SMT Power Inductors – DO1608C

- High energy storage and very low resistance
- Defense Supply Center CID A-A-59742

Designer’s Kit C377 contains 3 of each stocked part

Core material Ferrite

Core and winding loss See www.coilcraft.com/coreloss

Terminations RoHS compliant gold over nickel over moly-manganese. Other terminations available at additional cost.

Weight 128 – 164 mg

Ambient temperature –40°C to +85°C with Irms current, +85°C to +125°C with derated current

Storage temperature Component: –40°C to +125°C.

Moisture Sensitivity Level (MSL) 1 (unlimited floor life at <30°C / 85% relative humidity)

Failures in Time (FIT) / Mean Time Between Failures (MTBF)

- Tallied at 100 kHz, 0.1 Vrms, 0 A dc using an Agilent/HP 4283B LCR meter or equivalent.
- To have a leader and trailer added ($25 charge), use code letter C instead.
- 40 second reflows at +260°C, parts cooled to room temperature between cycles
- Max three 40 second reflows at +260°C, parts cooled to room temperature between cycles
- DC current at which the inductance drops 10% (typ) from its value without current.
- Current that causes the specified temperature rise from 25°C ambient.
- Electrical specifications at 25°C.

<table>
<thead>
<tr>
<th>Part number</th>
<th>L2 (µH)</th>
<th>% tol</th>
<th>DCR max (Ohms)</th>
<th>SRF typ (MHz)</th>
<th>Isat (A)</th>
<th>Irms (A)²</th>
<th>20°C rise</th>
<th>40°C rise</th>
</tr>
</thead>
<tbody>
<tr>
<td>DO1608C-102ML</td>
<td>1.0</td>
<td>20</td>
<td>0.05</td>
<td>130</td>
<td>2.9</td>
<td>1.90</td>
<td>2.70</td>
<td></td>
</tr>
<tr>
<td>DO1608C-152ML</td>
<td>1.5</td>
<td>20</td>
<td>0.06</td>
<td>115</td>
<td>2.6</td>
<td>1.90</td>
<td>2.65</td>
<td></td>
</tr>
<tr>
<td>DO1608C-222ML</td>
<td>2.2</td>
<td>20</td>
<td>0.07</td>
<td>100</td>
<td>2.3</td>
<td>1.85</td>
<td>2.55</td>
<td></td>
</tr>
<tr>
<td>DO1608C-272ML</td>
<td>2.7</td>
<td>20</td>
<td>0.08</td>
<td>75</td>
<td>2.1</td>
<td>1.80</td>
<td>2.45</td>
<td></td>
</tr>
<tr>
<td>DO1608C-332ML</td>
<td>3.3</td>
<td>20</td>
<td>0.08</td>
<td>70</td>
<td>2.0</td>
<td>1.60</td>
<td>2.20</td>
<td></td>
</tr>
<tr>
<td>DO1608C-472ML</td>
<td>4.7</td>
<td>20</td>
<td>0.09</td>
<td>50</td>
<td>1.5</td>
<td>1.40</td>
<td>1.90</td>
<td></td>
</tr>
<tr>
<td>DO1608C-682ML</td>
<td>6.8</td>
<td>20</td>
<td>0.13</td>
<td>45</td>
<td>1.2</td>
<td>1.20</td>
<td>1.60</td>
<td></td>
</tr>
<tr>
<td>DO1608C-822ML</td>
<td>8.2</td>
<td>20</td>
<td>0.16</td>
<td>40</td>
<td>1.15</td>
<td>1.10</td>
<td>1.55</td>
<td></td>
</tr>
<tr>
<td>DO1608C-103ML</td>
<td>10</td>
<td>20</td>
<td>0.16</td>
<td>35</td>
<td>1.10</td>
<td>1.10</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>DO1608C-154ML</td>
<td>15</td>
<td>20</td>
<td>0.23</td>
<td>30</td>
<td>0.90</td>
<td>0.90</td>
<td>1.25</td>
<td></td>
</tr>
<tr>
<td>DO1608C-223_L</td>
<td>22</td>
<td>20,10</td>
<td>0.37</td>
<td>20</td>
<td>0.70</td>
<td>0.75</td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td>DO1608C-333_L</td>
<td>33</td>
<td>20,10</td>
<td>0.51</td>
<td>15</td>
<td>0.58</td>
<td>0.60</td>
<td>0.80</td>
<td></td>
</tr>
<tr>
<td>DO1608C-473_L</td>
<td>47</td>
<td>20,10</td>
<td>0.64</td>
<td>14</td>
<td>0.50</td>
<td>0.52</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>DO1608C-683_L</td>
<td>68</td>
<td>20,10</td>
<td>0.86</td>
<td>11</td>
<td>0.40</td>
<td>0.44</td>
<td>0.60</td>
<td></td>
</tr>
<tr>
<td>DO1608C-104_L</td>
<td>100</td>
<td>20,10</td>
<td>1.27</td>
<td>9.0</td>
<td>0.31</td>
<td>0.37</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>DO1608C-154_L</td>
<td>150</td>
<td>20,10</td>
<td>2.00</td>
<td>6.0</td>
<td>0.27</td>
<td>0.28</td>
<td>0.39</td>
<td></td>
</tr>
<tr>
<td>DO1608C-224_L</td>
<td>220</td>
<td>20,10</td>
<td>3.11</td>
<td>5.5</td>
<td>0.22</td>
<td>0.23</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td>DO1608C-334_L</td>
<td>330</td>
<td>20,10</td>
<td>3.80</td>
<td>5.0</td>
<td>0.18</td>
<td>0.22</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>DO1608C-474_L</td>
<td>470</td>
<td>20,10</td>
<td>5.06</td>
<td>4.0</td>
<td>0.16</td>
<td>0.20</td>
<td>0.26</td>
<td></td>
</tr>
<tr>
<td>DO1608C-684_L</td>
<td>680</td>
<td>20,10</td>
<td>9.20</td>
<td>3.0</td>
<td>0.14</td>
<td>0.14</td>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td>DO1608C-105_L</td>
<td>1000</td>
<td>20,10</td>
<td>13.8</td>
<td>2.0</td>
<td>0.10</td>
<td>0.11</td>
<td>0.15</td>
<td></td>
</tr>
</tbody>
</table>

1. Please specify tolerance, termination and packaging codes:

- **DO1608C-105MLC**
 - **Tolerance:** K = 10%, M = 20% (Table shows stock tolerances in bold.)
 - **Termination:** L = RoHS compliant gold over nickel over moly-manganese.
 - Special order: T = RoHS tin-silver-copper (95.5/4/0.5) or S = non-RoHS tin-lead (63/37).
 - **Packaging:** C = 7″ machine-ready reel. EIA-481 embossed plastic tape (750 parts per full reel).
 - B = Less than full reel. In tape, but not machine ready.
 - To have a leader and trailer added ($25 charge), use code letter C instead.
 - D = 13″ machine-ready reel. EIA-481 embossed plastic tape (2500 parts per full reel).

2. Tested at 100 kHz, 0.1 Vrms, 0 A dc using an Agilent/HP 4283B LCR meter or equivalent.

3. Tolerances in bold are stocked for immediate shipment.

4. DC current at which the inductance drops 10% (typ) from its value without current.

5. Current that causes the specified temperature rise from 25°C ambient.

6. Electrical specifications at 25°C.

Refer to Doc 362 “Soldering Surface Mount Components” before soldering.

Designer’s Kit C377

- Contains 3 of each stocked part

Core material Ferrite

Core and winding loss See www.coilcraft.com/coreloss

Terminations RoHS compliant gold over nickel over moly-manganese. Other terminations available at additional cost.

Weight 128 – 164 mg

Ambient temperature –40°C to +85°C with Irms current, +85°C to +125°C with derated current

Storage temperature Component: –40°C to +125°C.

Moisture Sensitivity Level (MSL) 1 (unlimited floor life at <30°C / 85% relative humidity)

Failures in Time (FIT) / Mean Time Between Failures (MTBF)

- Tallied at 100 kHz, 0.1 Vrms, 0 A dc using an Agilent/HP 4283B LCR meter or equivalent.
- To have a leader and trailer added ($25 charge), use code letter C instead.
- 40 second reflows at +260°C, parts cooled to room temperature between cycles
- Max three 40 second reflows at +260°C, parts cooled to room temperature between cycles
- DC current at which the inductance drops 10% (typ) from its value without current.
- Current that causes the specified temperature rise from 25°C ambient.
- Electrical specifications at 25°C.

Refer to Doc 362 “Soldering Surface Mount Components” before soldering.

Designer’s Kit C377 contains 3 of each stocked part

Core material Ferrite

Core and winding loss See www.coilcraft.com/coreloss

Terminations RoHS compliant gold over nickel over moly-manganese. Other terminations available at additional cost.

Weight 128 – 164 mg

Ambient temperature –40°C to +85°C with Irms current, +85°C to +125°C with derated current

Storage temperature Component: –40°C to +125°C.

Moisture Sensitivity Level (MSL) 1 (unlimited floor life at <30°C / 85% relative humidity)

Failures in Time (FIT) / Mean Time Between Failures (MTBF)

- Tallied at 100 kHz, 0.1 Vrms, 0 A dc using an Agilent/HP 4283B LCR meter or equivalent.
- To have a leader and trailer added ($25 charge), use code letter C instead.
- 40 second reflows at +260°C, parts cooled to room temperature between cycles
- Max three 40 second reflows at +260°C, parts cooled to room temperature between cycles
- DC current at which the inductance drops 10% (typ) from its value without current.
- Current that causes the specified temperature rise from 25°C ambient.
- Electrical specifications at 25°C.

Refer to Doc 362 “Soldering Surface Mount Components” before soldering.
SMT Power Inductors – DO1608C Series

Typical L vs Frequency

![Graph showing typical inductance vs frequency for different values of L.]

Typical L vs Current

![Graph showing typical inductance vs current for different values of L.]

Irms Derating

![Graph showing irms derating vs ambient temperature for different values of percent of rated irms.]

Dimensions are in inches (mm).