§

1

Wy,
®

YPRESS

PERFORM

1
\

NL Radio Driver APl Document

Doc. No. 001-70689 Rev. *B

Cypress Semiconductor
198 Champion Court

San Jose, CA 95134-1709
Phone (USA): 800.858.1810
Phone (Intnl): 408.943.2600

http://www.cypress.com

http://www.cypress.com/

CYPRESS

WN]_“
;!

L

Copyrights

Copyrights

© Cypress Semiconductor Corporation, 2011. The information contained herein is subject to change without notice.
Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a
Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted
nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an
express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical
components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury
to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all
risk of such use and in doing so indemnifies Cypress against all charges.

Trademarks

PSoC Designer™ and Programmable System-on-Chip™ are trademarks and PSoC® is a registered trademark of Cypress
Semiconductor Corp. All other trademarks or registered trademarks referenced herein are property of the respective
corporations.

Source Code

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected
by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international
treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use,
modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of
creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or
representation of this Source Code except as specified above is prohibited without the express written permission of
Cypress.

Disclaimer

CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described
herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein.
Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure
may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support
systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against
all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

2 NL Radio Driver APl Document, Doc. No. 001-70689 Rev. *B

Contents

L. INETOAUCTION e 5

LRY=] (=1 =] 0 (o= SRR PUPRPPN
Document Revision History

N B 1= Yo]] 4 Lo o B R R TR 7
F N IO L PP PP P PP PPPPPPPPPPPPPPPIRE 7
P2 00t R [01 1 = 1 2= i o o ST UT S OUPRPTI 7
P I - 1 1Y 1 411111 Vo SO SPPPRPRN 7
P2 T B = Tod T\ V. o o RS TPPPRRTRN 7
LY=o (U1 0T 1= L SO PUPRRPN 8
P I o =T T =Y g {1 T RS TUPPURTT 8
P T o (VL A 1 (=T = (o ST
216 PinS..cccciiiiiiiiiiiiien,
Type Declarations and Definitions
3. RAAIO High LEVEI FUNCLIONS ..uiiiiiiiiiiiiiiiii ettt e e ettt e e e e e e st e e e e e e e satbaaeeaeeessastbeaeeeeeessassbeaeeeaeesaasnrnes 10
= Lo o] | o 1 SRR PPRRRN
[T [0 1571 (@3 o PV o =] PO PP PP PTPRPPTPRI
= Lo (0] C1=] (O o F= o] =] PR SUPPUPEPRRN
2= Lo [0 1ST=] (O o o T U UPPPPPRN
= Lo (o] CT=] (@ o] oo U PPUPEPRRN
R Lo [0 151=1 0 € o1 (o] ¢ o [H PSR SUPPUPEPRRN
2= Lo (0] C1=] 0 - o1 (O] o U SPPPPPRN

RadioSetFrameConfig
RadioGetFrameConfig
RadioSetPreambleCount
RadioGetPreambleCount
2= Lo [0 151=] (O (o1ST=T=T o H U UPPPPPRN
Lz 10 [0] €= (O £ == o S
= 10 [0 =1 1 PPN
2= Lo [0 1ST= =T o To | 1 1O U OPPEPPRN
Lz 10 1033 = L = U1 0 1 S
R Lo [o 1=y A N =T a IS 1011 5] - L (= SRRSO PPRPRN
2= Lo T =t o I = U 1] 1 U PPPPRN
= Lo [To] = (oo (T T LI = 1 1] 1 41 RSO PPRRRN
RAJIOSTAMRECEIVE. ... eeiiieiie ettt e e e ettt e e e e e e et aeeeee e e e st b b et eeeee e s st bbeaeeeeeessas s beeeeeeeesaassbeseeeaeesaassnsaeaeeaesaanes

NL Radio Driver APl Document, Doc. No. 001-70689 Rev. *B 3

=7 Cvpress
Contents Lt
RAJIOGEIRECEIVESTALE ... ueiiiiei ittt et e e ettt e e e e e et eeee e e s s e tb et e eeeeeseastbeteeeeeesaassbebeeeeeeesasastbaeeaaeseasnntbaneeaeeaans 19
Lz 10 [T0] = 0 1 LYot 1Y S 20
RadioForceState
2= Lo (0] 1= 1 3 £ U POPPUPPPPRN

(2 =T [10Y 2N o o] SRR
RadioState

4 NL Radio Driver APl Document, Doc. No. 001-70689 Rev. *B

1. Introduction

PERFORM

The NL radio driver provides users with a consistent interface to the NL radio. The driver is designed to interface with both
C and assembly written applications and consists of the following files:

B Niradio.asm

B Niradio.h

® Nlradio.inc

® Nispi.asm

This document describes the APIs exposed by WUSB-NL driver.

The NL radio driver is used in wireless mouse, keyboard, and bridge application software stacks. The NL radio driver is
modular and can be used as a library. The API exported by this module is explained in this document. The following is a
system level block diagram of a typical wireless mouse and keyboard application.

Figure 1-1. System Level Block Diagram

@) R

<({ })) ‘ll'ln‘ir:::::l;ﬁﬂ.
Wr'gl::;l:SB @(})> [(Transceiver)
(Transceiver)

References

1. 001-13683 Rev. *B - SPI Master Data Sheet SPIM V 1.20
2. 001-13678 Rev. *F — SPI Master Data Sheet SPIMV 2.5

NL Radio Driver APl Document, Doc. No. 001-70689 Rev. *B 5

Introduction

Document Revision History

3} CYPRESS

FPERFORM

Revision Issue Date Origin of Change Description of Change
*x 07/22/2011 DATT New spec.
*A 08/19/2011 KPMD Changed posting to external web.
*B 12/13/2011 KNTH Update to match driver v1.4.

NL Radio Driver APl Document, Doc. No. 001-70689 Rev. *B

I
1

YPRESS

PERFORM

%.—‘8

2. Description

APl Use

This section describes high level use of APIs. It also describes the requirement to use this module and the type declaration
used within this module.

2.1.1 Initialization
Before the radio can be used, it must be initialized using the API call Radiolnit.

Example usage:
Radi ol nit();

2.1.2 Transmitting

There are two types of transmit function: blocking and non blocking. Blocking transmit does not return until the transmit
process has completed. The non blocking function starts transmit and then returns. It is the responsibility of the calling
application to monitor the start of transmits and terminate when necessary. Both forms of transmits require a call to
RadioSetPtr with a buffer address as a parameter. This pointer points to the start of the buffer to be transmitted.

Transmit examples:

Blocking Non Blocking

RadioSetPtr RadioSetPtr

RadioBlockingTransmit RadioStartTransmit
RadioGetTransmitState
RadioEndTransmit

2.1.3 Receiving

By default, receives are non blocking and require a similar set of calls as used in the non blocking transmit functions.
RadioAbort must be called to abort a receive operation. Note that after receive starts, no calls can be made to the
configuration access routines until the receive operation is terminated.

RX examples:

B RadioSetPtr

B RadioStartReceive

B RadioGetReceiveState
]

RadioEndReceive

NL Radio Driver APl Document, Doc. No. 001-70689 Rev. *B 7

CYPRESS

I
4

L

Description

Requirements
2.1.4 Header files

To use the radio driver you must include nlRadio.h or nIRadio.inc in any file that calls radio driver functions.

2.1.5 HW interface

The SPI Master block of the PSoC Designer UM (refer [1]) used to interface to the radio is named: SPIM_Radio. This block
provides the firmware interface to the SPI pins, so their names have no requirements.

2.1.6 Pins

In the PSoC Designer workspace, name the pins as mentioned in the following table.

SlI. No Pin Description Pin Name
1 Pin connected to NL Radio’s Slave select pin NL_nSS
2 Pin connected to NL Radio’s reset pin NL_RST
3 Pin connected to BIND button BIND_BUTTON
4 SPI Pins to be prefixed with SPIM_Radio_

Type Declarations and Definitions

The type declarations are as follows. These declarations are kept the same as the LP radio driver to keep the changes in
existing protocol and application to minimum.

BYTE: Used for 8-bit register values.
WORD: Used for 16-bit register values.
RADIO_CONST_PTR: Used for ROM buffer pointers.
RADIO_BUFFER_PTR: Used for RAM buffer pointers.

RADIO_LENGTH: Used for radio field lengths.
RADIO_REG_ADDR: 8 bit value used for Radio registers address.
RADIO_STATE: Type unsigned char to store the radio state. Radio States are
RADIO_IDLE 0x00
RADIO_RX 0x80
RADIO_TX 0x20
RADIO_DATA 0x02
RADIO_COMPLETE 0x04
RADIO_ERROR 0x08

RADIO_SLEEP 0x40
RADIO_RX_STATUS: Type unsigned char. Radio receive status are

RADIO_BAD_CRC 0x08
RADIO_BUF_NOT SUF 0x30
RADIO_SUCCESS 0x80

8 NL Radio Driver APl Document, Doc. No. 001-70689 Rev. *B

b7 CYPRESS

RADIO_FAILURE 0x00

XACT_CONFIG: Type unsigned int
ACK_EN 0x0800
ACK_TO is of following value
ACK_TO 4X 0Ox6B
ACK_TO 8X 0x9C
ACK_TO_12X 0OxCD
ACK_TO_ 15X OXFF

TX_CONFIG: Type unsigned int
PA_VAL is of following value
PA_N12_DBM Ox1E20
PA N8 DBM 0x1C20
PA N3 DBM 0x1A20
PA_0_DBM 0x1920
PA_1 _DBM 0x1820

RADIO_FRAME_CONFIG : Type unsigned char

SOP_EN 0x00 This is ignored for NL
LEN_EN 0x20

RADIO_RSSI: Type unsigned char

RADIO_LENGTH: Type unsigned char

NL Radio Driver APl Document, Doc. No. 001-70689 Rev. *B

Radio High Level Functions

3. Radio High Level Functions

Radiolnit

voi d Radi ol nit(void);

Parameters:
None
Return Value:
None

Description:
This function initializes the radio module. Before calling this function, initialize SP1 Master with the following
configurations:

B enCoR2 controller— BitOrder — MSB First, CPOL — Low, CPHA — High
® enCoRe5 controller — SPIM_Radio_SPIM_MODE_1, SPIM_Radio_SPIM_MSB_FIRST

For the definition of SPIM configuration refer to [1] and [2].

RadioSetChannel

voi d Radi oSet Channel (BYTE channel) ;

Parameters:

channel 8-bit value that is passed to the function.
Return Value:

None

Description:

This function sets the radio channel to a specified frequency. The frequency has the value of (2402 + channel)
MHz . This function takes an 8-bit argument that is passed to it by ‘BYTE channel’. RadioSetChannel is limited

to a maximum of RADIO_MAX_CHAN, which is 78.

Example:
Radi oSet Channel (10); // Put carrier at 2412NHz

10 NL Radio Driver APl Document, Doc. No. 001-70689 Rev. *B

RadioGetChannel

BYTE Radi 0Get Channel (voi d);

Parameters:
None

Return Value:

This function returns the 8-bit value of the channel number. The frequency should be interpreted as (2402 +

channel) MHz.
Description:
This function gets an 8-bit value from the channel.
Example:
Radi oSet Frequency(10); // Put carrier at 2412NHz
¢ = Radi oGet Channel (); // Returns 10.

RadioSetTxConfig

voi d Radi oSet TxConfi g(TX_CONFI G config);

Parameters:
config: Radio power amplifier gain setting
Possible values for ‘config’ are:
PA_N19 DBM : -19dBm
PA_N12_DBM: -12dBm
PA_N8_DBM: -8dBm
PA_N3_DBM: -3dBm
PA_0_DBM: 0dBm
PA_1_DBM: 1dBm
Return Value:
None
Description:
This function sets the radio power amplifier gain.
Example:
Radi oSet TxConfi g(PA_ N15 DBM; // Set PA gain to -15dBm

NL Radio Driver APl Document, Doc. No. 001-70689 Rev. *B

11

Radio High Level Functions

RadioGetTxConfig

TX_CONFI G Radi 0Get TxConfi g(voi d);
Parameters:
None
Return Value:
Radio power amplifier gain setting. Possible values are:
PA_N19 DBM : -19dBm
PA_N12_DBM: -12dBm
PA_N8_DBM: -8dBm
PA_N3_DBM: -3dBm
PA_0_DBM: 0dBm
PA_1 _DBM: 1dBm
Description:
This function returns the radio power amplifier gain.
Example:
Radi oSet TxConfi g(PA_N15_DBM ;
if (Radi oCet TxConfig() == PA_N3_DBM
{
/* Not entered */

RadioSetXactConfig

voi d Radi oSet Xact Confi g(XACT_CONFI G confi g);
Parameters:

config: transaction configuration composed of two parts

a) Enable auto-ack

Possible value is ACK_EN

b) Rxack timeout

Possible values are,

ACK_TO_4X

ACK_TO_8X

ACK_TO_12X

ACK_TO_15X

Return Value:

12 NL Radio Driver APl Document, Doc. No. 001-70689 Rev. *B

Description:

CYPRESS

None

This function sets the transaction configuration composed of two parts, auto-ack enable and Rx ack timeout.

Example:

// Enabl e aut o-ack and set naxi mum Rx ack ti meout
Radi oSet Xact Confi g(ACK_EN | ACK _TO 15X);

/] Disable auto-ack and set nmaxi num Rx ack ti neout

Radi oSet Xact Confi g(ACK_TO _15X);

RadioGetXactConfig

Parameters:

XACT_CONFI G Radi oGet Xact Confi g(voi d);

None

Return Value:

Description:

Transaction configuration composed of two parts
a) Enable auto-ack

Possible value is ACK_EN

b) Rxack timeout

Possible values are,

ACK_TO_4X

ACK_TO_8X

ACK_TO_12X

ACK_TO_15X

This function returns the transaction configuration composed of two parts, auto-ack enable and Rx ack

timeout.

Example:

/1 Turn off the auto-ack function but keep the current
Radi oSet Xact Confi g(Radi oGet Xact Confi g() & ~ACK_EN);

RadioSetFrameConfig

Parameters:

voi d Radi oSet Fr ameConf i g(RADI O_FRAME_CONFI G confi g);

config: frame configuration composed of
a) Syncword length.
Possible values are,

SYNC_WRD_64 BITS

NL Radio Driver APl Document, Doc. No. 001-70689 Rev. *B

ack tinmeout setting

13

Radio High Level Functions

SYNC_WRD_48 BITS
SYNC_WRD_32_BITS
SYNC_WRD_16_BITS
b) Packet length enable
Possible value is LEN_EN

Return Value:

Description:

None

This function sets the frame configuration composed of two parts, packet length enable and syncword length.
Syncword length can be 64, 48, 32 or 16 bits. Enabling packet length causes the radio to treat the first byte of
the payload as the length.

Example:
/1 Set syncword length to 48 bits and enabl e packet |ength.
Radi oSet FrameConfi g(SYNC_ WRD 48 BI TS | LEN_EN);

RadioGetFrameConfig

Parameters:

RADI O_FRAME_CONFI G Radi 0Get Fr aneConf i g(voi d);

None

Return Value:

Description:

Frame configuration composed of

a) Syncword length.
Possible values are,
SYNC_WRD_64 BITS
SYNC_WRD_48 BITS
SYNC_WRD_32_BITS
SYNC_WRD_16_BITS

b) Packet length enable
Possible value is LEN_EN

This function sets the frame configuration composed of two parts, packet length enable and syncword length.
Syncword length can be 64, 48, 32 or 16 bhits. Enabling packet length causes the radio to treat the first byte of
the payload as the length.

Example:
/1 Turn on packet |ength but keep the current syncword setting
Radi oSet Fr aneConfi g(Radi oGet FrameConfig() | LEN_EN);

RadioSetPreambleCount

14

NL Radio Driver APl Document, Doc. No. 001-70689 Rev. *B

CYPRESS

voi d Radi oSet Pr eanbl eCount (BYTE count) ;
Parameters:
count: preamble length
Possible values are,
PREAMBLE_LEN_1 BYTE
PREAMBLE_LEN_2 BYTE
PREAMBLE_LEN_3_BYTE
PREAMBLE_LEN_ 4 BYTE
PREAMBLE_LEN 5 BYTE
PREAMBLE_LEN_ 6 BYTE
PREAMBLE_LEN_7 BYTE
PREAMBLE_LEN_8 BYTE
Return Value:
None
Description:
This function sets the preamble length in bytes. The maximum length of the preamble is 8.
Example,
/1l Set the preanble length to 1 byte
Radi oSet Pr eanbl eCount (PREAMBLE_LEN 1 BYTE) ;

RadioGetPreambleCount

BYTE Radi 0Get Pr eanbl eCount (voi d);
Parameters:

None
Return Value:

The preamble length
Description:

This function gets the preamble length in bytes. The maximum length of the preamble is 8.

RadioSetCrcSeed

voi d Radi 0Set Cr cSeed(WORD cr cSeed) ;
Parameters:

crcSeed The crcSeed value.
Return Value:

None
Description:

This function sets the value used as the CRC seed value for both transmit and receive. As the NL supports
only 8-bit CRC, the MSB of crcSeed is ignored.

NL Radio Driver APl Document, Doc. No. 001-70689 Rev. *B 15

Radio High Level Functions

RadioGetCrcSeed

WORD Radi 0Get Cr cSeed(voi d);
Parameters:

None
Return Value:

CRC seed value for both transmit and receive. As the NL supports only 8-bit CRC, the MSB of the returned
CRC seed is always 0.

Description:

Returns the current CRC seed value. As the NL supports only 8-bit CRC, the MSB of CRC seed is ignored.

RadioSetPtr

voi d Radi oSet Ptr (RADI O BUFFER_PTR ranPtr);
Parameters:

RamPtr: Pointer to RAM buffer for future operations.
Return Value:

None
Description:

Set the buffer pointer address for future transmit and receive operations.

RadioSetLength

voi d Radi oSet Ptr (RADI O_LENGTH | engt h) ;
Parameters:
length: Length of buffer pointed to by most recent call to RadioSetPtr.
Return Value:
None
Description:
Set the buffer length pointed to by most recent call to RadioSetPtr.
Example,
Radi oSet Lengt h(si zeof (rx_packet));
Radi oSet Pt r ((unsi gned char *)&rx_packet);
Radi oSt art Recei ve();

16 NL Radio Driver APl Document, Doc. No. 001-70689 Rev. *B

CYPRESS

RadioStartTransmit

voi d Radi oStartTransm t (BYTE retryCount, RADI O LENGTH | ength);
Parameters:

retryCount: Number of retries.

length: Number of bytes to transmit.
Return Value:

None
Description:

Start the non blocking transmission of a packet. The location of the packet buffer to transmit must have
previously been set with a call to RadioSetPtr.

After starting the transmission of a packet with this call, the state of the transmit operation should be checked
by calling RadioGetTransmitState. When RadioGetTransmitState indicates that the transmission has
completed, a call should be made to RadioEndTransmit.

After calling RadioStartTransmit, no calls can be made to the configuration access routines until the transmit
operation is terminated with a call to RadioEndTransmit or RadioAbort. Until one of those calls is made to end
the transmit operation, the only other call supported is RadioGetTransmitState.

Example:
unsi gned char bufferToTransmit[14] = “Packet Payl oad”;

Radi oSet Ptr (buffer ToTransnit);
Radi oSt art Transm t (0, sizeof (bufferToTransnit));
whil e (Radi oGet TransnmitState() != RAD O COWLETE)

{
Cal | SoneRout i neToGet Wor kDoneWhi | eWai ti ngFor Transmi t ToConpl ete();

}
Radi oEndTransmit () ;

RadioGetTransmitState

RADI O_STATE Radi 0Get Transnit St at e(voi d);

Parameters:

None
Return Value:

Returns the state of the current transmit operation.
Description:

This call should be made after starting a transmit operation with the RadioStartTransmit function. The value
returned is of the type RADIO_STATE and can take a value of RADIO_COMPLETE or RADIO_TX.

NL Radio Driver APl Document, Doc. No. 001-70689 Rev. *B 17

CYPRESS
Radio High Level Functions PR ens

RadioEndTransmit

voi d Radi oEndTransnit (void);
Parameters:

None
Return Value:

None
Description:

Completes a transmit operation.

RadioBlockingTransmit

RADI O_STATE Radi oBIl ocki ngTransmi t (BYTE retryCount, RADI O LENGTH | ength);
Parameters:

retryCount: Number of times the packet should be retried it the transmit fails.

length: Length, in bytes, of the pocket.
Return Value:

Radi o state.
Description:

Transmit a packet. Block execution until it completes. This function attempts to transmit a packet. The address
of the packet buffer should have previously been set with a call to RadioSetPtr.

Example:
unsi gned char bufferToTransmit[14] = “Packet Payl oad”;
RADI O_STATE t xSt at e;
Radi oSet Ptr (buf f er ToTransnit);
txState = Radi oBl ocki ngTransm t (4, sizeof (bufferToTransmt));
if (txState == RADI O _ERROR)
printf(“Transmt failed after 5 attenpts.\r\n");

RadioStartReceive

voi d Radi oSt art Recei ve(void);
Parameters:
None

Return Value:

18 NL Radio Driver APl Document, Doc. No. 001-70689 Rev. *B

Description:

None

Start the reception of a packet. The location and length of the packet buffer to receive data must have
previously been set with calls to RadioSetPtr and RadioSetLength.

After starting the reception of a packet with this call, the state of the receive operation should be checked by
calling RadioGetReceiveState. When RadioGetReceiveState indicates that the transmission has completed, a
call should be made to RadioEndReceive.

After calling RadioStartReceive, no calls can be made to the configuration access routines until the receive
operation is terminated with a call to RadioEndReceive or RadioAbort.

Until one of those calls is made to end the receive operation, the only other calls supported are
RadioGetReceiveState and RadioGetRssi.

RadioGetReceiveState

Parameters:

RADI O_STATE Radi 0Get Recei veSt at e(voi d) ;

None

Return Value:

Description:

Returns the state of the current receive operation.

This call should be made after starting a receive operation with the RadioStartReceive function.

This function checks for errors during reception or completion of reception and returns either RADIO_ERROR
or RADIO_COMPLETE. If reception was completed with no errors, received data would be available in the
buffer pointed to by the most recent call to RadioSetPtr.

Example:

Radi oSet Lengt h(si zeof (rx_pkt));

Radi oSet Ptr ((unsi gned char *) &rx_pkt);

Radi oSt art Recei ve();

while (1)

{
MBC_Cl ear WDOTANndSI eep;
status = Radi oGet Recei veState();
if (status == RADI O COWLETE)

{
pkt _| en = Radi oEndRecei ve();
Pr ocessPacket () ;
Radi oSet Lengt h(si zeof (rx_pkt));
Radi oSet Ptr ((unsi gned char *) &rx_pkt);
Radi oSt art Recei ve();
}
else if (status == RADI C_ERROR)
{

NL Radio Driver APl Document, Doc. No. 001-70689 Rev. *B 19

CYPRESS
Radio High Level Functions PR ens

(voi d) Radi oEndRecei ve();
Handl eErrors();
Radi oSet Lengt h(si zeof (rx_pkt));
Radi oSet Ptr ((unsi gned char *) &rx_pkt);
Radi oSt art Recei ve();

RadioEndReceive

RADI O LENGTH Radi oEndRecei ve(voi d);
Parameters:

None
Return Value:

Returns the length of the packet that was received. If packet payload truncation occurs (due to inadequate
buffer length), it does not change this return value.

Description:

Completes a receive operation.

RadioForceState

voi d Radi oFor ceSt at e(XACT_CONFI G endSt ateBi t sOnl y) ;
Parameters:

endStateBitsOnly: Immediate new state for the radio.
Return Value:

None
Description:

This function immediately changes the radio state. If the Radio is in Transmit or Receive modes, then
RadioAbort MUST be called before calling RadioForceState.

Example:
Radi oFor ceSt at e(END_STATE_SLEEP) ;

RadioGetRssi

RADI O_RSSI Radi 0Get Rssi (voi d);
Parameters:

None
Return Value:

RADIO_RSSI — Received packet signal strength or carrier strength.

20 NL Radio Driver APl Document, Doc. No. 001-70689 Rev. *B

Description:

This function returns the Receive Signal Strength Indicator value. When read completes, the return value can
be the signal strength of the received packet or of the noise. If the MSB of the return value is 0, then the signal
strength is for the received packet; if not, it is for noise. While in the receive state, but before a packet has
been received, this can be called continuously to check the carrier strength at the current frequency. Itis
necessary that RadioGetRssi be called at least 100us after the radio entered Receive mode.

RadioAbort

RADI O LENGTH Radi oAbort (voi d);
Parameters:

None
Return Value:

Zero.
Description:

Aborts a transmit or receive operation and transitions the radio to the idle state. This function always returns a
zero.

RadioState

RADI O_STATE Radi oSt at e;
Parameters:
None
Return Value:
None
Description:
RadioState is a global variable that contains the state of the radio and the driver.
The values for RadioState:
RADIO_IDLE: The radio is neither in Receive mode nor in Transmit mode.
RADIO_RX: The radio is in Receive mode.
RADIO_TX: The radio is in Transmit mode.
RADIO_COMPLETE: The radio has successfully completed a transmit or receive operation.

RADIO_ERROR: The radio transmit or receive operation was unsuccessful.

NL Radio Driver APl Document, Doc. No. 001-70689 Rev. *B 21

