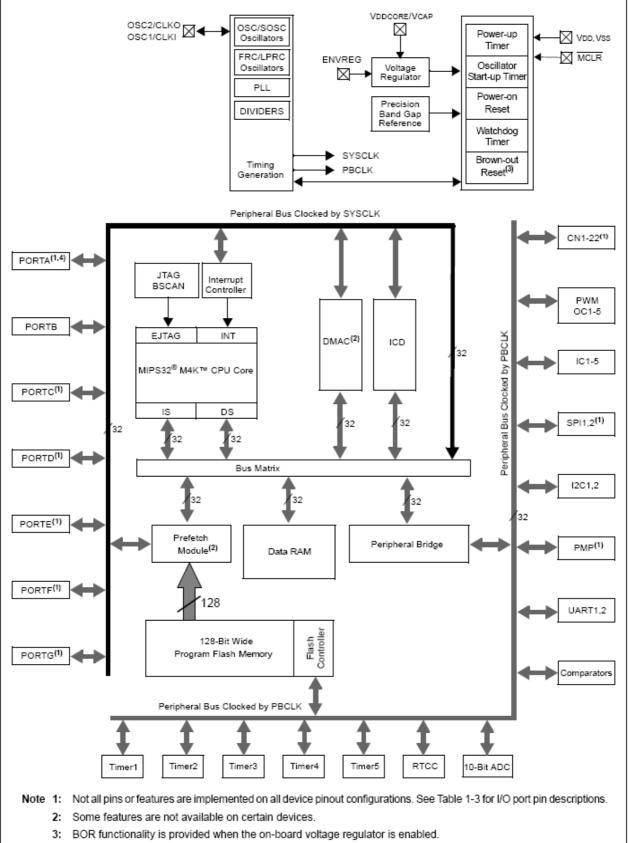
**Cables:** 1.8 meter USB A-B cable to connect PIC-ICD2 or PIC-ICD2-POCKET to USB host on PC (if you use other programmer, you should read its specification in order to choose a cable).

#### Hardware: PIC-ICD2, PIC-ID2-POCKET

Or any compatible tool for programming and/or debugging

**!!!Warning!!!** When you want to program this microcontroller with PIC-ICD2, PIC-ICD2-POCKET or PIC-ICD2-TINY, before connecting the programmer to your target board, you should first connect the programmer to your computer and open MPLAB. There, first from menu Configure – Select Device – choose the microcontroller you are about to program, then from menu Programmer – Select Programmer – choose MPLAB ICD 2, wait while MPLAB is downloading operation system, and after ICD2 is connected – check in menu Programmer – Settings – Power – there is option – Power target circuit from MPLAB ICD 2 – this option should be forbidden, you could not select it. Now it is safe to connect the programmer to your target board.

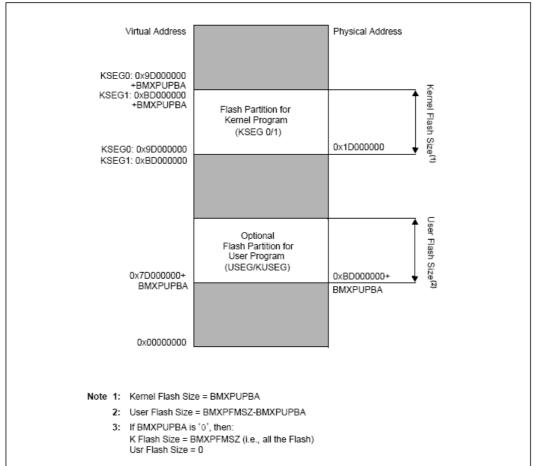
# **Software:** MPLAB IDE v8.14 + MPLAB C32 for developing your own applications.


The demo software shows basic functionality and how to blink LED (C source and HEX), how to read a button (C source and HEX), the use of Timer1 (C source and HEX) and UART functions (C source and HEX). The sources are compiled with MPLAB C32 C compiler.

### **PROCESSOR FEATURES:**

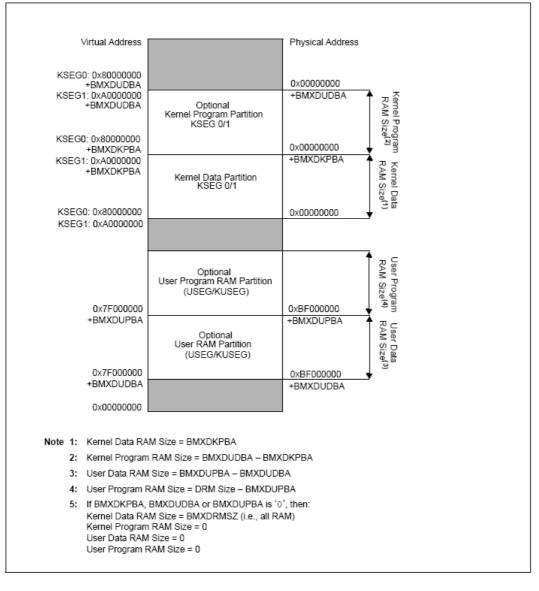
- High-performance RISC CPU
  - MIPS32<sup>®</sup> M4K<sup>™</sup> 32-Bit Core with 5-Stage Pipeline
  - Single-Cycle Multiply and High-Performance Divide Unit
  - MIPS 16e<sup>™</sup> Mode for Up to 40% Smaller Code Size
  - User and Kernel Modes to Enable Robust Embedded System
  - Two 32-Bit Core Register Files to Reduce Interrupt Latency
  - Prefetch Cache Module to Speed Execution from Flash
- Special Microcontroller Features
  - Operating Voltage Range of 2.3V to 3.6V
  - 512K Flash and 32K Data Memory
  - Additional 12 KB of Boot Flash Memory
  - Mutiple Interrupt Vectors with Individually Programmable Priority
  - Fail-Safe Clock Monitor Mode
  - Configurable Watchdog Timer with On-Chip, Low-Power RC Oscillator for Reliable Operation
- Analog Features
  - Up to 16-Channel 10-bit Analog-toDigital Converter:
    - 500 ksps conversion rate
    - Conversion available during Sleep, Idle
    - Two Analog Comparators
- Peripheral Features
  - Atomic SET, CLEAR and INVERT Operation on Select Peripheral Registers
  - Up to 4-Channel Hardware DMA Controller with Automatic Data Size Detection
  - Two I<sup>2</sup>C<sup>™</sup> Modules
  - Two UART Modules with:
    - RS-232, RS-485 and LIN 1.2 support
    - IrDA<sup>®</sup> with on-chip hardware encoder and decoder
  - Parallel Master and Slave Port (PMP/PSP) with 8-bit and 16-bit Data and Up to 16 Addres Lines
  - Hardware Real-Time Clock/Calendar (RTCC)
  - Five 16-bit Timers/Counters (two 16-bit pairs combine to create two 32-bit timers)
  - Five Capture Inputs
  - Five Compare PWM Outputs
  - Five External Interrupts pins
  - High-Current Sink/Source (18 mA/18 mA) on All I/O Pins

- Configurable Open-Drain Output on Digital I/O


# **BLOCK DIAGRAM:**



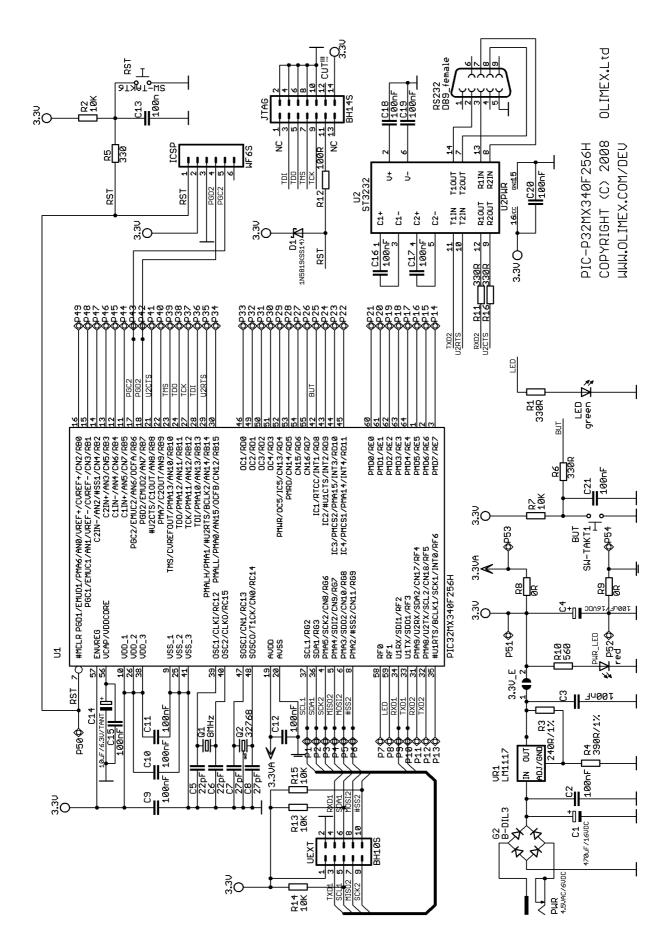
#### PIC32MX3XX/4XX BLOCK DIAGRAM (GENERAL PURPOSE)


4: PORTA is not present on 64-pin devices

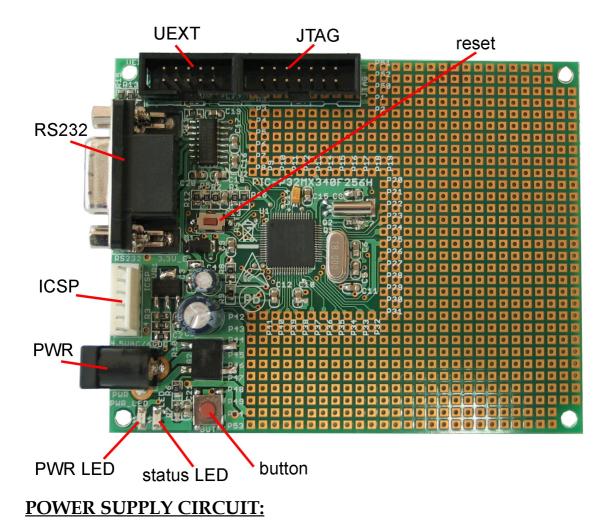
## **MEMORY MAP:**



#### FLASH PARTITIONING


RAM PARTITIONING




| Peripheral             | Virtual Address |           | Physical Address |           |
|------------------------|-----------------|-----------|------------------|-----------|
|                        | Start           | End       | Start            | End       |
| WDT                    | BF80_0000       | BF80_01FF | 1F80_0000        | 1F80_01FF |
| RTCC                   | BF80_0200       | BF80_03FF | 1F80_0200        | 1F80_03FF |
| TMR1                   | BF80_0600       | BF80_07FF | 1F80_0600        | 1F80_07FF |
| TMR2                   | BF80_0800       | BF80_09FF | 1F80_0800        | 1F80_09FF |
| TMR3                   | BF80_0A00       | BF80_0BFF | 1F80_0A00        | 1F80_0BFF |
| TMR4                   | BF80_0C00       | BF80_0DFF | 1F80_0C00        | 1F80_0DFF |
| TMR5                   | BF80_0E00       | BF80_0FFF | 1F80_0E00        | 1F80_0FFF |
| Input Capture1         | BF80_2000       | BF80_21FF | 1F80_2000        | 1F80_21FF |
| Input Capture2         | BF80_2200       | BF80_23FF | 1F80_2200        | 1F80_23FF |
| Input Capture3         | BF80_2400       | BF80_25FF | 1F80_2400        | 1F80_25FF |
| Input Capture4         | BF80_2600       | BF80_27FF | 1F80_2600        | 1F80_27FF |
| Input Capture5         | BF80_2800       | BF80_29FF | 1F80_2800        | 1F80_29FF |
| Output Compare1        | BF80_3000       | BF80_31FF | 1F80_3000        | 1F80_31FF |
| Output Compare2        | BF80_3200       | BF80_33FF | 1F80_3200        | 1F80_33FF |
| Output Compare3        | BF80_3400       | BF80_35FF | 1F80_3400        | 1F80_35FF |
| Output Compare4        | BF80_3600       | BF80_37FF | 1F80_3600        | 1F80_37FF |
| Output Compare5        | BF80_3800       | BF80_39FF | 1F80_3800        | 1F80_39FF |
| I2C1                   | BF80_5000       | BF80_51FF | 1F80_5000        | 1F80_51FF |
| I2C2                   | BF80_5200       | BF80_53FF | 1F80_5200        | 1F80_53FF |
| SPI1                   | BF80_5800       | BF80_59FF | 1F80_5800        | 1F80_59FF |
| SPI2                   | BF80_5A00       | BF80_5BFF | 1F80_5A00        | 1F80_5BFF |
| UART1                  | BF80_6000       | BF80_61FF | 1F80_6000        | 1F80_61FF |
| UART2                  | BF80_6200       | BF80_63FF | 1F80_6200        | 1F80_63FF |
| Parallel Master Port   | BF80_7000       | BF80_71FF | 1F80_7000        | 1F80_71FF |
| GPIO                   | BF80_8000       | BF80_81FF | 1F80_8000        | 1F80_81FF |
| ADC                    | BF80_9000       | BF80_91FF | 1F80_9000        | 1F80_91FF |
| Comparator Voltage REF | BF80_9800       | BF80_99FF | 1F80_9800        | 1F80_99FF |
| Comparator             | BF80_A000       | BF80_A1FF | 1F80_A000        | 1F80_A1FF |
| Oscillator             | BF80_F000       | BF80_F1FF | 1F80_F000        | 1F80_F1FF |
| Configuration          | BF80_F200       | BF80_F3FF | 1F80_F200        | 1F80_F3FF |
| Flash (NVM)            | BF80_F400       | BF80_F5FF | 1F80_F400        | 1F80_F5FF |
| Reset                  | BF80_F600       | BF80_F7FF | 1F80_F600        | 1F80_F7FF |
| Interrupts             | BF88_1000       | BF88_1FFF | 1F88_1000        | 1F88_1FFF |
| Bus Matrix             | BF88_2000       | BF88_2FFF | 1F88_2000        | 1F88_2FFF |
| DMA                    | BF88_3000       | BF88_3FFF | 1F88_3000        | 1F88_3FFF |
| Prefetch Cache         | BF88_4000       | BF88_4FFF | 1F88_4000        | 1F88_4FFF |
| GPIO                   | BF88_6000       | BF88_61FF | 1F88_6000        | 1F88_61FF |

#### PERIPHERAL ADDRESS TABLE

## **SCHEMATIC:**



## **BOARD LAYOUT:**



The power supply of PIC-32MX could be either 4.5-6.0VAC or 6VDC-9VDC. The power consumption is round 65mA.

#### **RESET CIRCUIT:**

PIC-32MX reset circuit is made with a capacitor C13 (100nF) and a resistor R2 (10K $\Omega).$ 

## **CLOCK CIRCUIT:**

Quartz crystals at 8MHz and 32.768 KHz are connected to PIC-32MX.

## **JUMPERS DESCRIPTION:**

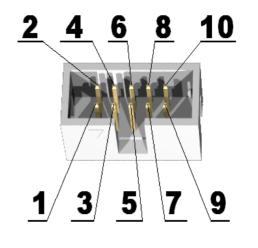
**3.3V\_E** Enables 3.3V supply for **PIC32MX** and all other devices.



Default state closed (shorted).



# JTAG:


| 2           | 4 6 8               |             |           |
|-------------|---------------------|-------------|-----------|
| Pi <u>1</u> | <u>3</u> <u>5</u> 7 | <u>9 11</u> | 13<br>ame |
| 1           | NC                  | 2           | GND       |
| 3           | TDI                 | 4           | GND       |
| 5           | TDO                 | 6           | GND       |
| 7           | TMS                 | 8           | GND       |
| 9           | тск                 | 10          | GND       |
| 11          | RST                 | 12          | (*)       |
| 13          | NC                  | 14          | 3.3V      |

(\*) This pin isn't mounted.

**TDI** Input **Test Data In**. This is the serial input for the shift register.

**TDO** Output**Test Data Out**. This is the serial output for the shift register. Data is shifted out device on the negative edge of the signal.

**TMS**Input**Test Mode Select.** The TMS pinthe next state in the TAP state machine.**TCK**Input**Test Clock.** This allows shiftingdata in, on the TMS and TDI pins. It is aedgetriggered clock with theTCK signals that define the internal state of the



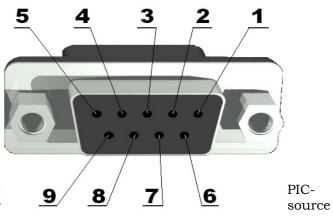
data

data of the TCK

selects

of the positive TMS and device.

# ISCP:


| Pin # | Signal Name |
|-------|-------------|
| 1     | RST         |
| 2     | 3.3V        |
| 3     | GND         |
| 4     | PGD2        |
| 5     | PGC2        |
| 6     | -           |

This connector allows programming and debugging via PIC-IDC2, PIC-IDC2-POCKET or compatible tool.

# **PWR-CON:**

| Pin # | Signal Name  |
|-------|--------------|
| 1     | +6VDC/4.5VAC |
| 2     | GND          |

This connector is used to power the 32MX. External (4.5VAC/6VDC) power have to be applied to these pins.



# <u>UEXT:</u>

| Pin # | Signal Name |
|-------|-------------|
| 1     | 3.3V        |
| 2     | GND         |
| 3     | TXD1        |
| 4     | RXD1        |
| 5     | SCL1        |
| 6     | SDA1        |
| 7     | MISO2       |
| 8     | MOSI2       |
| 9     | SCK2        |
| 10    | #SS2        |

UEXT is connector for external plug-in modules.

**TXD1** Output **Transmit Data 1**. This is the asynchronous serial data output (RS232) for the shift register.

**RXD1** Input **Receive Data 1**. This is the asynchronous serial data input (RS232) for the shift register.

**SCL1** I/O **Serial Clock 1**. This is the synchronization clock for the I2C 1 interface. It is output from the master and input for the slave.

**SDA1** I/O **Serial Data 1**. Data register for the I2C interface.

**MISO2**I/O **Master In Slave Out 2**. When processor is master this is input SPI 2 data register. When processor is slave this is output SPI data register.

**MOSI2**I/O **Maser Out Slave In 2**. When pocessor is master this is output SPI 2 data register. When processor is slave this is input SPI data register.

**SCK2** I/O **Serial Clock 2**. This is the synchronization clock for the SPI 2 interface. It is ouput from the master and input for the slave.

**#SS2** I/O **Slave Select 2**. Save select signal dor the SPI 2. It is output from the master and input for the slave.

#### <u>RS232:</u>

| Pin # | Signal Name |
|-------|-------------|
| 1     | -           |
| 2     | TXD2        |
| 3     | RXD2        |
| 4     | -           |
| 5     | GND         |
| 6     | -           |
| 7     | U2CTS       |
| 8     | U2RTS       |
| 9     | -           |

**TXD2** Output **Transmit Data 2**. This is the asynchronous serial data output (RS232) for the shift register on the UART2 controller.

**RXD2** Input **Receive Data 2**. This is the asynchronous serial data input (RS232) for the shift register on the UART2 controller.

U2CTS Input UART2 Clear To Send. The DCE device is ready to accept data.

U2RTS Otput UART2 Request To Send. The DTE device (PIC-32MX) requests to send data.

#### **INPUT/OUTPUT:**

Button BUT - user button connected to PIC-32MX PORTD.RD8 (INT1).

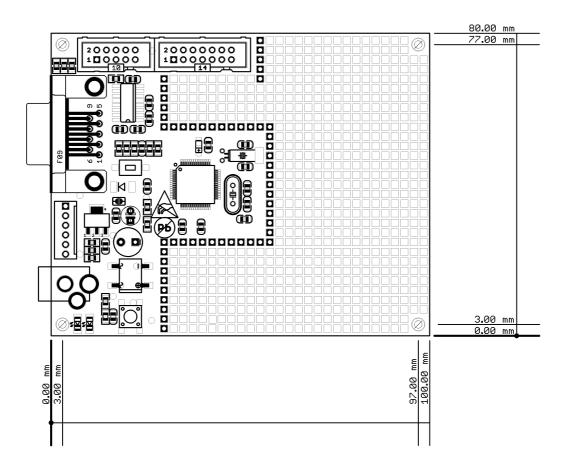
**RESET button** – button connected to the RST pin of PIC-32MX

**Power on LED (red)** - its name is **PWR\_LED** and indicates that power is on.

#### **GETTING STARTED**

In order to get started you need:

- 1. PIC-32MX board
- 2. Power supply (6VDC/4.5VAC)
- 3. Programmer
- 4. Cable to connect the programmer to the PC
- Cable to connect the programmer to the board
  Compilator/Assembler


We provide here an example configuration but you could use any compatible programmer/compilator/assembler and the corresponding cables.

Example configuration:

- 1. PIC-32MX board
  - 2. Power supply (6VDC/4.5VAC)
  - 3. Programer PIC-ICD2
  - 4. Cable to connect the programmer to the PC USB cable A-B
- 5. Cable to connect the programmer to the board ICD2 cable (ISCP)
- 6. Compilator/Assembler MPLAB v8.14 IDE + MPLAB C32

To get started you first should apply power to the board, connect the programmer to the board and to the PC, open MPLAB and write your application. After that you should compile and build your project, then you should debug it and if the previous stages are successfully finished, to program PIC-32MX. To get your application running you should disconnect the programmer from the board and reset the board.

# **MECHANICAL DIMENSIONS:**



All measures are in mm.

# **AVAILABLE DEMO SOFTWARE:**

All of the demo software is written under MPLAB v8.14 IDE + MPLAB C32.

- 1. Blink LED demo software (C source and HEX)
- 2. Button read demo software (C source and HEX)
- 3. Timer1 demo software (C source and HEX)
- 4. UART basic demo software (C source and HEX)
- 5. UART interrupt demo software (C source and HEX)

All of the demo software could be found on Olimex website <u>www.olimex.com/dev</u>.

# **ORDER CODE:**

How to order? You can order to us directly or by any of our distributors. Check our web <u>www.olimex.com/dev</u> for more info.



Pb-free, Green All boards produced by Olimex are ROHS compliant

#### **Revision history:**

REV.A

- created June 2008

#### Disclaimer:

© 2008 Olimex Ltd. All rights reserved. Olimex®, logo and combinations thereof, are registered trademarks of Olimex Ltd. Other terms and product names may be trademarks of others. The information in this document is provided in connection with Olimex products. No license, express or implied or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Olimex products.

Neither the whole nor any part of the information contained in or the product described in this document may be adapted or reproduced in any material from except with the prior written permission of the copyright holder.

The product described in this document is subject to continuous development and improvements. All particulars of the product and its use contained in this document are given by OLIMEX in good faith. However all warranties implied or expressed including but not limited to implied warranties of merchantability or fitness for purpose are excluded.

This document is intended only to assist the reader in the use of the product. OLIMEX Ltd. shall not be liable for any loss or damage arising from the use of any information in this document or any error or omission in such information or any incorrect use of the product.