Description
Phototransistors are photodiode-amplifier combinations integrated within a single silicon chip. These are combined to overcome the major fault of photodiodes: unity gain. Many applications demand a greater output signal from the photodetector than can be generated by a photodiode alone. While the signal from a photodiode can always be amplified through use of an external op-amp or other circuitry, this approach is often not as practical or as cost-effective as the use of phototransistors. The phototransistor can be viewed as a photodiode whose output photocurrent is fed into the base of a conventional small-signal transistor. While not required for operation of the device as a photodetector, a base connection is often provided, allowing the designer the option of using base current to bias the transistor. The typical gain of a phototransistor can range from 100 to over 1500.

Phototransistors can be used as ambient-light detectors. When used with a controllable light source, typically an IRED, they are often employed as the detector element for optoisolators and transmissive or reflective optical switches.

All phototransistors are RoHS compliant.

Features
- Low-cost visible and near-IR photodetection
- Available with gains from 100 to over 1500
- Moderately fast response times
- Available in a wide range of packages including epoxy-coated, transfer-molded, cast, hermetic packages, chip form and surface mounting technology
- Usable with almost any visible or near-infrared light source such as IREDs, neon, fluorescent, incandescent bulbs, lasers, flame sources, sunlight, etc.
- Same general electrical characteristics as familiar signal transistors

Typical Applications
- Computer/business equipment
 - Write-protect control
 - Margin controls—printers
- Industrial
 - LED light source—light pens
 - Security systems
 - Safety shields
- Consumer
 - Coin counters
 - Lottery card readers
 - Position sensors—joysticks
 - Remote controllers—toys, appliances, audio/visual equipment
 - Games—laser tag
 - Camera shutter control

Datasheets available upon request.

Absolute Maximum Ratings
- Continuous Power Dissipation:
 - 50 mW
 - 100 mW
 - 200 mW
 - 250 mW

- Derate above 30°C:
 - 0.71 mW/°C
 - 2.5 mW/°C
 - 3.12 mW/°C

- Maximum Current:
 - 25 mA
 - 200 mA

- Lead-Soldering Temperature: 260°C (1.6 mm from case, 5 sec. max.)
NPN Phototransistors

0.25”, small area, high speed
0.04”, medium area, high sensitivity
0.05”, large area, high sensitivity

Electro-Optical Characteristics @ 25°C

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Light Current</th>
<th>Dark Current</th>
<th>Collector Breakdown</th>
<th>Emitter Breakdown</th>
<th>Saturation Voltage</th>
<th>Rise/Fall Time</th>
<th>R<sub>L</sub>/t<sub>F</sub> Response</th>
<th>Angular Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTT1222WH</td>
<td>1.9 mA</td>
<td>0.25 V</td>
<td>3 µsec</td>
<td>40°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VTT1223WH</td>
<td>1.5 mA</td>
<td>0.25 V</td>
<td>3 µsec</td>
<td>40°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VTT1225H</td>
<td>4 mA</td>
<td>1.5 V</td>
<td>3 µsec</td>
<td>5°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VTT1226H</td>
<td>7.5 mA</td>
<td>3 V</td>
<td>2 µsec</td>
<td>±4°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VTT1227H</td>
<td>12 mA</td>
<td>4 V</td>
<td>2 µsec</td>
<td>±4°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VTT132WH</td>
<td>0.8 mA</td>
<td>2 V</td>
<td>3 µsec</td>
<td>±4°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VTT1323WH</td>
<td>1.2 mA</td>
<td>2 V</td>
<td>3 µsec</td>
<td>±4°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VTT132EH</td>
<td>4 mA</td>
<td>4 V</td>
<td>3 µsec</td>
<td>±4°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VTT3323WH</td>
<td>2 mA</td>
<td>5 V</td>
<td>3 µsec</td>
<td>±4°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VTT3325WH</td>
<td>1.2 mA</td>
<td>5 V</td>
<td>3 µsec</td>
<td>±4°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VTT3425WH</td>
<td>4 mA</td>
<td>5 V</td>
<td>3 µsec</td>
<td>±4°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VTT7122H</td>
<td>1 mA</td>
<td>2 V</td>
<td>3 µsec</td>
<td>±3°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VTT7123H</td>
<td>2 mA</td>
<td>3 V</td>
<td>3 µsec</td>
<td>±3°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VTT7125H</td>
<td>4.5 mA</td>
<td>5 V</td>
<td>3 µsec</td>
<td>±3°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VTT7222H</td>
<td>0.9 mA</td>
<td>4 V</td>
<td>3 µsec</td>
<td>±3°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VTT7223H</td>
<td>1.8 mA</td>
<td>5 V</td>
<td>3 µsec</td>
<td>±3°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VTT7225H</td>
<td>4 mA</td>
<td>5 V</td>
<td>3 µsec</td>
<td>±3°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Clear T-1 3/4 (5 mm) Plastic Package
VTT1212 VTT1214 VTT1223W VTT1227
VTT122W VTT1225
VTT1222W VTT1226

IRT T-1 3/4 (5mm) Plastic Package
VTT1322W VTT1312
VTT1323W VTT1314

Coax Hermetic (with case lead)
VTT3122E VTT3123E

Clear Long T-1 (3 mm) Plastic Package
VTT3323LA VTT3324LA VTT3325LA

IRT Long T-1 (3 mm) Plastic Package
VTT3423LA VTT3424LA VTT3425LA

Molded, Lensed Lateral Package
VTT7122 VTT7123 VTT7125

IRT Molded, Lensed Lateral Package
VTT7222 VTT7223 VTT7225

Clear Epoxy TO-106 Ceramic Package
VTT9002 VTT9003

Epoxy Lensed TO-106 Ceramic Package
VTT9102 VTT9103
.05” x .05” NPN Phototransistors

Technical Specification

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Light Current Hfc (mW/cm²)</th>
<th>Dark Current Icmax</th>
<th>Vce(SAT) Volts</th>
<th>Vbr(CEO) Volts min.</th>
<th>Vbr(ECO) Volts min.</th>
<th>Ic/If µsec, typ.</th>
<th>Angular Response θ1/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTT1015H</td>
<td>0.4</td>
<td>100 (5)</td>
<td>25</td>
<td>20</td>
<td>40</td>
<td>6</td>
<td>0.4</td>
</tr>
<tr>
<td>VTT1016H</td>
<td>1</td>
<td>100 (5)</td>
<td>25</td>
<td>20</td>
<td>30</td>
<td>6</td>
<td>0.4</td>
</tr>
<tr>
<td>VTT1017H</td>
<td>2.5</td>
<td>100 (5)</td>
<td>25</td>
<td>20</td>
<td>30</td>
<td>6</td>
<td>0.4</td>
</tr>
<tr>
<td>VTT1115H</td>
<td>1</td>
<td>20 (1)</td>
<td>100</td>
<td>10</td>
<td>30</td>
<td>4</td>
<td>0.4</td>
</tr>
<tr>
<td>VTT1116H</td>
<td>2</td>
<td>20 (1)</td>
<td>100</td>
<td>10</td>
<td>30</td>
<td>4</td>
<td>0.4</td>
</tr>
<tr>
<td>VTT1117H</td>
<td>4</td>
<td>20 (1)</td>
<td>100</td>
<td>10</td>
<td>30</td>
<td>4</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Electro-Optical Characteristics @ 25°C

Table Key
- \(I_C \): Light Current
- \(I_{CEO} \): Dark Current H=0
- \(V_{BR(CEO)} \): Collector Breakdown \(I_C=100 \mu A, H=0 \)
- \(V_{BR(ECO)} \): Emitter Breakdown \(I_E=100 \mu A, H=0 \)
- \(V_{CE(SAT)} \): Saturation Voltage \(I_C=1 \text{ mA}, H=400 \text{ ft} \)
- \(t_{R/F} \): Rise/Fall Time \(I_C=1 \text{ mA}, R_L=100 \Omega \)

CR10TE
- Surface mounting device
- Solid state ceramic chip
- High thermal conductivity
- Special type (CR10TE-DLF) with daylight filter on request

* All packages are listed on our website.