Low Power Bipolar Transistor multicomp

Features:

- · PNP Silicon Planar Epitaxial Transistors
- · General Purpose Audio Amplifier

Absolute Maximum Ratings:

Description	Symbol	BC477	Unit	
Collector Emitter Voltage	V _{CES}	90	V	
Collector-Emitter Voltage	V _{CEO}	80		
Emitter-Base Voltage	V _{EBO}	6		
Collector Current	I _C	150	mA	
Power Dissipation at T _a = 25°C	P _{tot}	0.3	W	
Power Dissipation at T _C = 25°C	P _{tot}	1.2		
Junction Temperature	T_J	200	00	
Storage Temperature Range	T _{stg}	-55°C to +200	°C	

Thermal Resistance

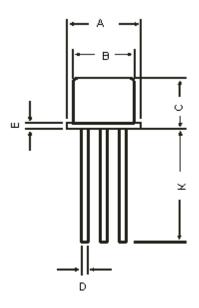
Junction to Case	R _{th (j-c)}	146	°C/W
Junction to Ambient	R _{th (j-a)}	485	C/VV

Electrical Characteristics: $(T_A = +25^{\circ}C \text{ unless otherwise specified})$

Parameter	Symbol	Test Condition	Min.	Typical	Max.	Unit
Collector Cut off Current	I _{CES}	V _{CE} = 70V, V _{BE} = 0 Ta = 125°C			10	nA
	CES	V _{CE} = 70V, V _{BE} = 0	-			μΑ
Emitter Cut off Current	I _{EBO}	$V_{EB} = 4V, I_{C} = 0$			10	nA
O H	V _{CES}	$I_{C} = 10 \mu A, V_{BE} = 0$	90	-		
Collector-Emitter Voltage	V _{CEO}	$I_{C} = 5mA, I = 0$	80		-	
Emitter-Base Voltage	V _{EBO}	$I_{E} = 10 \mu A, I_{C} = 0$	6			
Collector Emitter Saturation Voltage	V _{CE (Sat)} *	I _C = 10mA, I _B = 0.5mA			0.25	.,
		I _C = 100mA, I _B = 5mA	-	0.3	-	V
Base Emitter On Voltage	V _{BE (on)} *	I _C = 2mA, V _{CE} = 5V	0.55		0.75	
D	V _{BE (Sat)} *	I _C = 10mA, I _B = 0.5mA		-	0.9	
Base Emitter Saturation Voltage		I _C = 100mA, I _B = 5mA	_	0.9	-	
DC Current	h _{FE} *	$I_{\rm C} = 10 \mu A, V_{\rm CE} = 5 V$	30		-	
		I _C = 2mA, V _{CE} = 5V	110	-	250	
		I _C = 10mA, V _{CE} = 5V	-	160	-	
Small Signal Current Gain		$I_C = 2mA, V_{CE} = 5V,$ f = 1kHz	125	-	260	-
	h _{fe}	$I_C = 10$ mA, $V_{CE} = 5$ V, f = 20MHz	-	7.5	-	

Dynamic Characteristics

Collector Base Capacitance	Ccbo	I _E = 0, V _{CB} = 5V			6	pF
Emitter Base Capacitance	Cebo	$I_{\rm C} = 0, V_{\rm EB} = 0.5 V$			15	pF
Noise Figure	NF	$V_{CE} = 5V, I_{C} = 200 \mu A$ $Rg = 2k\Omega, f = 1kHz$ B = 200Hz	-	-	10	dB


^{*}Pulsed: Pulse Duration = 300µs, Duty Cycle = 1%

Low Power Bipolar Transistor multicomp

TO-18 Metal Can Package

Dim.	Min.	Max.	
Α	5.24	5.84	
В	4.52	4.97	
С	4.31	5.33	
D	0.4	0.53	
Е	-	0.76	
F	-	1.27	
G	-	2.97	
Н	0.91	1.17	
J	0.71	1.21	
K	12.7 -		
L	45°		

Dimensions: Millimetres

- 1. Emitter
- 2. Base
- 3. Collector

Part Number Table

Description	Part Number		
Transistor, PNP, TO-18	BC477		

Important Notice: This data sheet and its contents (the "Information") belong to the members of the Premier Farnell group of companies (the "Group") or are licensed to it. No licence is granted for the use of it other than for information purposes in connection with the products to which it relates. No licence of any intellectual property rights is granted. The Information is subject to change without notice and replaces all data sheets previously supplied. The Information supplied is believed to be accurate but the Group assumes no responsibility for its accuracy or completeness, any windut holde and the places and the splaces are splaces and the splaces and the splaces are splaces. The splaces are splaces and the splaces are splaces and the splaces are splaces and the splaces are splaces. The splaces are splaces are splaces and the splaces are splaces and the splaces are splaces. The splaces are splaces are splaces are splaces and the splaces are splaces. The splaces are splaces are splaces and the splaces are splaces and the splaces are splaces. The splaces are splaces are splaces and the splaces are splaces and the splaces are splaces. The splaces are splaces are splaces are splaces and the splaces are splaces. The splaces are splaces are splaces are splaces. The splaces are splaces are splaces are splaces. The splaces are splaces are splaces are splaces are splaces. The splaces are splaces are splaces are splaces are splaces. The splaces are splaces are splaces are splaces are splaces. The splaces are splaces are splaces are splaces are splaces are splaces. The splaces are splaces are splaces are splaces are splaces are splaces. The splaces are splaces are splaces are splaces are splaces are splaces. The splaces are splaces are splaces are splaces are splaces. The splaces are splaces are splaces are splaces are splaces. The splaces are splaces are splaces are splaces are splaces. The splaces are splaces are splaces are splaces are splaces. The splaces are splaces are splaces are splaces are splaces. The splaces are splaces are splaces are splaces are splaces are splace

www.element14.com www.farnell.com www.newark.com

