TC2117

800 mA Fixed Low Dropout Positive Regulator

Features:

- Fixed Output Voltages: 1.8V, 2.5V, 3.0V, 3.3V
- Very Low Dropout Voltage
- Rated 800 mA Output Current
- High Output Voltage Accuracy
- Standard or Custom Output Voltages
- Overcurrent and Overtemperature Protection
- Space Saving SOT-223 Package

Applications:

- 5V to 3.3V Linear Regulator
- Portable Computers
- Instrumentation
- Battery Operated Systems
- Linear Post-Regulator for SMPS
- Core Voltage Supply for FPGAs, PLDs, CPUs and DSPs

General Description:

The TC2117 is a fixed, high-accuracy (typically ±0.5%) CMOS low dropout regulator. Designed specifically for battery operated systems, the TC2117’s CMOS construction eliminates wasted ground current, significantly extending battery life. Total supply current is typically 80 µA at full load (20 to 60 times lower than in bipolar regulators).

TC2117 key features include ultra low noise, very low dropout voltage (typically 450 mV at full load), and fast response to step changes in load. The TC2117 incorporates both overtemperature and overcurrent protection. The TC2117 is stable with an output capacitor of only 1 µF and has a maximum output current of 800 mA. This device is available in 3-Pin SOT-223 and 3-Pin DDPak packages.

Typical Application

![Typical Application Diagram]
1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings†

- Input Voltage .........................................................6.5V
- Output Voltage.................... (VSS – 0.3) to (VIN + 0.3V)
- Power Dissipation................Internally Limited (Note 7)
- Maximum Voltage on Any Pin .............VIN +0.3V to -0.3V
- Operating Temperature ............... -40°C < TJ < +125°C
- Storage temperature ......................-65°C to +150°C

† Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

DC CHARACTERISTICS

Electrical Specifications: Unless otherwise indicated, VIN = VR + 1.5V, (Note 1). Ii = 100 µA, C = 3.3 µF, TA = +25°C.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Operating Voltage</td>
<td>VIN</td>
<td>2.7</td>
<td>—</td>
<td>6.0</td>
<td>V</td>
<td>Note 2</td>
</tr>
<tr>
<td>Maximum Output Current</td>
<td>IOUTMAX</td>
<td>800</td>
<td>—</td>
<td>—</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Output Voltage</td>
<td>VOUT</td>
<td>VR – 2.5%</td>
<td>VR ± 0.5%</td>
<td>VR + 2.5%</td>
<td>V</td>
<td>VR ≥ 2.5V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VR – 2%</td>
<td>VR ± 0.5%</td>
<td>VR + 3%</td>
<td>VR = 1.8V</td>
<td></td>
</tr>
<tr>
<td>VOUT Temperature Coefficient</td>
<td>ΔVOUT/ΔT</td>
<td>—</td>
<td>40</td>
<td>—</td>
<td>ppm/°C</td>
<td>Note 3</td>
</tr>
<tr>
<td>Line Regulation</td>
<td>ΔVOUT/ΔVIN</td>
<td>—</td>
<td>0.007</td>
<td>0.35</td>
<td>%</td>
<td>(VR + 1V) ≤ VIN ≤ 6V</td>
</tr>
<tr>
<td>Load Regulation (Note 4)</td>
<td>ΔVOUT/ΔIOUT</td>
<td>-0.01</td>
<td>0.002</td>
<td>0</td>
<td>%/mA</td>
<td>Ii = 0.1 mA to IOUTMAX</td>
</tr>
<tr>
<td>Dropout Voltage (Note 5)</td>
<td>VIN–VOUT</td>
<td>—</td>
<td>20</td>
<td>30</td>
<td>mV</td>
<td>VR ≥ 2.5V, Ii = 100 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>50</td>
<td>160</td>
<td>mA</td>
<td>Ii = 100 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>150</td>
<td>480</td>
<td>mA</td>
<td>Ii = 300 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>260</td>
<td>800</td>
<td>mA</td>
<td>Ii = 500 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>450</td>
<td>1300</td>
<td>mA</td>
<td>Ii = 800 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>1000</td>
<td>1200</td>
<td>mA</td>
<td>VR = 1.8V, Ii = 500 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>1200</td>
<td>1400</td>
<td>mA</td>
<td>Ii = 800 mA</td>
</tr>
<tr>
<td>Supply Current</td>
<td>Idd</td>
<td>—</td>
<td>80</td>
<td>130</td>
<td>µA</td>
<td>SHDN = VIH, Ii = 0</td>
</tr>
<tr>
<td>Power Supply Rejection Ratio</td>
<td>PSRR</td>
<td>—</td>
<td>55</td>
<td>—</td>
<td>db</td>
<td>F ≤ 1 kHz</td>
</tr>
<tr>
<td>Output Short Circuit Current</td>
<td>IOUTSC</td>
<td>—</td>
<td>1200</td>
<td>—</td>
<td>mA</td>
<td>VOUT = 0V</td>
</tr>
<tr>
<td>Thermal Regulation</td>
<td>ΔVOUT/ΔPD</td>
<td>—</td>
<td>0.04</td>
<td>—</td>
<td>V/W</td>
<td>Note 6</td>
</tr>
<tr>
<td>Output Noise</td>
<td>eN</td>
<td>—</td>
<td>300</td>
<td>—</td>
<td>nV/√Hz</td>
<td>Ii = 100 mA, F = 10 kHz</td>
</tr>
</tbody>
</table>

Note 1: VR is the regulator output voltage setting.
Note 2: The minimum VIN has to justify the conditions: VIN ≥ VR + VDROPOUT and VIN ≥ 2.7V for Ii = 0.1 mA to IOUTMAX.
Note 3: TCVOUT = (VOUTMAX– VOUTMIN) – 10^6
Note 4: Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested over a load range from 0.1 mA to the maximum specified output current. Changes in output voltage due to heating effects are covered by the thermal regulation specification.
Note 5: Dropout voltage is defined as the input-to-output differential at which the output voltage drops ≥ 2% below its nominal value measured at a 1.5V differential.
Note 6: Thermal regulation is defined as the change in output voltage at a time T after a change in power dissipation is applied, excluding load or line regulation effects. Specifications are for a current pulse equal to ILMAX at VIN = 6V for T = 10 ms.
Note 7: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction-to-air (i.e., TA, TJ, θJA). Exceeding the maximum allowable power dissipation causes the device to initiate thermal shutdown. Please see Section 4.2 “Thermal Considerations” for more details.
## TEMPERATURE CHARACTERISTICS

**Electrical Specifications:** Unless otherwise indicated, $V_{IN} = V_R + 1.5V$, $I_L = 100 \mu A$, $C_L = 3.3 \mu F$, $SHDN > V_{IH}$, $T_A = +25^\circ C$.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Temperature Ranges</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specified Temperature Range</td>
<td>$T_A$</td>
<td>-40</td>
<td></td>
<td>125</td>
<td>°C</td>
<td><em>(Note 1)</em></td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>$T_J$</td>
<td>-40</td>
<td></td>
<td>125</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>$T_A$</td>
<td>-65</td>
<td></td>
<td>150</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td><strong>Thermal Package Resistances</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance, 3L-SOT-223</td>
<td>$\theta_{JA}$</td>
<td></td>
<td>59</td>
<td></td>
<td>°C/W</td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance, 3L-DDPAK</td>
<td>$\theta_{JA}$</td>
<td></td>
<td>71</td>
<td></td>
<td>°C/W</td>
<td></td>
</tr>
</tbody>
</table>

**Note 1:** Operation in this range must not cause $T_J$ to exceed Maximum Junction Temperature (+125°C).
2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

FIGURE 2-1: Line Regulation vs. Temperature.

FIGURE 2-2: Output Noise vs. Frequency.

FIGURE 2-3: Load Regulation vs. Temperature.

FIGURE 2-4: IDD vs. Temperature.

FIGURE 2-5: Dropout Voltage vs. ILOAD.

FIGURE 2-6: 3.0V VOUT vs. Temperature.
FIGURE 2-7: Power Supply Rejection Ratio.

FIGURE 2-8: Load Step Response.

FIGURE 2-9: Line Step Response
3.0 PIN DESCRIPTIONS

The descriptions for the pins are listed in Table 3-1.

TABLE 3-1: PIN FUNCTION TABLE

<table>
<thead>
<tr>
<th>Pin No. (3-Pin SOT-223) (3-Pin DDPAK)</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
<td>Ground Terminal.</td>
</tr>
<tr>
<td>2</td>
<td>V_{OUT}</td>
<td>Regulated output voltage.</td>
</tr>
<tr>
<td>3</td>
<td>V_{IN}</td>
<td>Unregulated Supply input.</td>
</tr>
</tbody>
</table>

3.1 Ground (GND)
Ground terminal.

3.2 Regulated Output Voltage (V_{OUT})
Regulated voltage output.

3.3 Unregulated Supply (V_{IN})
Unregulated supply input.
4.0 DETAILED DESCRIPTION

The TC2117 is a precision, positive output LDO. Unlike bipolar regulators, the TC2117 supply current does not increase proportionally with load current. In addition, VOUT remains stable and within regulation over the entire 0 mA to 800 mA operating load range.

4.1 Output Capacitor

A 1 µF (min) capacitor from VOUT to ground is required. The output capacitor should have an effective series resistance of 0.2Ω to 10Ω. A 1 µF capacitor should be connected from VIN to GND if there is more than 10 inches of wire between the regulator and the AC filter capacitor, or if a battery is used as the power source. Aluminum electrolytic or tantalum capacitor types can be used. (Since many aluminum electrolytic capacitors freeze at approximately -30°C, solid tantalums are recommended for applications operating below -25°C.) When operating from sources other than batteries, supply noise rejection and transient response can be improved by increasing the value of the input and output capacitors and employing passive filtering techniques.

4.2 Thermal Considerations

4.2.1 THERMAL SHUTDOWN

Integrated thermal protection circuitry shuts the regulator off when die temperature exceeds 160°C. The regulator remains off until the die temperature drops to approximately 150°C.

4.2.2 POWER DISSIPATION

The amount of power the regulator dissipates is primarily a function of input and output voltage, and output current. The following equation is used to calculate the worst-case actual power dissipation:

\[
P_D = (V_{INMAX} - V_{OUTMIN})I_{LOADMAX}
\]

Where:
- \( P_D \) = Worst-case actual power dissipation
- \( V_{INMAX} \) = Maximum voltage on VIN
- \( V_{OUTMIN} \) = Minimum regulator output voltage
- \( I_{LOADMAX} \) = Maximum output (load) current

The maximum allowable power dissipation (Equation 4-2) is a function of the maximum ambient temperature (\( T_{AMAX} \)), the maximum allowable die temperature (+125°C) and the thermal resistance from junction-to-air (\( \theta_{JA} \)).

\[
P_{DMAX} = \frac{T_{JMAX} - T_{AMAX}}{\theta_{JA}}
\]

Where all terms are previously defined.

Table 4-2 shows various values of \( \theta_{JA} \) for the TC2117 mounted on a 1/16 inch, 2-layer PCB with 1 oz. copper foil.

<table>
<thead>
<tr>
<th>Copper Area (Topside)*</th>
<th>Copper Area (Backside)</th>
<th>Board Area</th>
<th>Thermal Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>2500 sq mm</td>
<td>2500 sq mm</td>
<td>2500 sq mm</td>
<td>45°C/W</td>
</tr>
<tr>
<td>1000 sq mm</td>
<td>2500 sq mm</td>
<td>2500 sq mm</td>
<td>45°C/W</td>
</tr>
<tr>
<td>225 sq mm</td>
<td>2500 sq mm</td>
<td>2500 sq mm</td>
<td>53°C/W</td>
</tr>
<tr>
<td>100 sq mm</td>
<td>2500 sq mm</td>
<td>2500 sq mm</td>
<td>59°C/W</td>
</tr>
<tr>
<td>1000 sq mm</td>
<td>1000 sq mm</td>
<td>1000 sq mm</td>
<td>52°C/W</td>
</tr>
<tr>
<td>1000 sq mm</td>
<td>0 sq mm</td>
<td>1000 sq mm</td>
<td>55°C/W</td>
</tr>
</tbody>
</table>

* Tab of device attached to topside copper.
TABLE 4-3: THERMAL RESISTANCE GUIDELINES FOR TC2117 IN 3-PIN DDPAK PACKAGE

<table>
<thead>
<tr>
<th>Copper Area (Topside)*</th>
<th>Copper Area (Backside)</th>
<th>Board Area</th>
<th>Thermal Resistance (θ_JA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2500 sq mm</td>
<td>2500 sq mm</td>
<td>2500 sq mm</td>
<td>25°C/W</td>
</tr>
<tr>
<td>1000 sq mm</td>
<td>2500 sq mm</td>
<td>2500 sq mm</td>
<td>27°C/W</td>
</tr>
<tr>
<td>125 sq mm</td>
<td>2500 sq mm</td>
<td>2500 sq mm</td>
<td>35°C/W</td>
</tr>
</tbody>
</table>

*Tab of device attached to topside copper.

Equation 4-1 can be used in conjunction with Equation 4-2 to ensure regulator thermal operation is within limits. For example:

Given:
- \( V_{INMAX} = 5.0V \pm 5\% \)
- \( V_{OUTMIN} = 3.3V \pm 0.5\% \)
- \( I_{LOADMAX} = 400\ mA \)
- \( T_{JMAX} = 125°C \)
- \( T_{AMAX} = 55°C \)
- \( \theta_{JA} = 59°C/W \) (SOT-223)

Find:
1. Actual power dissipation
2. Maximum allowable dissipation

Actual power dissipation:

\[
PD = (V_{INMAX} - V_{OUTMIN})I_{LOADMAX} = [(5.0 \times 1.05) - (3.3 \times 0.995)] \times 400 \times 10^{-3} = 786\ mW
\]

Maximum allowable power dissipation:

\[
P_{D\text{MAX}} = \frac{(T_{JMAX} - T_{AMAX})}{\theta_{JA}} = \frac{(125 - 55)}{59} = 1.186W
\]

In this example, the TC2117 dissipates a maximum of only 786 mW, which is below the allowable limit of 1.186W. In a similar manner, Equation 4-1 and Equation 4-2 can be used to calculate the maximum current and/or input voltage limits.
5.0 PACKAGING INFORMATION

5.1 Package Marking Information

Legend:

- XX...X Customer-specific information
- Y Year code (last digit of calendar year)
- YY Year code (last 2 digits of calendar year)
- WW Week code (week of January 1 is week ‘01’)
- NNN Alphanumeric traceability code
- * Pb-free JEDEC designator for Matte Tin (Sn)
- " This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.

Example:

3-Lead DDPAK

XX...X
YYYYYYYY
YYWWNNN

Example:

3-Lead SOT-223

XX...X
XXXXXXX
XXXYYWW
NNN

Example:

TC2117
1.8VEB /e3
1034256

Example:

2117-25
VDB1034
256

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.
3-Lead Plastic (EB) [DDPAK]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

<table>
<thead>
<tr>
<th>Dimension Limits</th>
<th>INCHES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Pins</td>
<td>N 3</td>
</tr>
<tr>
<td>Pitch</td>
<td>e .100 BSC</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A .160 .190</td>
</tr>
<tr>
<td>Standoff §</td>
<td>A1 .000 .010</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E .380 .420</td>
</tr>
<tr>
<td>Exposed Pad Width</td>
<td>E1 .245</td>
</tr>
<tr>
<td>Molded Package Length</td>
<td>D .330 .380</td>
</tr>
<tr>
<td>Overall Length</td>
<td>H .549 .625</td>
</tr>
<tr>
<td>Exposed Pad Length</td>
<td>D1 .270</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c .014 .029</td>
</tr>
<tr>
<td>Pad Thickness</td>
<td>C2 .045 .065</td>
</tr>
<tr>
<td>Lower Lead Width</td>
<td>b .020 .039</td>
</tr>
<tr>
<td>Upper Lead Width</td>
<td>b1 .045 .070</td>
</tr>
<tr>
<td>Foot Length</td>
<td>L .068 .110</td>
</tr>
<tr>
<td>Pad Length</td>
<td>L1 .067</td>
</tr>
<tr>
<td>Foot Angle</td>
<td>ϕ 8°</td>
</tr>
</tbody>
</table>

Notes:
1. § Significant Characteristic.
2. Dimensions D and E do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .005" per side.
3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
3-Lead Plastic (EB) [DDPAK]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

---

<table>
<thead>
<tr>
<th>Units</th>
<th>Dimension Limits</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact Pitch</td>
<td>E</td>
<td>.100 BSC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pad Width</td>
<td>X2</td>
<td>.423</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pad Length</td>
<td>Y2</td>
<td>.327</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact Pad Spacing</td>
<td>C1</td>
<td>.252</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact Pad Width (X3)</td>
<td>X1</td>
<td>.041</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact Pad Length (X3)</td>
<td>Y1</td>
<td>.157</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Dimensioning and tolerancing per ASME Y14.5M
   BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2011A
3-Lead Plastic Small Outline Transistor (DB) [SOT-223]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension</td>
<td>MIN</td>
</tr>
<tr>
<td>Number of Leads</td>
<td>N</td>
</tr>
<tr>
<td>Lead Pitch</td>
<td>e</td>
</tr>
<tr>
<td>Outside Lead Pitch</td>
<td>e1</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
</tr>
<tr>
<td>Standoff</td>
<td>A1</td>
</tr>
<tr>
<td>Molded Package Height</td>
<td>A2</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
</tr>
<tr>
<td>Lead Width</td>
<td>b</td>
</tr>
<tr>
<td>Tab Lead Width</td>
<td>b2</td>
</tr>
<tr>
<td>Foot Length</td>
<td>L</td>
</tr>
<tr>
<td>Lead Angle</td>
<td>φ</td>
</tr>
</tbody>
</table>

Notes:
1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.127 mm per side.
2. Dimensioning and tolerancing per ASME Y14.5M.
   BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-032B
3-Lead Plastic Small Outline Transistor (DB) [SOT-223]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension</td>
<td>MIN</td>
</tr>
<tr>
<td>Contact Pitch</td>
<td>E</td>
</tr>
<tr>
<td>Overall Pitch</td>
<td>E1</td>
</tr>
<tr>
<td>Contact Pad Spacing</td>
<td>C</td>
</tr>
<tr>
<td>Contact Pad Width</td>
<td>X1</td>
</tr>
<tr>
<td>Contact Pad Width</td>
<td>X2</td>
</tr>
<tr>
<td>Contact Pad Length</td>
<td>Y</td>
</tr>
</tbody>
</table>

Notes:
1. Dimensioning and tolerancing per ASME Y14.5M
   BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2032A
APPENDIX A: REVISION HISTORY

Revision D (September 2010)
The following is the list of modifications:
1. Updated Figure 2-4.

Revision C (October 2006)
The following is the list of modifications:
1. Section 1.0 “Electrical Characteristics”: Changed dropout voltage typical value for $I_L = 500 \text{mA}$ from 700 to 1000 and maximum value from 1000 to 1200 for. Changed typical value for $I_L = 800 \text{mA}$ from 890 to 1200.
2. Section 5.0 “Packaging information”: Added package marking information and package outline drawings.
3. Added disclaimer to package outline drawings.
4. Added Appendix A Revision History.

Revision B (May 2002)
• Undocumented Changes.

Revision A (May 2001)
• Original Release of this Document.
PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>Device</th>
<th>X.XX</th>
<th>XX</th>
<th>X.XX</th>
<th>Tape and Reel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage Option</td>
<td><strong>Device</strong> TC2117 Fixed Output CMOS LDO Positive Regulator</td>
<td><strong>Voltage Option</strong></td>
<td><strong>Package</strong></td>
<td><strong>X.XX</strong></td>
<td><strong>Tape and Reel</strong></td>
</tr>
<tr>
<td>1.8V</td>
<td>1.8V</td>
<td>DB</td>
<td>Plastic (SOT-223), 3-lead</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5V</td>
<td>2.5V</td>
<td>DBTR</td>
<td>Plastic (SOT-223), 3-lead, Tape and Reel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.0V</td>
<td>3.0V</td>
<td>EB</td>
<td>Plastic Transistor Outline (DDPAK), 3-Lead</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3V</td>
<td>3.3V</td>
<td>EBTR</td>
<td>Plastic Transistor Outline (DDPAK), 3-Lead, Tape and Reel</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Other output voltages are available. Please contact your local Microchip sales office for details.

Examples:

a) TC2117-1.8VEBTR 1.8V LDO, DDPAK-3 pkg., Tape and Reel
b) TC2117-2.5VEBTR 2.5V LDO, DDPAK-3 pkg., Tape and Reel
c) TC2117-3.0VEBTR 3.0V LDO, DDPAK-3 pkg., Tape and Reel
d) TC2117-3.3VEBTR 3.3V LDO, DDPAK-3 pkg., Tape and Reel
e) TC2117-1.8VDB 1.8V LDO, SOT-223 pkg.
f) TC2117-1.8VDBTR 1.8V LDO, SOT-223 pkg., Tape and Reel
g) TC2117-2.5VDB 2.5V LDO, SOT-223 pkg.
h) TC2117-2.5VDBTR 2.5V LDO, SOT-223 pkg., Tape and Reel
i) TC2117-3.0VDB 3.0V LDO, SOT-223 pkg.
j) TC2117-3.0VDBTR 3.0V LDO, SOT-223 pkg., Tape and Reel
k) TC2117-3.3VDB 3.3V LDO, SOT-223 pkg.
l) TC2117-3.3VDBTR 3.3V LDO, SOT-223 pkg., Tape and Reel
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOG, KEELOG logo, MPLAB, PIC, PICmicro, PICSTART, PIC^32 logo, rPIC and Uni/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICWorks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, Hi-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2010, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.


Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KezLoc® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchips’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
### World Wide Sales and Service

**AMERICAS**

**Corporate Office**
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support: [http://support.microchip.com](http://support.microchip.com)
Web Address: [www.microchip.com](http://www.microchip.com)

**Atlanta**
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

**Boston**
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

**Chicago**
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

**Cleveland**
Independence, OH
Tel: 216-447-0084
Fax: 216-447-0083

**Dallas**
Addison, TX
Tel: 972-818-7243
Fax: 972-818-2924

**Detroit**
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

**Kokomo**
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387

**Los Angeles**
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

**Santa Clara**
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445

**Toronto**
Mississauga, Ontario, Canada
Tel: 905-673-0699
Fax: 905-673-6509

### ASIA/PACIFIC

**Asia Pacific Office**
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431

**Australia - Sydney**
Tel: 61-2-9968-6733
Fax: 61-2-9968-6755

**China - Beijing**
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104

**China - Chengdu**
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

**China - Chongqing**
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500

**China - Hong Kong SAR**
Tel: 852-2401-1200
Fax: 852-2401-3431

**China - Nanjing**
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470

**China - Qingdao**
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

**China - Shanghai**
Tel: 86-21-5407-5053
Fax: 86-21-5407-5066

**China - Shenyang**
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

**China - Shenzhen**
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

**China - Wuhan**
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

**China - Xian**
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

**China - Xiamen**
Tel: 86-592-2388138
Fax: 86-592-2388130

**China - Zhuhai**
Tel: 86-756-3210040
Fax: 86-756-3210049

### ASIA/PACIFIC

**India - Bangalore**
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123

**India - New Delhi**
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

**India - Pune**
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

**Japan - Yokohama**
Tel: 81-45-471-6166
Fax: 81-45-471-6122

**Korea - Daegu**
Tel: 82-53-744-4301
Fax: 82-53-744-4302

**Korea - Seoul**
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or 82-2-558-5934

**Malaysia - Kuala Lumpur**
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

**Malaysia - Penang**
Tel: 60-4-227-8870
Fax: 60-4-227-4068

**Philippines - Manila**
Tel: 63-2-634-9065
Fax: 63-2-634-9069

**Singapore**
Tel: 65-6334-8870
Fax: 65-6334-8850

**Taiwan - Hsin Chu**
Tel: 886-3-6578-300
Fax: 886-3-6578-370

**Taiwan - Kaohsiung**
Tel: 886-7-231-7830
Fax: 886-7-330-9305

**Taiwan - Taipei**
Tel: 886-2-2506-6310
Fax: 886-2-2506-0102

**Thailand - Bangkok**
Tel: 66-2-694-1351
Fax: 66-2-694-1350

### EUROPE

**Austria - Wels**
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

**Denmark - Copenhagen**
Tel: 45-4450-2828
Fax: 45-4485-2829

**France - Paris**
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

**Germany - Munich**
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

**Italy - Milan**
Tel: 39-0331-742611
Fax: 39-0331-466781

**Netherlands - Drunen**
Tel: 31-416-690399
Fax: 31-416-690340

**Spain - Madrid**
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

**UK - Wokingham**
Tel: 44-118-921-5869
Fax: 44-118-921-5820

08/04/10