
© 2010 Microchip Technology Inc. DS70295B

dsPIC® DSC SPEECH
CODING SOLUTIONS

USER’S GUIDE

Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
DS70295B-page 2
Trademarks

The Microchip name and logo, the Microchip logo, dsPIC,
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,
PIC32 logo, rfPIC and UNI/O are registered trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,
MXDEV, MXLAB, SEEVAL and The Embedded Control
Solutions Company are registered trademarks of Microchip
Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified
logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,
PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance,
TSHARC, UniWinDriver, WiperLock and ZENA are
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2010, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.

ISBN: 978-1-60932-085-0
Microchip received ISO/TS-16949:2002 certification for its worldwide
Note the following details of the code protection feature on Microchip devices:
• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.
© 2010 Microchip Technology Inc.

dsPIC® DSC SPEECH CODING

SOLUTIONS USER’S GUIDE

Table of Contents
Preface ... 5
Chapter 1. Overview

1.1 Overview .. 11
1.2 Other Features ... 12

Chapter 2. Installation
2.1 Installation Procedure ... 13
2.2 G.711 Library Files ... 13
2.3 G.726A Library Files ... 15
2.4 Speex Library Files ... 17

Chapter 3. Application Programming Interface
3.1 Application Programming Interface .. 19
3.2 System Requirements .. 19
3.3 G.711 API ... 21
3.4 G.726A API .. 25
3.5 Speex API .. 32

Chapter 4. Integrating Speech Encoding Into YourApplication
4.1 Integrating Speech Encoding ... 37
4.2 Data Buffers ... 37
4.3 Encoder Initialization .. 38
4.4 Encoder Heap Utilization .. 39
4.5 Data Sampling Initialization .. 39
4.6 Data Sampling .. 39
4.7 Encoding .. 40
4.8 End Data Sampling ... 41

Chapter 5. Integrating Speech Decoding Into YourApplication
5.1 Integrating Speech Decoding ... 43
5.2 Data Buffers ... 43
5.3 Decoder Initialization .. 44
5.4 Decoder Heap Utilization .. 46
5.5 Decoding the First Frame ... 46
5.6 Speech Playback Initialization .. 46
5.7 Speech Playback .. 46
5.8 Decoding .. 47
5.9 Ending Speech Playback ... 50

Chapter 6. Speech Encoding Utility
6.1 System Requirements .. 51
© 2010 Microchip Technology Inc. DS70295B-page 3

dsPIC® DSC Speech Coding Solutions User’s Guide
6.2 Overview .. 51
6.3 Encoding Speech from a Microphone .. 52
6.4 Encoding Speech from a WAVE (.wav) file .. 55
6.5 Recommendations for Encoding from a Microphone 56
6.6 Using the Command Line Decoder .. 56

Chapter 7. Using Flash Memory for Speech Playback
7.1 Using External Flash Memory .. 57
7.2 Storing Speech Encoding Utility Data to External Flash Memory 58
7.3 Building a Loadable Hex File for External Flash Memory 58
7.4 Programming the Hex File to External Flash Memory 59
7.5 Running the EFP Utility .. 61
7.6 Error Handling .. 63
7.7 Other External Solutions .. 63

Chapter 8. Speech Coding Demos
8.1 Communication Demo .. 65
8.2 Loopback Demo ... 67
8.3 Playback Demo .. 68

Appendix A. Si3000 Codec Configuration
A.1 Introduction .. 69
A.2 Default Configuration ... 69
A.3 Setting the dsPIC DSC as a Clock Slave ... 70
A.4 Modifying the Codec Gain and Volume Controls ... 71

Appendix B. External Flash Memory Reference Design
B.1 Overview .. 73

Index ...75
Worldwide Sales and Service ...78
DS70295B-page 4 © 2010 Microchip Technology Inc.

dsPIC® DSC SPEECH CODING

SOLUTIONS USER’S GUIDE

Preface
© 2010 Microchip Tech
INTRODUCTION

NOTICE TO CUSTOMERS

All documentation becomes dated, and this manual is no exception. Microchip tools and
documentation are constantly evolving to meet customer needs, so some actual dialogs
and/or tool descriptions may differ from those in this document. Please refer to our web site
(www.microchip.com) to obtain the latest documentation available.

Documents are identified with a “DS” number. This number is located on the bottom of each
page, in front of the page number. The numbering convention for the DS number is
“DSXXXXXA”, where “XXXXX” is the document number and “A” is the revision level of the
document.

For the most up-to-date information on development tools, see the MPLAB® IDE on-line help.
Select the Help menu, and then Topics to open a list of available on-line help files.
This chapter contains general information that is useful to know before you begin using
the dsPIC® DSC Speech Encoding/Decoding Libraries. Items discussed include:
• Document Layout
• Conventions Used in this Guide
• Warranty Registration
• Recommended Reading
• The Microchip Web Site
• Development Systems Customer Change Notification Service
• Customer Support
• Document Revision History
DOCUMENT LAYOUT

This document describes how to use the dsPIC DSC Speech Encoding/Decoding
Libraries as a development tool to emulate and debug firmware on a target board. The
manual layout is as follows:
• Chapter 1. Overview – This chapter provides an overview of the dsPIC DSC

Speech Encoding/Decoding Libraries and identifies the salient features of each
library.

• Chapter 2. Installation – This chapter provides detailed instructions for installing
the dsPIC DSC Speech Encoding/Decoding Libraries on your PC and setting
them up to run with the MPLAB® Integrated Development Environment (IDE).

• Chapter 3. Application Programming Interface – This chapter provides
information you need to interface the dsPIC DSC Speech Encoding/Decoding
Libraries with your user application.
nology Inc. DS70295B-page 5

dsPIC® DSC Speech Coding Solutions User’s Guide

DS70295B-page 6
• Chapter 4. Integrating Speech Encoding Into YourApplication – This chapter
provides information to help you understand how to integrate the speech
encoding portion of the dsPIC DSC Speech Encoding/Decoding Libraries into
your application and how to build with the library.

• Chapter 5. Integrating Speech Decoding Into YourApplication – This chapter
provides information to help you understand how to integrate the speech
decoding portion of the dsPIC DSC Speech Encoding/Decoding Libraries into
your application and how to build with the library.

• Chapter 6. Speech Encoding Utility – This chapter describes the Speech
Encoding Utility provided with the dsPIC DSC Speech Encoding/Decoding
Libraries and provides instructions for creating speech files.

• Chapter 7. Using Flash Memory for Speech Playback – This chapter provides
information on the use of external Flash memory with the library.

• Chapter 8. Speech Coding Demos – This chapter describes a sample
application that demonstrates stand-alone speech encoding and playback from
on-chip data EEPROM memory.

• Appendix A. Si3000 Codec Configuration – This appendix provides
configuration details for the Si3000 codec interface.

• Appendix B. External Flash Memory Reference Design – This appendix
provides circuit schematics for an interface to external 16-bit nonvolatile memory.
© 2010 Microchip Technology Inc.

Preface
CONVENTIONS USED IN THIS GUIDE
© 2010 Microchip Tech
This manual uses the following documentation conventions:

DOCUMENTATION CONVENTIONS
Description Represents Examples

Arial font:
Italic characters Referenced books MPLAB® IDE User’s Guide

Emphasized text ...is the only compiler...
Initial caps A window the Output window

A dialog the Settings dialog
A menu selection select Enable Programmer

Quotes A field name in a window or
dialog

“Save project before build”

Underlined, italic text with
right angle bracket

A menu path File>Save

Bold characters A dialog button Click OK
A tab Click the Power tab

‘bnnnn A binary number where n is a
digit

‘b00100, ‘b10

Text in angle brackets < > A key on the keyboard Press <Enter>, <F1>
Courier font:
Plain Courier Sample source code #define START

Filenames autoexec.bat

File paths c:\mcc18\h
Keywords _asm, _endasm, static

Command-line options -Opa+, -Opa-

Bit values 0, 1
Italic Courier A variable argument file.o, where file can be

any valid filename
0xnnnn A hexadecimal number where

n is a hexadecimal digit
0xFFFF, 0x007A

Square brackets [] Optional arguments mcc18 [options] file
[options]

Curly brackets and pipe
character: { | }

Choice of mutually exclusive
arguments; an OR selection

errorlevel {0|1}

Ellipses... Replaces repeated text var_name [,
var_name...]

Represents code supplied by
user

void main (void)
{...
}

nology Inc. DS70295B-page 7

dsPIC® DSC Speech Coding Solutions User’s Guide
WARRANTY REGISTRATION
DS70295B-page 8
Please complete the enclosed Warranty Registration Card and mail it promptly.
Sending in the Warranty Registration Card entitles users to receive new product
updates. Interim software releases are available on the Microchip web site.
RECOMMENDED READING

This user's guide describes how to use the G.711, G.726A and Speex Speech
Encoding/Decoding libraries. The following Microchip documents are available and
recommended as additional reference resources.
dsPIC30F Family Reference Manual (DS70046)
Refer this document for detailed information on dsPIC30F device operation. This
reference manual explains the operation of the dsPIC30F Digital Signal
Controller (DSC) family architecture and peripheral modules, but does not cover the
specifics of each device. Refer to the appropriate device data sheet for device-specific
information.
16-bit MCU and DSC Programmer’s Reference Manual (DS70157)
This manual is a software developer’s reference for dsPIC30F and dsPIC33F 16-bit
DSC devices. This manual describes the instruction set in detail and also provides
general information to assist you in developing software for the dsPIC30F/33F DSC
family.
dsPIC33F/PIC24H Family Reference Manual Sections
Consult these documents for detailed information on dsPIC33F/PIC24H device
operation. These reference manual sections explain the operation of the
dsPIC33F/PIC24H DSC and MCU family architecture and peripheral modules, but do
not cover the specifics of each device. Refer to the appropriate device data sheet for
device-specific information.
MPLAB® Assembler, Linker and Utilities for PIC24 MCUs and dsPIC® DSCs
User’s Guide (DS51317)
This document helps you use Microchip Technology’s language tools for dsPIC DSC
devices based on GNU technology. The language tools discussed are:
• MPLAB Assembler PIC24 MCUs and dsPIC® DSCs
• MPLAB Linker PIC24 MCUs and dsPIC® DSCs
• MPLAB Archiver/Librarian PIC24 MCUs and dsPIC® DSCs
• Other Utilities
MPLAB® C Compiler for PIC24 MCUs and dsPIC® DSCs User's Guide (DS51284)
This document helps you use Microchip’s MPLAB C compiler for dsPIC DSC devices
to develop your application. The MPLAB C Compiler is a GNU-based language tool,
based on source code from the Free Software Foundation (FSF). For detailed informa-
tion about FSF, see www.fsf.org.
MPLAB® IDE, Simulator, Editor User’s Guide (DS51025)
Refer this document for detailed information pertaining to the installation and
implementation of the MPLAB Integrated Development Environment (IDE) Software.
To obtain any of these documents, contact the nearest Microchip sales location (see
back page) or visit the Microchip web site at: www.microchip.com.
Note: The latest versions of the following manufacturers’ data sheets are also
recommended as reference sources: Si3000 Voiceband Codec with
Microphone/Speaker Drive (Silicon Laboratories Publication Si3000-DS11)
Am29F200B 2 Megabit (256 K x 8-Bit/128 K x 16-Bit) CMOS 5.0 Volt-only,
Boot Sector Flash Memory (AMD Publication 21526)
© 2010 Microchip Technology Inc.

http://www.fsf.org
http://www.microchip.com
http://www.microchip.com

Preface
THE MICROCHIP WEB SITE
© 2010 Microchip Tech
Microchip provides online support via our web site at www.microchip.com. This web
site is used as a means to make files and information easily available to customers.
Accessible by using your favorite Internet browser, the web site contains the following
information:
• Product Support – Data sheets and errata, application notes and sample

programs, design resources, user’s guides and hardware support documents,
latest software releases and archived software

• General Technical Support – Frequently Asked Questions (FAQs), technical
support requests, online discussion groups and Microchip consultant program
member listing

• Business of Microchip – Product selector and ordering guides, latest Microchip
press releases, listing of seminars and events, listings of Microchip sales offices,
distributors and factory representatives
DEVELOPMENT SYSTEMS CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip’s customer notification service helps keep customers current on Microchip
products. Subscribers will receive e-mail notification whenever there are changes,
updates, revisions or errata related to a specified product family or development tool of
interest.
To register, access the Microchip web site at www.microchip.com, click on Customer
Change Notification and follow the registration instructions.
The Development Systems product group categories are:
• Compilers – The latest information on Microchip C compilers and other language

tools. These include the MPLAB C18 and MPLAB C30 C compilers; MPASM™
and MPLAB ASM30 assemblers; MPLINK™ and MPLAB LINK30 object linkers;
and MPLIB™ and MPLAB LIB30 object librarians.

• Emulators – The latest information on Microchip in-circuit emulators.This
includes the MPLAB ICE 2000 and MPLAB ICE 4000.

• In-Circuit Debuggers – The latest information on the Microchip in-circuit
debugger, MPLAB ICD 2.

• MPLAB® IDE – The latest information on Microchip MPLAB IDE, the Windows®
Integrated Development Environment for development systems tools. This list is
focused on the MPLAB IDE, MPLAB SIM simulator, MPLAB IDE Project Manager
and general editing and debugging features.

• Programmers – The latest information on Microchip programmers. These include
the MPLAB PM3 and PRO MATE® II device programmers and the PICSTART®
Plus and PICkit™ 1 development programmers.
nology Inc. DS70295B-page 9

dsPIC® DSC Speech Coding Solutions User’s Guide
CUSTOMER SUPPORT
DS70295B-page 10
Users of Microchip products can receive assistance through several channels:
• Distributor or Representative
• Local Sales Office
• Field Application Engineer (FAE)
• Technical Support
Customers should contact their distributor, representative or FAE for support. Local
sales offices are also available to help customers. A listing of sales offices and loca-
tions is included in the back of this document.
Technical support is available through our web site at: http://support.microchip.com
DOCUMENT REVISION HISTORY
Revision A (September 2007)
• Initial release of this document.

Revision B (March 2010)
This revision incorporates the following updates:
• Note:

- Added the following note in Section 3.4.3 “G726_decode()Function”: The
256 decoded speech samples returned in the
codecdata.sampleDecodeIpBuffer pointer must be left-shifted by two
bits to retain the correct sign of data.

- Added the following note in Section 3.4.5 “G726_encode()Function”: The
256 raw speech samples must be right-shifted by two bits before assigning it
to the codecdata.sampleOpBuffer pointer for encoding.

• Additional minor corrections such as language and formatting updates are
incorporated throughout the document.
© 2010 Microchip Technology Inc.

dsPIC® DSC SPEECH CODING

SOLUTIONS USER’S GUIDE

Chapter 1. Overview
© 2010 Microchip Tech
The dsPIC DSC Speech Encoding/Decoding Libraries include G.711, G.726A and
Speex Speech Encoding/Decoding software application solutions. These individual
libraries provide toll-quality voice compression and decompression to help you
generate speech-based embedded applications on the dsPIC30F and dsPIC33F
families of digital signal controllers. This chapter provides an overview and feature
listing of these three libraries. Topics covered include:
• Overview
• Other Features
1.1 OVERVIEW

The three speech coding techniques described in this document provide different sets
of capabilities and consume different levels of computational resources. In each case,
the objectives are to reduce the amount of data required to represent a speech signal
while not compromising on the quality of speech when it is decoded.
In communication applications, the advantage of speech compression is to reduce the
consumption of communication bandwidth, while for many other applications the
advantage is to reduce the amount of memory required to store the recorded speech.
A comparison of the computational resource requirements used by the three algorithms
is provided in Section 3.2.2 “MIPS and Memory Requirements”.

1.1.1 G.711 Speech Encoding/Decoding Library
The G.711 Library is an ITU-T standard speech coding method that utilizes A-law and
μ-law compression/expansion (also known as companding). This technique provides a
reduction in data (compression ratio) of 2:1, and the best decoded speech quality of the
three techniques. For an input sampling rate of 8 kHz, the output bit rate obtained
is 64 kbps. Compressed playback files require approximately 8 Kbytes of memory for
each second of speech.

1.1.2 G.726A Speech Encoding/Decoding Library
The G.726A Library is another ITU-T standard speech coder. This library uses the
Adaptive Differential Pulse Code Modulation (ADPCM) methodology. Table 1-1 lists the
output bit rates provided for the corresponding compression ratios.

The 40 kbps and 32 kbps modes of G.726A provide a decoded speech quality similar
to that of G.711.
Compressed playback files require 2 to 5 Kbytes of memory for each second of speech.

TABLE 1-1: G.726A LIBRARY BIT RATES AND COMPRESSION RATIOS
Bit Rate Compression Ratio
40 kbps 3.2:1
32 kbps 4:1
24 kbps 5.33:1
16 kbps 8:1
nology Inc. DS70295B-page 11

dsPIC® DSC Speech Coding Solutions User’s Guide

DS70295B-page 12
1.1.3 Speex Speech Encoding/Decoding Library
The Speex Library is based on the open-source Speex speech coder. The library
samples speech at 8 kHz and compresses it to a rate of 8 kbps, resulting in a 16:1
compression ratio. The Speex encoding algorithm uses Code Excited Linear
Prediction (CELP), which provides a reasonable trade-off between performance and
computational complexity.
Compressed playback files require approximately 1 Kbyte of memory for each second
of speech.
1.2 OTHER FEATURES

Regardless of the speech encoding/decoding algorithm used, these speech files can
be stored on-chip, in program memory or data EEPROM, or externally in Flash
memory, as shown in Figure 1-1.

FIGURE 1-1: TYPICAL SPEECH ENCODING/DECODING APPLICATION

The flexible analog interface offers several design options. The speech encoder can
sample input from either an external codec or the on-chip 12-bit Analog-to-Digital
Converter (ADC). The speech decoder can play decoded speech through an external
codec or the on-chip pulse-width modulator. With the Speex library, an optional Voice
Activity Detection feature enhances compression by detecting voids in the incoming
speech and compressing them at a higher ratio. All three libraries optimize
computational performance and RAM usage. Well-defined APIs (see Chapter
3. “Application Programming Interface”) make it easy to integrate with your
application.
Playback-only applications can benefit from the PC-based speech encoding utility (see
Chapter 6. “Speech Encoding Utility”), which lets you encode speech files from your
desktop using a microphone or the existing WAVE (.wav) files. Encoded speech files
are built into your application through your MPLAB IDE project, like any source file. The
speech encoding utility lets you to select four target memory areas for your speech file:
• Program memory
• RAM
• Data EEPROM (dsPIC30F only)
• External Flash memory (dsPIC30F and Speex only)
External Flash memory allows you to store several minutes of speech (one minute of
speech requires 60 KB), and it is supported through a dsPIC general purpose I/O port.

SPEECH ENCODING/DECODING LIBRARY

I/O
(Drivers)

Encoder

Decoder

Optional
External

Non-
Volatile
Memory
(Flash)

DCI

ADC

PWM

CODEC

Front End
Analog

Analog
Out Circuit

PM DATA EEPROM DATA
USER APPLICATION
ON-CHIP MEMORY

dsPIC30F/33F Digital Signal Controller
© 2010 Microchip
Technology Inc.

dsPIC® DSC SPEECH CODING

SOLUTIONS USER’S GUIDE

Chapter 2. Installation
© 2010 Microchip Tech
The dsPIC DSC Speech Encoding/Decoding Libraries do not execute directly from the
CD. You must install them onto your laptop or desktop PC. This chapter includes the
following installation information:
• Installation Procedure
• G.711 Library Files
• G.726A Library Files
• Speex Library Files
2.1 INSTALLATION PROCEDURE

Each of the libraries is packaged on a CD. To install the library, follow these steps:
1. Insert the library CD into the appropriate drive. The installation screen appears.
2. Select the Click to Install Files option. The installation location dialog appears

to let you choose a directory for the library.
3. Browse to the directory of your choice, and then click OK. The License

Agreement appears.
4. Review the license agreement and click OK to continue. The next dialog displays

the installation progress, followed by the Installation Complete dialog.
The installation process creates a folder named G.711 v1.0, G.726A v1.0 or
Speex v2.0 (depending on the specific library installed) in the user-specified root
directory.
2.2 G.711 LIBRARY FILES

The G.711 Library creates a directory labeled G711 v1.0. This directory contains three
folders with their corresponding sub-folders and files:
• G711_dsPIC30F
• G711_dsPIC33F
• G711_PC

2.2.1 G711_dsPIC30F
This folder contains all library archive, include and demo application files to support the
G711 library on the dsPIC30F device family. This folder contains three sub-folders:
• demo
• inc
• src

2.2.1.1 DEMO

The demo sub-folder contains three additional sub-folders:
• Communication
• Loopback
• Playback
nology Inc. DS70295B-page 13

dsPIC® DSC Speech Coding Solutions User’s Guide

DS70295B-page 14
These sub-folders include all source, include, project and workspace files required for
the Communication, Loopback and Playback demo applications (See Chapter
8. “Speech Coding Demos” for more details).

2.2.1.2 INC

The inc sub-folder contains all include files required by the library and by the
applications integrating the library. The following files are provided:
• g711.h
• G711Lib_common.h
• G711Lib_common.inc
• G711Lib_internal.h
• G711Lib_Si3000.h

2.2.1.3 SRC

The src folder contains the source files for encoding and decoding speech using the
G.711 algorithm. Any application integrating this library must include the following
source files.
Two source files provided are:
• g711_decoder.c
• g711_encoder.c

2.2.2 G711_dsPIC33F
This folder contains all library archive, include and demo application files to support the
G711 library on the dsPIC33F device family. This folder contains three sub-folders:
• demo
• inc
• src

2.2.2.1 DEMO

The demo sub-folder contains three additional sub-folders:
• Communication
• Loopback
• Playback

These sub-folders include all source, include, project and workspace files required for
the Communication, Loopback and Playback demo applications (See Chapter
8. “Speech Coding Demos” for more details).

2.2.2.2 INC

The inc sub-folder contains all include files required by the library and by the
applications integrating the library. The following files are provided:
• g711.h
• G711Lib_common.h
• G711Lib_common.inc
• G711Lib_internal.h
• G711Lib_Si3000.h
© 2010 Microchip Technology Inc.

Installation

© 2010 Microchip Tech
2.2.2.3 SRC

The src folder contains the source files for encoding and decoding speech using the
G.711 algorithm. Any application integrating this library must include the following two
source files:
• g711_decoder.c
• g711_encoder.c

2.2.3 G711_PC
This folder contains:
• Speech Encoding Utility (dsPICSpeechRecord.exe)
• DLL files for the Speech Encoding Utility (SpeechRecord_G711.dll and
SpeechRecord_G726.dll)

• PC command-line based utility to decode speech using the G.711 decoder
(AWG711Decoder.exe)
2.3 G.726A LIBRARY FILES

The G.726A Library creates a directory labeled G726A v1.0. This directory contains
three folders with their corresponding sub-folders and files:
• G726A_dsPIC30F
• G726A_dsPIC33F
• G726A_PC

2.3.1 G726A_dsPIC30F
This folder contains all library archive, include and demo application files to support the
G726A library on the dsPIC30F device family. This folder contains the following three
sub-folders:
• demo
• inc
• lib

2.3.1.1 DEMO

The demo sub-folder contains three additional sub-folders:
• Communication
• Loopback
• Playback

These sub-folders include all source, include, project and workspace files required for
the Communication, Loopback and Playback demo applications (See Chapter
8. “Speech Coding Demos” for more details).

2.3.1.2 INC

The inc sub-folder contains all include files required by the library and by the
applications integrating the library. The following files are provided:
• g726a.h
• G726ALib_common.h
• G726ALib_common.inc
• G726ALib_internal.h
• G726ALib_Si3000.h
nology Inc. DS70295B-page 15

dsPIC® DSC Speech Coding Solutions User’s Guide

DS70295B-page 16
2.3.1.3 LIB

The lib folder contains a pre-compiled library archive file for encoding and decoding
speech using the G.726A algorithm. Any application integrating this library must include
this library archive file.
A single library archive is provided: libg726a.a

2.3.2 G726A_dsPIC33F
This folder contains all library archive, include and demo application files to support the
dsPIC33F device family. The folder structure and contents are similar to the
G726A_dsPIC30F folder.
This folder contains all library archive, include and demo application files to support the
G726A library on the dsPIC33F device family. This folder contains the following three
sub-folders:
• demo
• inc
• lib

2.3.2.1 DEMO

The demo sub-folder contains three additional sub-folders:
• Communication
• Loopback
• Playback

These sub-folders include all the source, include, project and workspace files required
for the Communication, Loopback and Playback demo applications (See Chapter
8. “Speech Coding Demos” for more details).

2.3.2.2 INC

The inc sub-folder contains all include files required by the library and the applications
integrating the library. The following files are provided:
• g726a.h
• G726ALib_common.h
• G726ALib_common.inc
• G726ALib_internal.h
• G726ALib_Si3000.h

2.3.2.3 LIB

The lib folder contains a pre-compiled library archive file for encoding and decoding
speech using the G.726A algorithm. Any application integrating this library must include
this library archive file.
A single library archive is provided: libg726a.a

2.3.3 G726A_PC
This folder contains:
• Speech Encoding Utility (dsPICSpeechRecord.exe)
• DLL files for the Speech Encoding Utility (SpeechRecord_G711.dll and
SpeechRecord_G726.dll)

• PC command-line based utility to decode speech using the G.726A decoder
(AWG726ADecoder.exe)
© 2010 Microchip Technology Inc.

Installation
2.4 SPEEX LIBRARY FILES
© 2010 Microchip Tech
The Speex Library creates a directory labeled Speex v2.0. This directory contains
three folders with their corresponding sub-folders and files:
• Speex_dsPIC30F
• Speex_dsPIC33F
• Speex_PC

2.4.1 Speex_dsPIC30F
This folder contains all library archive, include and demo application files to support the
dsPIC30F device family. This folder contains the following three sub-folders:
• demo
• inc
• lib

2.4.1.1 DEMO

The demo folder contains two additional sub-folders:
• Communication
• Playback

These sub-folders include all source, include, project and workspace files required for
the Communication and Playback demo applications (See Chapter 8. “Speech
Coding Demos” for more details).

2.4.1.2 INC

The inc folder contains all include files required by the library and the applications
integrating the library. The following files are provided:
• spxlib_common.h
• spxlib_common.inc
• spxlib_internal.h
• spxlib_Si3000.h

2.4.1.3 LIB

The lib folder contains a pre-compiled library archive file for encoding and decoding
speech using the Speex algorithm. Any application integrating this library must include
this library archive file.
A single library archive is provided: libSpeex.a

2.4.2 Speex_dsPIC33F
This folder contains all library archive, include and demo application files to support the
dsPIC33F device family. The folder structure and contents are similar to the
Speex_dsPIC30F folder, except that the RecordPlay demo is not included.
This folder contains the following three sub-folders:
• demo
• inc
• lib
nology Inc. DS70295B-page 17

dsPIC® DSC Speech Coding Solutions User’s Guide

DS70295B-page 18
2.4.2.1 DEMO

The demo folder contains two additional sub-folders:
• Communication
• Playback

These sub-folders include all source, include, project and workspace files required for
the Communication and Playback demo applications (See Chapter 8. “Speech
Coding Demos” for more details).

2.4.2.2 INC

The inc folder contains all include files required by the library and the applications
integrating the library. The following files are provided:
• spxlib_common.h
• spxlib_common.inc
• spxlib_internal.h
• spxlib_Si3000.h

2.4.2.3 LIB

The lib folder contains a pre-compiled library archive file for encoding and decoding
speech using the Speex algorithm. Any application integrating this library must include
this library archive file.
A single library archive is provided: libSpeex.a

2.4.3 Speex_PC
This folder contains three sub-folders containing various PC-based utilities:
• ExternalFlashHexmaker
• ExternalFlashProgrammer
• PCEU

2.4.3.1 ExternalFlashHexMaker

This sub-folder is an MPLAB IDE workspace provided to enable users to generate a
hex file containing pre-encoded speech data that can be programmed into an external
Flash memory device.

2.4.3.2 ExternalFlashProgrammer

This sub-folder is a dsPIC30F based program provided to enable users to download
pre-encoded speech data through an RS-232 interface and program the data into an
AMD29F200B external Flash memory device.

2.4.3.3 PCEU

This sub-folder contains:
• Speech Encoding Utility (dsPICSpeechRecord.exe)
• DLL file for the Speech Coding Utility (SpeechRecord.dll)
• PC command-line based utility to decode speech using the Speex decoder

(AWSpeexDec.exe)
© 2010 Microchip Technology Inc.

dsPIC® DSC SPEECH CODING

SOLUTIONS USER’S GUIDE

Chapter 3. Application Programming Interface
© 2010 Microchip Tech
This chapter provides information needed to interface each of the dsPIC DSC Speech
Encoding/Decoding Libraries with your user-assigned application. Topics covered
include:
• Application Programming Interface
• System Requirements
• G.711 API
• G.726A API
• Speex API
3.1 APPLICATION PROGRAMMING INTERFACE

All three of the speech encoding/decoding libraries described in this document inte-
grate with a user-assigned application running on the dsPIC30F or dsPIC33F device to
provide support for handling speech in the application. The Application Programming
Interface (API) functions are similar for all three libraries. Table 3-1 summarizes the API
for each library.

TABLE 3-1: dsPIC® DSC SPEECH ENCODING/DECODING LIBRARIES API
Library Source Files Implementation

G.711 g711_encoder.c
g711_decoder.c

The appropriate source file must be included in the appli-
cation, depending on whether encoding (compression) or
decoding (expansion) or both encoding and decoding
(companding) is required.

G.726A libG726A.a This library archive contains functions for encoding raw
speech, for decoding encoded speech and for
encoder/decoder initialization. All functions in the library
adhere to the Microchip C30 compiler function calling
convention.

Speex libSpeex.a This archive contains both encoding and decoding
functions.
3.2 SYSTEM REQUIREMENTS
3.2.1 Device Frequency Requirements
All three of the speech coding libraries require that speech be sampled and played
back at a fixed rate of 8.0 kHz. Speech sampling is typically performed by an external
audio codec that can interface with the dsPIC30F/dsPIC33F via its Data Converter
Interface (DCI) module.
When sampling is performed with the DCI as the codec clock master (as in the demos
included with this library), your application can use only a limited number of system fre-
quencies to accommodate an 8.0 kHz sampling rate. In this mode, the dsPIC processor
can execute only at multiples of 4.096 MHz. Therefore, the allowable execution speeds
for applications using any of these libraries are 8.192 MHz, 12.288 MHz, 16.384 MHz
and 24.576 MHz when the dsPIC30F/dsPIC33F is the codec clock master.
nology Inc. DS70295B-page 19

dsPIC® DSC Speech Coding Solutions User’s Guide

DS70295B-page 20
To accommodate these system frequencies for DCI master mode, operate the dsPIC
using only the clock speeds shown in Table 3-2.

TABLE 3-2: ALLOWED CLOCK SPEEDS IN DCI MASTER MODE

To overcome the limitations that the processor frequency imposes on the sampling
rate, the DCI can be configured for slave operation. In this case, the DCI and Si3000
use an external clock. The dsPIC DSC Speech Encoding/Decoding Libraries allow you
to configure the DCI as a slave or master by providing #define statements in the
spxlib_si3000.h file, as shown below:

#define DCIMODE 1

To configure the DCI as a slave, change the value to ‘0’. For the Si3000 codec register
settings, the #define statement for each register is provided in the
spxlib_si3000.h file separately for master and slave operations of the DCI.
When operating with any alternate sampling/playback interfaces, such as the on-chip
12-bit ADC and PWM (with some external analog signal conditioning), there are no
restrictions on the system clock frequency provided the MIPS requirements of the
algorithms are met.

3.2.2 MIPS and Memory Requirements
Memory requirements for the G.711, G.726A and Speex libraries (operating in a
full-duplex configuration) are shown in Table 3-3.

TABLE 3-3: MIPS, FLASH AND RAM REQUIREMENTS

Processor Frequency(1) Clock Frequency

8.192 MIPS 4.096 MHz
12.288 MIPS 6.144 MHz
16.384 MIPS 4.096 MHz
24.576 MIPS 6.144 MHz

Note 1: The decoder can run at these frequencies, but the encoder requires at least 19
MIPS.
Parameter
Library

G.711 G.726A Speex

Device Speed 1 MIPS 13 MIPS 20 MIPS
Flash Memory Required 3.5 KB 6 KB 30 KB
RAM Required 3.5 KB 4 KB 7 KB
Memory needed to store
1 second of encoded speech

8 KB 2, 3, 4 or 5 KB 1 KB
3.2.3 Software Requirements
The dsPIC DSC Speech Encoding/Decoding Libraries require the following PC
software:
• Windows 98/2000/XP
• MPLAB IDE V7.60 or higher
• MPLAB C30 Compiler V3.00 or higher
© 2010 Microchip Technology Inc.

Application Programming Interface
3.3 G.711 API
© 2010 Microchip Tech
3.3.1 codecsetup Structure
The codecsetup structure is defined in the G711lib_common.h file. This structure
is used to access:
• User-defined raw, encoded and decoded speech buffers (described in detail in the

next two sections)
• Synchronization flags
• Speech sample counters used for encoding and decoding
A basic understanding of this structure is required for integrating the library with your
application.

EXAMPLE 3-1: codecsetup STRUCTURE
struct _codecsetup
{
//Pointer to decoded Speech sample buffer1.

volatile short *sampleExpandIpBuffer;

//Pointer to decoded Speech sample buffer2.
volatile short *sampleExpandOpBuffer;

//Pointer to raw Speech sample buffer1.

volatile short *sampleIpBuffer;

//Pointer to raw Speech sample buffer2.

volatile short *sampleOpBuffer;

//Pointer to encoded speech sample buffer1.

volatile char *sampleComprsIpBuffer;

//Pointer to encoded speech sample buffer2.

volatile char *sampleComprsOpBuffer;

//Flag to indicate ping-pong buffer filled or empty.

volatile char fBlockdone;

//Flag to start or stop speech playback.
volatile char fStartPlay;

//Counter to keep count of number of blocks of data encoded.

volatile int blockCount;

//Counter to keep count of number of blocks of data decoded.
volatile int loadblockCount;

//Counter to keep track of number of samples stored.
volatile int countFill;

//Counter to keep track of number of samples played.
volatile int countLoad;
n
ology Inc. DS70295B-page 21

dsPIC® DSC Speech Coding Solutions User’s Guide

DS70295B-page 22
EXAMPLE 3-1: codecsetup STRUCTURE(CONTINUED)
//Counter to keep track of number of samples encoded.

volatile unsigned long sampleCount;

//Number of samples in each frame.
volatile char numOfSamplesPerFrame;

//Flag to indicate decoding is done.
volatile char fBlockplayed;

//Flag to indicate compression is done.
volatile char fCompressdone;

//Flag to indicate encoding is done.
volatile char fEncodedone;

//Number of sets of data for the set ADC Buffer Length.
volatile int setOfADCData;

//Pointer to ADCBUF0 register.
volatile unsigned int* AdcBuf0Ptr;

//Number of bytes in the encoded speech.
unsigned long arraysizeinbytes;

//Size of the recorded (encoded) speech in number of frames.
long recordSize;

//G.711 companding method: 1 for A-law, 0 for μ-Law.
char law;

//G.726A output bit-rate: 5 for 40 kbps, 4 for 32 kbps,
// 3 for 24 kbps, 2 for 16 kbps.

short rate;

//Used to set Master/Slave in communication applications.
short initiator;

};

The structure codecdata of type codecsetup is defined for your use in
G711lib_common.h file.

typedef struct _codecsetup codecsetup
extern codecsetup codecdata;
Note: The G711lib_common.h file may be customized for each individual
application, but modifying the codecdata structure is not recommended.
© 2010 Microchip Technology Inc.

Application Programming Interface

© 2010 Microchip Tech
3.3.2 g711Si3000 Structure
The g711Si3000 structure defined in the G711lib_Si3000.h file represents all the
registers of the Si3000 Voiceband Codec. Applications that use the Si3000 codec as
the sampling and/or playback interface for speech can use this structure. This structure
also includes the settings for the DCI peripheral. This structure can be initialized using
the #define statements provided in the G711lib_Si3000.h file.
Appendix A. “Si3000 Codec Configuration” contains detailed information about
configuring the Si3000 registers.

EXAMPLE 3-2: g711si3000 STRUCTURE

Set the #define statement in g711lib_Si3000.h file for your application. Another
#define statement is provided to create a data structure of type g711Si3000:

#define G711SI3000INIT const g711Si3000 g711 = G711;

To make the Speex structure accessible to your source application, simply reference
the G711SI3000INIT define in your source code, where you define your other data:

int my_variable;
G711SI3000INIT // Si3000 data structure instantiation

// This defines the initialized Si3000
// data structure

struct _g711Si3000
{
int control1; //Si3000 Register 1
int control2; //Si3000 Register 2
int pLL1divideN1; //Si3000 Register 3
int pLL1multiplyM1; //Si3000 Register 4
int rxgaincontroL1; //Si3000 Register 5
int adcvolumecontrol; //Si3000 Register 6
int dacvolumecontrol; //Si3000 Register 7
int statusreport; //Si3000 Register 8
int analogattenuation; //Si3000 Register 9
char dcimode; //1=master, 0=slave
char dciintpri; //DCI interrupt priority
int bcg1; //bit clock generator
};
n
ology Inc. DS70295B-page 23

dsPIC® DSC Speech Coding Solutions User’s Guide

DS70295B-page 24
3.3.3 alaw_compress()/μlaw_compress() Function
This function is used to:
• Compress a block of 256 speech samples
• Generate an output block of compressed speech of 256 bytes
Return Value
None
Parameters
This function has three parameters.

3.3.4 alaw_expand()/μlaw_expand() Function
This function is used to:
• Expand a block of 256 compressed speech samples
• Generate an output block of 256 expanded speech samples
Return Value
None
Parameters
This function has three parameters.

Parameter Slen

Data Type long

Usage Number of samples per block

Parameter codecdata.sampleOpBuffer

Data Type short *

Usage Pointer to raw speech sample buffer 2

Parameter codecdata.sampleComprsIpBuffer

Data Type short *

Usage Pointer to compressed speech sample buffer 1

Parameter Slen

Data Type long

Usage Number of samples per block

Parameter codecdata.sampleComprsOpBuffer

Data Type short *

Usage Pointer to compressed speech sample buffer 2

Parameter codecdata.sampleExpandIpBuffer

Data Type short *

Usage Pointer to expanded speech sample buffer 1
© 2010 Microchip Technology Inc.

Application Programming Interface
3.4 G.726A API
© 2010 Microchip Tech
3.4.1 codecsetup Structure
The codecsetup structure is defined in the G726Alib_common.h file. This structure
is used to access:
• User defined raw, encoded and decoded speech buffers (described in detail in the

next two sections)
• Synchronization flags
• Speech sample counters used for encoding and decoding
A basic understanding of this structure is required for integrating the library with your
application.

EXAMPLE 3-3: codecsetup STRUCTURE
struct _codecsetup
{
//Pointer to decoded Speech sample buffer1.

volatile short *sampleDecodeIpBuffer;

//Pointer to decoded Speech sample buffer2.
volatile short *sampleDecodeOpBuffer;

//Pointer to raw Speech sample buffer1.

volatile short *sampleIpBuffer;

//Pointer to raw Speech sample buffer2.

volatile short *sampleOpBuffer;

//Pointer to encoded speech sample buffer1.

volatile char *sampleEncodeIpBuffer;

//Pointer to encoded speech sample buffer2.

volatile char *sampleEncodeOpBuffer;

//Flag to indicate ping-pong buffer filled or empty.

volatile char fBlockdone;

//Flag to start or stop speech playback.
volatile char fStartPlay;

//Counter to keep count of number of blocks of data encoded.

volatile int blockCount;

//Counter to keep count of number of blocks of data decoded.
volatile int loadblockCount;

//Counter to keep track of number of samples stored.
volatile int countFill;

//Counter to keep track of number of samples played.
volatile int countLoad;
n
ology Inc. DS70295B-page 25

dsPIC® DSC Speech Coding Solutions User’s Guide

DS70295B-page 26
EXAMPLE 3-3: codecsetup STRUCTURE (CONTINUED)
//Counter to keep track of number of samples encoded.

volatile unsigned long sampleCount;

//Number of samples in each frame.
volatile char numOfSamplesPerFrame;

//Flag to indicate decoding is done.
volatile char fBlockplayed;

//Flag to indicate compression is done.
volatile char fCompressdone;

//Flag to indicate encoding is done.
volatile char fEncodedone;

//Number of sets of data for the set ADC Buffer Length.
volatile int setOfADCData;

//Pointer to ADCBUF0 register.
volatile unsigned int* AdcBuf0Ptr;

//Number of bytes in the encoded speech.

unsigned long arraysizeinbytes;

//Size of the recorded (encoded) speech in number of frames.
long recordSize;

//G.711 companding method: 1 for A-law, 0 for m-Law.
char law;

//G.726A output bit-rate: 5 for 40 kbps, 4 for 32 kbps,
// 3 for 24 kbps, 2 for 16 kbps.

short rate;
//Used to set Master/Slave in communication applications.
 short initiator;
};

The structure codecdata of type codecsetup is defined for your use in
G726Alib_common.h file.

typedef struct _codecsetup codecsetup
extern codecsetup codecdata;
Note: The G726Alib_common.h file can be customized for each individual
application, but modifying the codecdata structure is not recommended.
© 2010 Microchip Technology Inc.

Application Programming Interface

© 2010 Microchip Tech
3.4.2 g726aSi3000 Structure
The g726aSi3000 structure defined in the G726Alib_Si3000.h file represents all
the registers of the Si3000 Voiceband Codec. Applications that use the Si3000 codec
as the sampling and/or playback interface for speech can use this structure. This
structure also includes the settings for the DCI peripheral. This structure can be
initialized using the #define statements provided in the G726Alib_Si3000.h file.
Appendix A. “Si3000 Codec Configuration” contains detailed information about
configuring the Si3000 registers.

EXAMPLE 3-4: g726asi3000 STRUCTURE

Set the #define statement in g726Alib_Si3000.h file for your application. Another
#define statement is provided to create a data structure of type g726aSi3000:

#define G726ASI3000INIT const g726aSi3000 g726a = G726A;

To make the Speex structure accessible to your source application, simply reference
the G726ASI3000INIT define in your source code, where you define your other data:

int my_variable;
G726ASI3000INIT // Si3000 data structure instantiation

// This defines the initialized Si3000
// data structure

...

struct _g726aSi3000
{
int control1; //Si3000 Register 1
int control2; //Si3000 Register 2
int pLL1divideN1; //Si3000 Register 3
int pLL1multiplyM1; //Si3000 Register 4
int rxgaincontroL1; //Si3000 Register 5
int adcvolumecontrol; //Si3000 Register 6
int dacvolumecontrol; //Si3000 Register 7
int statusreport; //Si3000 Register 8
int analogattenuation; //Si3000 Register 9
char dcimode; //1=master, 0=slave
char dciintpri; //DCI interrupt priority
int bcg1; //bit clock generator
};
n
ology Inc. DS70295B-page 27

dsPIC® DSC Speech Coding Solutions User’s Guide

DS70295B-page 28
3.4.3 G726_decode()Function
The G726_decode()function is used to:
• Decode a block of 256 encoded speech samples
• Generate an output block of 256 decoded speech samples
Return Value
None
Parameters
This function has five parameters.

Parameter codecdata.sampleEncodeOpBuffer

Data Type short *

Usage Pointer to encoded speech sample buffer 2

Parameter codecdata.sampleDecodeIpBuffer

Data Type short *

Usage Pointer to decoded speech sample buffer 1

Parameter Slen

Data Type long

Usage Number of samples per block

Parameter codecdata.rate

Size short

Usage Output bit-rate

Parameter &decoder_state

Size G726_state

Usage Instantiation of decoder state
Note: The 256 decoded speech samples returned in the
codecdata.sampleDecodeIpBuffer pointer must be left-shifted by
two bits, to retain the correct sign of the data.
© 2010 Microchip Technology Inc.

Application Programming Interface

© 2010 Microchip Tech
3.4.4 G726_decoder_init()Function
The G726_decoder_init()function is used to:
• Instantiate a structure to store the decoder state
• Initialize the decoder state variables
Note: This function must be called before G726_decode().
Return Value
None
Parameters
This function has two parameters.

Parameter &decoder_state

Size G726_state

Usage Instantiation of decoder state

Parameter codecdata.rate

Size short

Usage Output bit-rate
nology Inc. DS70295B-page 29

dsPIC® DSC Speech Coding Solutions User’s Guide

DS70295B-page 30
3.4.5 G726_encode()Function
The G726_encode()function is used to:
• Encodes a block of 256 raw speech samples
• Generates an output block of 256 encoded speech samples
Return Value
None
Parameters
This function has five parameters.

Parameter codecdata.sampleOpBuffer
Data Type short *
Usage Pointer to raw speech sample buffer 2

Parameter codecdata.sampleEncodeIpBuffer
Data Type short *
Usage Pointer to encoded speech sample buffer 1

Parameter Slen
Data Type long
Usage Number of samples per block

Parameter codecdata.rate
Size short
Usage Output bit-rate

Parameter &encoder_state
Size G726_state
Usage Instantiation of encoder state
Note: The 256 raw speech samples must be right-shifted by two bits before
assigning it to the codecdata.sampleOpBuffer pointer for encoding.
© 2010 Microchip Technology Inc.

Application Programming Interface

© 2010 Microchip Tech
3.4.6 G726_encoder_init()Function
The G726_encoder_init()function is used to:
• Instantiates a structure to store the encoder state
• Initializes the encoder state variables
Note: This function must be called before G726_encode().
Return Value
None
Parameters
This function has two parameters.

Parameter &encoder_state

Size G726_state

Usage Instantiation of encoder state

Parameter codecdata.rate

Size short

Usage Output bit-rate
nology Inc. DS70295B-page 31

dsPIC® DSC Speech Coding Solutions User’s Guide
3.5 SPEEX API
DS70295B-page 32
3.5.1 codecsetup Structure
The codecsetup structure is defined in the spxlib_common.h file. This structure is
used to access:
• User defined raw, encoded and decoded speech buffers (described in detail in the

next two sections)
• Synchronization flags
• Speech sample counters used for encoding and decoding
A basic understanding of this structure is required for integrating the library with your
application.

EXAMPLE 3-5: codecsetup STRUCTURE
struct _codecsetup
{
//Pointer to decoded Speech sample buffer1.

volatile short *sampleDecdIpBuffer;

//Pointer to decoded Speech sample buffer2.
volatile short *sampleDecdOpBuffer;

//Pointer to raw Speech sample buffer1.

volatile short *sampleIpBuffer;

//Pointer to raw Speech sample buffer2.

volatile short *sampleOpBuffer;

//Pointer to encoded speech sample buffer1.

volatile char *sampleEncdIpBuffer;

//Pointer to encoded speech sample buffer2.

volatile char *sampleEncdOpBuffer;

//Flag to indicate ping-pong buffer filled or empty.

volatile char fFramedone;

//Flag to start or stop speech playback.
volatile char fStartPlay;

//Counter to keep count of number of frames of data encoded.

volatile int frameCount;

//Counter to keep count of number of frames of data decoded.
volatile int loadframeCount;

//Counter to keep track of number of samples stored.
volatile int countFill;

//Counter to keep track of number of samples played.
volatile int countLoad;

//Counter to keep track of number of samples encoded.
volatile unsigned long sampleCount;
© 2010 Microchip Technology Inc.

Application Programming Interface

© 2010 Microchip Tech
EXAMPLE 3-5: codecsetup STRUCTURE (CONTINUED)
//Number of encoded samples in each frame.

volatile char numOfencSamplesPerFrame;

//Flag to indicate decoding is done.
volatile char fFrameplayed;

//Flag to indicate encoding is done.
volatile char fEncodedone;

//Number of sets of data for the set ADC Buffer Length.
volatile int setOfADCData;

//Pointer to ADCBUF0 register.
volatile unsigned int* AdcBuf0Ptr;

//Number of bytes in the encoded speech.
unsigned long arraysizeinbytes;

//Flag to indicate VAD enable (VAD disabled by default).
char vad;

//Flag to indicate lostframe (cleared by default).
 char lostFrame;

//Size of the recorded (encoded) speech in number of frames.
long recordSize;

//Used to set Master/Slave in communication applications.
 short initiator;
};

The structure codecdata of type codecsetup is defined for your use in
spxlib_common.h file.

typedef struct _codecsetup codecsetup
extern codecsetup codecdata;
Note: The spxlib_common.h file may be customized for each individual
application, but modifying the codecdata structure is not recommended.
n
ology Inc. DS70295B-page 33

dsPIC® DSC Speech Coding Solutions User’s Guide

DS70295B-page 34
3.5.2 spxSi3000 Structure
The spxSi3000 structure defined in the spxlib_Si3000.h file represents all the
registers of the Si3000 Voiceband Codec. This structure can be used by applications
that use the Si3000 codec as the sampling and/or playback interface for speech. This
structure also includes the settings for the DCI peripheral. This structure can be
initialized using the #define statements provided in the spxlib_Si3000.h file.
Appendix A. “Si3000 Codec Configuration” contains detailed information about
configuring the Si3000 registers.

EXAMPLE 3-6: spxsi3000 STRUCTURE

Set the #define statement in spxlib_Si3000.h file for your application. Another
#define statement is provided to create a data structure of type spxSi3000:

#define SPXSI3000INIT const spxSi3000 speex = SPEEX;

To make the speex structure accessible to your source application, simply reference
the SPXSI3000INIT define in your source code, where you define your other data:

int my_variable;
SPXSI3000INIT // Si3000 data structure instantiation

// This defines the initialized Si3000
// data structure

...

struct _spxSi3000
{
int control1; //Si3000 Register 1
int control2; //Si3000 Register 2
int pLL1divideN1; //Si3000 Register 3
int pLL1multiplyM1; //Si3000 Register 4
int rxgaincontroL1; //Si3000 Register 5
int adcvolumecontrol; //Si3000 Register 6
int dacvolumecontrol; //Si3000 Register 7
int statusreport; //Si3000 Register 8
int analogattenuation; //Si3000 Register 9
char dcimode; //1=master, 0=slave
char dciintpri; //DCI interrupt priority
int bcg1; //bit clock generator
};
© 2010 Microchip Technology Inc.

Application Programming Interface

© 2010 Microchip Tech
3.5.3 libDecoder()Function
The libDecoder()function is used to:
• Decodes a frame of encoded speech (5 or 20 bytes)
• Generates an output of 160 speech integer samples for playback
Note: libDecoder() is the primary decoder function.
Return Value
None
Parameters
None

3.5.4 libDecoderInit()Function
The libDecoderInit()function initializes the decoder state variables.
Note: This function must be called before libDecoder().
Return Value
None
Parameters
None

3.5.5 libFullDuplexDecoder()Function
The libFullDuplexDecoder()function is used to:
• Decodes a frame of encoded speech (5 or 20 bytes), typically obtained from a

communication channel
• Generates an output of 160 speech integer samples for playback
Note: libFullDuplexDecoder() function is used only in Full-Duplex
applications (applications in which data is both encoded and decoded
concurrently).
Return Value
None
Parameters
None
nology Inc. DS70295B-page 35

dsPIC® DSC Speech Coding Solutions User’s Guide

DS70295B-page 36
3.5.6 libEncoder()Function
The libEncoder()function is used to:
• Encodes a frame of 160 speech samples
• Generates an output frame of encoded speech 5 or 20 bytes long, depending on

the state of codecdata.vad (‘0’ or ‘1’, respectively)
Note: libEncoder()is the primary encoder function.
Return Value
None
Parameters
None

3.5.7 libEncoderInit()Function
The libEncoderInit()function is used to:
• Dynamically allocates 1280 bytes of memory from the heap
• Initializes the encoder state variables
Note: This function must be called beforelibEncoder().
Return Value
None
Parameters
The libEncoderInit() function has one parameter:

3.5.8 libEncoderKill()Function
The libEncoderKill()function is used to:
• Frees the 1282 bytes dynamically allocated by libEncoderInit()function
• Clears the encoder state pointer
Return Value
None
Parameters
None

Parameter vad_enabled

Size char

Usage ‘1’ = enable VAD
‘0’ = disable VAD
© 2010 Microchip Technology Inc.

dsPIC® DSC SPEECH CODING

SOLUTIONS USER’S GUIDE

Chapter 4. Integrating Speech Encoding Into YourApplication
© 2010 Microchip Tech
This chapter provides information to help you understand how to integrate the speech
encoding portion of the G.711, G.726A and Speex libraries into your application and
how to build with the library. Topics include:
• Integrating Speech Encoding
• Data Buffers
• Encoder Initialization
• Encoder Heap Utilization
• Data Sampling Initialization
• Data Sampling
• Encoding
• End Data Sampling
A basic understanding of the encoder and interrupt timing is required to ensure correct
real-time operation of the library.
4.1 INTEGRATING SPEECH ENCODING

To interface your application with the encoder, you need to be familiar with:
• How the encoder is initialized to work with the input (the codec interface, on-chip

ADC, or any other sampling interface)
• How data is sampled
• How data buffers are used by the encoder
• How the library interacts with its interrupt handlers
4.2 DATA BUFFERS

The encoder uses four data buffers, which you must define. Two of these buffers are
input buffers used to store sampled speech data. The other two buffers are output
buffers used to store encoded speech data. Table 4-1 defines the parameters for these
buffers.

When the encoder processes a frame of data, it generates an output array, whose size
depends on the encoding algorithm being used. For example, the output data frame for
Speex may be as large as 20 bytes. In this case, the two output buffers must be large
enough to hold 20 bytes. Example buffer definitions are shown in Example 4-1:

TABLE 4-1: SPEECH ENCODING DATA BUFFER REQUIREMENTS

Parameter
Library

G.711 G.726A Speex

Input sampling rate 8 kHz (of 16-bit data) 8 kHz (of 16-bit data) 8 kHz (of 16-bit data)
Encoder frame size 32 ms 32 ms 20 ms
Buffer capacity 256 integer samples 256 integer samples 160 integer samples
nology Inc. DS70295B-page 37

dsPIC® DSC Speech Coding Solutions User’s Guide

DS70295B-page 38
EXAMPLE 4-1: BUFFER DEFINITIONS EXAMPLE

A pair of each type of buffer is needed since the encoding library ping-pongs, or
alternates, between input/output buffer pairs.
For instance, when sampling begins, the RawBuf1 buffer is populated with speech
data. At the end of each processing interval (20 ms in the case of Speex), a frame of
data is received and RawBuf1 is filled. The library processes RawBuf1 and populates
EncdBuf1, the encoded speech data.
Since the sampling process must be continuous, a second input buffer is needed to
store the data sampled in Frame 1 while Frame 0 is processed by the library. After
RawBuf1 is processed, the output is stored in EncdBuf1. Likewise, after RawBuf2 is
processed, the output is stored in EncdBuf2. This process allows you to safely use the
encoded data (for transmission or storage) in EncdBuf1, while EncdBuf2 is being
populated (and vice-versa).
Table 4-2 shows how the pairs of input/output buffers are used by the library.

TABLE 4-2: ENCODER BUFFER USAGE (SPEEX EXAMPLE)

Buffer Frame 0
(20 ms)

Frame 1
(20 ms)

Frame 2
(20 ms)

Frame 3
 (20 ms)

Frame 4
(20 ms)

RawBuf1 Filled by ISR Processed by
library

Filled by ISR Processed by
library

Filled by ISR

RawBuf2 Idle Filled by ISR Processed by
library

Filled by ISR Processed by
library

EncdBuf1 Idle Loaded with
Encoded in1

Available for
user handling

Loaded with
Encoded in1

Available for
user handling

EncdBuf2 Idle Idle Loaded with
Encoded in2

Available for
user handling

Loaded with
Encoded in2

short RawBuf1[160], RawBuf2[160]; /* ping-pong input buffers */
char EncdBuf1[20], EncdBuf2[20]; /* ping-pong output buffers */
4.3 ENCODER INITIALIZATION
4.3.1 G.711 Encoder Initialization
The G.711 (A-law and μ-law) encoder does not need to be initialized. Therefore, there
is no initialization function for this encoder.

4.3.2 G.726A Encoder Initialization
The G.726A encoder is initialized by calling the G726_encoder_init() function with
the desired output bit-rate at which the speech needs to be encoded (since this
encoder supports multiple bit-rates).
The RATE setting is stored in the rate element in the codecdata structure. This
structure is defined in the G726ALib_common.h include file. The codecdata.rate
parameter is used as an argument to the G726_encoder_init() function.
The user application also needs to define an instantiation of the G726_state structure
and pass its address as the other argument to the G726_encoder_init() function.
© 2010 Microchip Technology Inc.

Integrating Speech Encoding Into YourApplication

© 2010 Microchip Tech
4.3.3 Speex Encoder Initialization
The Speex encoder is initialized by calling the libEncoderInit() function with the
desired Voice Activity Detection (VAD) setting. When VAD is enabled, the library
differentiates between speech and silence (background noise). Non-speech periods
are encoded with just enough data (5 bytes per frame instead of 20 bytes) to reproduce
the background noise.
The VAD setting is stored in the codecdata.vad structure. This structure is defined
in spxlib_common.h and initialized by the CODECDATA #define statement. The
codecdata.vad structure element is used as the argument for libEncoderInit():

libEncoderInit (codecdata.vad);

When the codecdata.vad structure element is initialized to ‘1’, VAD is enabled.
When codecdata.vad is initialized to ‘0’, VAD is disabled. The VAD feature cannot
be enabled or disabled on a frame-by-frame basis. After libEncoderInit() is
called, the VAD setting must not be modified.
4.4 ENCODER HEAP UTILIZATION

The G.711 and G.726A encoder and decoder algorithms do not use a heap. Therefore,
they do not require heap initialization by the user application.
The Speex encoder requires 1282 bytes of scratch RAM. As a benefit to your
application, this memory is allocated dynamically by libEncoderInit(). As a result,
you recover this memory for your application after the encoder completes running.
When building your application, you must define a heap size of 1282 bytes for the
encoder. If you do not reserve at least 1282 bytes for the heap, your application will
either not build or it will run incorrectly.
The Speex decoder does not require heap initialization.
4.5 DATA SAMPLING INITIALIZATION

After the encoder is initialized by calling libEncoderInit(), the sampling system
(DCI module and Si3000 codec) must be initialized. The appropriate sampling
interfaces are initialized using constants defined in the spxlib_Si3000.h (or
G711lib_Si3000.h or G726Alib_Si3000.h) include file. The addresses of the
four data buffers must then be assigned to the corresponding structures of the
codecdata structure, as shown in Example 4-2 :

EXAMPLE 4-2: SPEEX EXAMPLE
codecdata.sampleIpBuffer = RawBuf1;
codecdata.sampleOpBuffer = RawBuf2;
codecdata.sampleEncdIpBuffer = EncdBuf1;
codecdata.sampleEncdOpBuffer = EncdBuf2;
4.6 DATA SAMPLING

Data sampling is typically managed by either the DCI ISR, if you are using an external
Voiceband Codec, or the 12-bit ADC ISR, if you are sampling from the 12-bit ADC.
Each ISR reads speech samples from the respective peripheral and stores the data in
your defined input buffers.
When a complete frame of 256 or 160 speech samples has been received by the ISR,
the ISR should set the codecdata.fFramedone flag to ‘1’ and perform input buffer
management. This process allows new data to be collected by the ISR while the
foreground library processes the newly received frame of speech data.
no
logy Inc. DS70295B-page 39

dsPIC® DSC Speech Coding Solutions User’s Guide

DS70295B-page 40
If you are using the DCI module, DCI ISRs can be configured to execute every 500 μs
instead of the speech sample period of 125 μs (1/8 kHz) to minimize the impact of the
ISR on your application. To do this, initialize the DCI with the buffer length control bits
BL<1:0> = ‘11b’. This mode allows four data samples to be buffered between inter-
rupts, thereby decreasing the interrupt rate by a factor of four.
4.7 ENCODING
4.7.1 G.711 Encoding
Speech encoding is performed by the alaw_compress() or μlaw_compress()
function. This function can only be called after the sampling interface has received a
full block of data for processing. When 256 samples of speech data have been received
by the sampling ISR, the codecdata.fBlockdone flag should be set to ‘1’, which
signifies that alaw_compress() or μlaw_compress() can be called.
Since each data frame is 20 ms long, this function must be called 32 times each second
to maintain continuous processing of data. To ensure efficient real-time performance,
the alaw_compress() or μlaw_compress() function must not be run from an ISR.
Immediately after the alaw_compress() or μlaw_compress() function has been
executed, the user application should swap the two ping-pong output buffer pointers,
clear the codecdata.fBlockdone flag, and set the codecdata.fCompressdone
flag.
At this point, the encoded data can be used (stored and/or transmitted, depending on
the application) by the application. The encoded data will always be pointed by the
codecdata.sampleComprsOpBuffer pointer, and the number of bytes encoded
(256) will be stored in codecdata.numOfSamplesPerFrame. You must access the
encoded data using these structure elements.

4.7.2 G.726A Encoding
Speech encoding is performed by the G726_encode() function. This function can
only be called after the sampling interface has received a full frame of data for
processing. When 256 samples of speech data have been received by the sampling
ISR, the codecdata.fBlockdone flag should be set to ‘1’, which signifies that
G726_encode() can be called.
Since each data frame is 32 ms long, this function must be called 32 times each second
to maintain continuous processing of data. To ensure efficient real-time performance,
the G726_encode() function must not be run from an ISR.
Immediately after the G726_encode() function has been executed, the user
application should swap the two ping-pong output buffer pointers, clear the
codecdata.fBlockdone flag, and set the codecdata.fEncodedone flag.
At this point, the encoded data can be used (stored and/or transmitted, depending on
the requirement) by the application. The encoded data will always be pointed by the
codecdata.sampleEncodeOpBuffer pointer, and the number of bytes
encoded (256) will be stored in codecdata.numOfSamplesPerFrame. You must
access the encoded data using these structure elements.

4.7.3 Speex Encoding
Speech encoding is performed by the libEncoder() function. This function can only
be called after the sampling interface (e.g., DCI) has received a full frame of data for
processing. When 160 samples of speech data have been received by the sampling
ISR, the codecdata.fFramedone flag should be set to ‘1’, which signifies that
libEncoder() can be called.
© 2010 Microchip Technology Inc.

Integrating Speech Encoding Into YourApplication

© 2010 Microchip Tech
Since each data frame is 20 ms long, this function must be called 50 times each second
to maintain continuous processing of data. To ensure efficient real-time performance,
the libEncoder() function must not be run from an ISR.
Immediately after the libEncoder() function has been executed, the user application
should swap the two ping-pong output buffer pointers, clear the
codecdata.fFramedone flag, and set the codecdata.fEncodedone flag.
At this point, the encoded data can be used (stored and/or transmitted, depending on
the application) by the application. The encoded data will always be pointed by the
codecdata.sampleEncdOpBuffer pointer, and the number of bytes encoded (5
bytes or 20 bytes) will be stored in codecdata.numOfencSamplesPerFrame. You
must access the encoded data using these structure elements.
4.8 END DATA SAMPLING

For your convenience, the number of speech frames encoded by the library is saved in
these structure elements:
• codecdata.blockCount for G.711 and G.726A
• codecdata.frameCount for Speex
You can use this information to determine when to stop sampling. This can be required
if you are storing the encoded data to memory and you are concerned about exceeding
your application's storage capacity.
The codecdata.recordSize structure element is made available to store the
number of frames you want to encode. Your application can compare
codecdata.frameCount (or codecdata.blockCount) with
codecdata.recordSize to determine when sampling must stop. If you want to use
this feature, you must manually perform this comparison in your application, using the
user-specified RECORDSIZE constant provided in G711_common.h,
G726A_common.h or spxlib_common.h:

#define RECORDSIZE 750 // encode 750 frames (15 seconds)

Data sampling can be stopped by disabling the interrupt service routines of the
sampling interface. The sample code sequence is as shown in Example 4-3 (for Speex)
listing the steps that should be performed when sampling is stopped and you want to
return the encoder to an idle state:

EXAMPLE 4-3: SAMPLE CODE SEQUENCE FOR SPEEX

The libEncoderKill() function will free the 1282 bytes of scratch memory reserved
by libEncoderInit() from the heap. Your application can use this RAM after
libEncoderKill() runs. For detailed information about heap requirements, see
Section 4.4 “Encoder Heap Utilization”.

libEncoderKill (); /* destroys Encoder state */
codecdata.fFramedone = 0x00; /* clear sampling flag */
codecdata.frameCount = 0x00; /* clear number of frames encoded */
no
logy Inc. DS70295B-page 41

dsPIC® DSC Speech Coding Solutions User’s Guide
NOTES:
DS70295B-page 42 © 2010 Microchip Technology Inc.

dsPIC® DSC SPEECH CODING

SOLUTIONS USER’S GUIDE

Chapter 5. Integrating Speech Decoding Into YourApplication
© 2010 Microchip Tech
This chapter provides information to help you understand how to integrate the speech
decoding portion of the G.711, G.726A and Speex libraries into your application and
how to build with the library. Topics include:
• Integrating Speech Decoding
• Data Buffers
• Decoder Initialization
• Decoder Heap Utilization
• Decoding the First Frame
• Speech Playback Initialization
• Speech Playback
• Decoding
• Ending Speech Playback
A basic understanding of the decoder and interrupt timing is required to ensure correct
real-time operation of the library.
5.1 INTEGRATING SPEECH DECODING

To interface your application with the decoder, you need to be familiar with:
• How data buffers are used by the decoder
• How the decoder is initialized
• How speech playback works
• How the library decoder interacts with its interrupt handlers
5.2 DATA BUFFERS

The decoder uses four data buffers, which you must define. Two of these buffers are
input buffers used to store encoded speech data. The other two buffers are output
buffers used to store decoded speech data for playback. Table 5-1 defines the
parameters for these buffers.

For example, the encoded data frame for Speex may be as large as 20 bytes, while the
decoded output will contain 160 samples. Example buffer definitions are shown in
Example 5-1:

TABLE 5-1: SPEECH DECODING DATA BUFFER REQUIREMENTS

Parameter
Library

G.711 G.726A Speex

Output sampling rate 8 kHz (of 16-bit data) 8 kHz (of 16-bit data) 8 kHz (of 16-bit data)
Decoder frame size 32 ms 32 m 20 ms
Output Array 256 integer samples 256 integer samples 160 integer samples
nology Inc. DS70295B-page 43

dsPIC® DSC Speech Coding Solutions User’s Guide

DS70295B-page 44
Example 5-1: Buffer Definitions Example

A pair of each type of buffer is needed since the decoding library ping-pongs, or
alternates between input/output buffer pairs.
For instance, data is loaded into EncdBuf1 for decoding, and it is processed by the
library. After executing, the decoder populates the DecdBuf1 buffer with speech data.
When output sampling begins, DecdBuf1 is played back through the respective ISR
handler over the course of the next processing interval (20 ms in the case of Speex).
Since the speech playback process must be continuous, EncdBuf2 is filled and
processed by the library, which populates the DecdBuf2 buffer, while DecdBuf1 is
being played back.
Likewise, when DecdBuf2 is being played back, DecdBuf1 is being populated with
new data obtained by decoding the data from EncdBuf1. The EncdBuf1 and
EncdBuf2 buffers are also used in an alternating fashion, which allows one buffer to
be optionally pre-loaded as the other input buffer is being processed.
Table 5-2 shows how the pairs of input/output buffers are used by the library.

char EncdBuf1[20], EncdBuf2[20]; /* ping-pong i/p buffers */
short DecdBuf1[160], DecdBuf2[160]; /* ping-pong o/p buffers */
TABLE 5-2: DECODER BUFFER USAGE (SPEEX EXAMPLE)

5.3 DECODER INITIALIZATION

Buffer Initialization Frame 0
(20 ms)

Frame 1
(20 ms)

Frame 2
(20 ms)

Frame 3
(20 ms)

EncdBuf1 Filled and
processed by
library

Idle (available for
filling)

Filled and
processed by
library

Idle (available for
filling)

Filled and
processed by library

EncdBuf2 Idle (available for
filling)

Filled and
processed by
library

Idle (available for
filling)

Filled and
processed by
library

Idle (available for
filling)

DecdBuf1 Loaded with
Decoded in1

Played out by ISR Loaded with
Decoded in1

Played out by ISR Loaded with
Decoded in1

DecdBuf2 Idle Loaded with
Decoded in2

Played out by ISR Loaded with
Decoded in2

Played out by ISR
5.3.1 G.711 Decoder Initialization
The G.711 (A-law and μ-law) decoder does not need to be initialized. Therefore, there
is no initialization function for this decoder.

5.3.2 G.726A Decoder Initialization
The G.726A decoder is initialized by calling the G726_decoder_init() function with
the desired input bit-rate at which the speech has been encoded (since this decoder
supports multiple bit-rates).
The RATE setting is stored in the rate element in the codecdata structure. This
structure is defined in the G726ALib_common.h include file. The codecdata.rate
parameter is used as an argument to the G726_decoder_init() function.
The user application also needs to define an instantiation of the G726_state structure
and pass its address as the other argument to the G726_decoder_init() function.
© 2010 Microchip Technology Inc.

Integrating Speech Decoding Into YourApplication

© 2010 Microchip Tech
5.3.3 Speex Decoder Initialization
The Speex decoder is initialized by calling the libDecoderInit() function. This
function initializes the decoder state variables. The decoder is automatically capable of
processing frames of data that are encoded either with or without VAD. The VAD
selection need not be specified by the user for the decoder to function correctly.
If you will be decoding a speech sample stored in data EEPROM, program Flash or
external Flash memory, you must also initialize any registers (e.g., TBLPAG to access
data EEPROM or program Flash memory) or external devices that are to be used.
The user application needs to define which encoded speech sample stored in memory
will be decoded by the library. For instance, if you used the speech encoding utility to
create four different messages for your application (Message1, Message2, Message3
and Message4) and stored them in program memory, they will be stored in arbitrary
locations along with your application code and the library, as shown in Figure 5-1. All
your messages must be created with a unique array name, which will allow them to be
accessed by the library.

FIGURE 5-1: EXAMPLE OF MULTIPLE MESSAGES STORED IN PROGRAM
MEMORY

You can specify and refer a list of unique array names in the spxlib_common.inc file
provided with the library, as shown in Example 5-2. This file can be used to define a
table with up to ten entries (depending on the memory available on the specific device
being used). Note that there is a leading underscore in each array name.

Message1

Message2

Message3

Message4

0x000000

0x006400

0x007400

0x00A000

0x00C000

Application
(with Speech

Decoding
Library)
nology Inc.
 DS70295B-page 45

dsPIC® DSC Speech Coding Solutions User’s Guide

DS70295B-page 46
EXAMPLE 5-2: EXAMPLE OF UNIQUE ARRAY NAMES

To initiate the playback of one of the above messages from program memory, the user
application can use an index variable to specify which message is to be played back,
and use the corresponding table page and offset values to fetch encoded data from the
appropriate array.

.equ TABLENAME1, _Message1

.equ TABLENAME2, _Message2

.equ TABLENAME3, _Message3

.equ TABLENAME4, _Message4

.equ TABLENAME5, 0 ; not used

.equ TABLENAME6, 0 ; not used

.equ TABLENAME7, 0 ; not used

.equ TABLENAME8, 0 ; not used

.equ TABLENAME9, 0 ; not used

.equ TABLENAME10, 0 ; not used
5.4 DECODER HEAP UTILIZATION

None of the three decoders described requires a heap. All memory used by the library
is pre-allocated.
5.5 DECODING THE FIRST FRAME

Before the output sampling system is initialized, one frame of speech must be first
decoded. If this step is not performed, uninitialized data stored in the decoder's output
buffers will be played back, which can lead to undesirable results.
Decoding begins by first populating an input buffer of the decoder. After the decoder
input data is read from memory, decoding is performed by calling libDecoder() and
then performing buffer management (swapping the decoded data buffer pointers).
5.6 SPEECH PLAYBACK INITIALIZATION

After the decoder is initialized and one frame of speech has been decoded, the output
sampling system (DCI module and Si3000 codec) must be initialized for speech
playback. The appropriate sampling interfaces are initialized using constants defined
in the spxlib_Si3000.h (or G711lib_Si3000.h or G726Alib_Si3000.h)
include file. The addresses of the four data buffers must then be assigned to the
corresponding structures of the codecdata structure, as shown in Example 5-3.

EXAMPLE 5-3: SPEEX EXAMPLE
codecdata.sampleEncdIpBuffer = EncdBuf1;
codecdata.sampleEncdOpBuffer = EncdBuf2;
codecdata.sampleDecdIpBuffer = DecdBuf1;
codecdata.sampleDecdOpBuffer = DecdBuf2;
5.7 SPEECH PLAYBACK

Speech playback is typically managed by the DCI ISR, if you are using an external
Voiceband Codec, or the 12-bit ADC ISR, if you are sampling from the 12-bit ADC.
Each ISR writes decoded speech samples to its respective peripheral from the
decoder's output buffers. When a complete frame of decoded speech (256 or 160
samples) has been played out by the ISR, the ISR should set the
codecdata.fFrameplayed flag to ‘0’, process the output buffer and perform buffer
management. This process allows new decoded data to be played by the ISR while the
foreground library code decodes another frame of speech.
© 2010 Microchip Technology Inc.

Integrating Speech Decoding Into YourApplication

© 2010 Microchip Tech
If you are using the DCI module, DCI interrupt service routines can be configured to
execute every 500 μs instead of the speech sample period of 125 μs (1/8 kHz) to
minimize the impact of the ISR on your application. To do this, initialize the DCI with the
buffer length control bits BL<1:0> = ‘b11. This mode allows four data samples to be
buffered between interrupts, thereby decreasing the interrupt rate by a factor of four.
5.8 DECODING
5.8.1 G.711 Decoding
Before decoding can be performed, the appropriate input buffer must be first loaded
with data. The codecdata.fBlockdone and codecdata.fBlockplayed structure
elements can be used to manage the loading of data into the correct input buffer and
the playback of data from the correct output buffer, as shown in Table 5-3.

TABLE 5-3: BUFFER MANAGEMENT DATA STRUCTURES

If the codecdata.fBlockdone flag is ‘0’ (indicating that data needs to be copied to
a decoder input buffer) and the codecdata.fBlockplayed flag is ‘1’ (indicating that
an output buffer is being played back), a new frame of encoded data can be read into
a decoder input buffer.
Once the new input data has been read and the codecdata.fBlockdone flag is ‘1’,
the alaw_expand() or μlaw_expand() function is called to perform the decoding.
This function converts the encoded input buffer to a 256 word decoded buffer for
speech playback. To maintain synchronization with the two sets of input/output buffers,
decoded data buffer management must be performed after the
codecdata.fBlockplayed flag is ‘0’. A decoder timeline is shown in Figure 5-2.

FIGURE 5-2: G.711 DECODER TIMELINE EXAMPLE

Element Function

codecdata.fBlockdone 0 – Copy data to input buffer
1 – Process data from input buffer

codecdata.fBlockplayed 0 – Output buffer ready to be read (ready for playback)
1 – Output buffer is being read (playback in process)

Frame 1 Frame 2 Frame 3
32 ms 32 ms32 ms

A B C D D DE E EF FF

A The decoder is initialized and the first frame of speech is decoded by calling
alaw_expand() or μlaw_expand(). This function generates a buffer of 256
samples, which is stored in one of the output buffers. This output buffer is played back
during Frame 1 after output sampling begins.

B Perform buffer management, set fBlockplayed flag and clear fBlockdone flag.
C The sampling interface is initialized and speech playback is started.
D New data to decode is read from memory and copied to the appropriate input buffer

(see Table 5-3). The fBlockdone flag is set to ‘1’ indicating that one encoded frame
of data has been loaded for the decoder.

E alaw_expand()or μlaw_expand() is called to decode the new loaded data.
F The sampling interface ISR transmits the last speech sample of an output buffer,

performs output buffer management and sets the fBlockplayed flag to ‘0’.
Note: Speech playback begins at point C and can be performed in the background by the

DCI or Timer ISR. Processes D, E and F repeat each frame for the playback of
additional speech.
nolo
gy I
nc
.
 DS70295B-
page 47

dsPIC® DSC Speech Coding Solutions User’s Guide

DS70295B-page 48
The locations of events D and E are arbitrary and occur under application control. They
can occur at any time within each 20 ms frame, as long as the fBlockdone and
fBlockplayed state conditions defined above are satisfied. Your application can exe-
cute code between points C-D, D-E and E-F. When your application code is executing,
you must always allow the sampling interface ISR to run unimpeded. Failure to let the
ISR run as normal will result in degraded audio playback quality.

5.8.2 G.726A Decoding
Before decoding can be performed, the appropriate input buffer must be first loaded
with data. The codecdata.fBlockdone and codecdata.fBlockplayed structure
elements can be used to manage the loading of data into the correct input buffer and
the playback of data from the correct output buffer, as shown in Table 5-4.

TABLE 5-4: BUFFER MANAGEMENT DATA STRUCTURES

A new frame of encoded data can be read into a decoder input buffer if these two
conditions are met:
• The codecdata.fBlockdone flag is ‘0’ (indicating that data needs to be copied

to a decoder input buffer)
• The codecdata.fBlockplayed flag is ‘1’ (indicating that an output buffer is

being played back)
Once the new input data has been read and the codecdata.fBlockdone flag is ‘1’,
the G726_decode() function is called to perform the decoding. This function converts
the encoded input buffer to a 256 word decoded buffer for speech playback. To
maintain synchronization with the two sets of input/output buffers, decoded data buffer
management must be performed after the codecdata.fBlockplayed flag is ‘0’. A
decoder timeline is shown in Figure 5-3.

FIGURE 5-3: G.726A DECODER TIMELINE EXAMPLE

Element Function
codecdata.fBlockdone 0 – copy data to input buffer

1 – process data from input buffer
codecdata.fBlockplayed 0 – output buffer ready to be read (ready for playback)

1 – output buffer is being read (playback in process)

Frame 1 Frame 2 Frame 3

32 ms 32 ms32 ms

A B C D D DE E EF FF

A The decoder is initialized and the first frame of speech is decoded by calling
G726_decode(). G726_decode() generates a buffer of 256 samples, which is
stored in one of the output buffers. This output buffer is played back during Frame 1
after output sampling begins.

B Perform buffer management, set fBlockplayed flag and clear fBlockdone flag.
C The sampling interface is initialized and speech playback is started.
D New data to decode is read from memory and copied to the appropriate input buffer

(see Table 5-4). The fBlockdone flag is set to ‘1’, indicating that one encoded frame
of data has been loaded for the decoder.

E G726_decode() is called to decode the new loaded data.
F The sampling interface ISR transmits the last speech sample of an output buffer,

performs output buffer management and sets fBlockplayed flag to ‘0’.
Note: Speech playback begins at point C and can be performed in the background by the

DCI or Timer ISR. Processes D, E and F repeat each frame for the playback of
additional speech.
© 2010 Microchip Technology Inc.

Integrating Speech Decoding Into YourApplication

© 2010 Microchip Tech
The locations of events D and E are arbitrary and occur under application control. They
can occur at any time within each 20 ms frame, as long as the fBlockdone and
fBlockplayed state conditions defined above are satisfied. Your application can exe-
cute code between points C-D, D-E and E-F. When your application code is executing,
you must always allow the sampling interface ISR to run unimpeded. Failure to let the
ISR run as normal can degrade audio playback quality.

5.8.3 Speex Decoding
Before decoding can be performed, the appropriate input buffer must be first loaded
with data. The codecdata.fFramedone and codecdata.fFrameplayed structure
elements can be used to manage the loading of data into the correct input buffer and
the playback of data from the correct output buffer, as shown in Table 5-5.

TABLE 5-5: BUFFER MANAGEMENT DATA STRUCTURES

A new frame of encoded data can be read into a decoder input buffer if these two
conditions are met:
• The codecdata.fFramedone flag is ‘0’ (indicating that data needs to be copied

to a decoder input buffer)
• The codecdata.fFrameplayed flag is ‘1’ (indicating that an output buffer is

being played back)
Once the new input data has been read and the codecdata.fFramedone flag is ‘1’,
the libDecoder() function is called to perform the decoding. This function converts
the 5-byte or 20-byte input buffer to a 160-word buffer for speech playback. To maintain
synchronization with the two sets of input/output buffers, decoded data buffer
management must be performed after the codecdata.fFrameplayed flag is ‘0’. A
decoder timeline is shown in Figure 5-4.

FIGURE 5-4: SPEEX DECODER TIMELINE EXAMPLE

Element Function
codecdata.fFramedone 0 – copy data to input buffer

1 – process data from input buffer
codecdata.fFrameplayed 0 – output buffer ready to be read (ready for playback)

1 – output buffer is being read (playback in process)

Frame 1 Frame 2 Frame 3

20 ms 20 ms20 ms

A B C D D DE E EF FF

A The decoder is initialized and the first frame of speech is decoded by calling
libDecoder(). libDecoder() generates a buffer of 160 samples, which is stored
in one of the output buffers. This output buffer is played back during Frame 1 after
output sampling begins.

B Perform buffer management, set fFrameplayed flag and clear fFramedone flag.
C The sampling interface is initialized and speech playback is started.
D New data to decode is read from memory and copied to the appropriate input buffer

(see Table 5-5). The fFramedone flag is set to ‘1’ indicating that one encoded frame
of data has been loaded for the decoder.

E libDecoder() is called to decode the new loaded data.
F The sampling interface ISR transmits the last speech sample of an output buffer,

performs output buffer management and sets fFrameplayed flag to ‘0’.
Note: Speech playback begins at point C and can be performed in the background by the

DCI or Timer ISR. Processes D, E and F repeat each frame for the playback of
additional speech.
no
logy Inc. DS70295B-page 49

dsPIC® DSC Speech Coding Solutions User’s Guide

DS70295B-page 50
The locations of events D and E are arbitrary, and occur under your control. They can
occur at any time within each 20 ms frame, as long as the fFramedone and fFrame-
played state conditions defined above are satisfied. Your application can execute
code between points C-D, D-E and E-F. When your application code is executing, you
must always allow the sampling interface ISR to run unimpeded. Failure to let the ISR
run as normal can degrade audio playback quality.
5.9 ENDING SPEECH PLAYBACK

For your convenience, the number of bytes decoded by the library is saved in
codecdata.sampleCount. The codecdata.arraysizeinbytes structure
element is made available for you to store the size of your encoded speech record.
In your application, you can compare codecdata.sampleCount with
codecdata.arraysizeinbytes to determine when the entire speech record has
been played and stop the speech playback.
To use this feature, you must manually perform this comparison in your application,
using the provided #define statement in the G711_common.h, G726A_common.h or
spxlib_common.h file:

#define ARRAYSIZEINBYTES 2600 // record is 2600 bytes

Speech playback can be stopped by disabling the ISR of the sampling interface. The
sample code sequence (for Speex), as shown in Example 5-4, lists the steps that
should be performed when sampling is stopped and you want to return the decoder to
an idle state.

EXAMPLE 5-4: SAMPLE CODE SEQUENCE (FOR SPEEX)
codecdata.fFramedone = 0x0;
codecdata.frameCount = 0x0;
codecdata.sampleCount = 0x0;
codecdata.fFrameplayed = 0x0;
libStopPlay ();
libDecoderKill ();
© 2010 Microchip Technology Inc.

dsPIC® DSC SPEECH CODING

SOLUTIONS USER’S GUIDE

Chapter 6. Speech Encoding Utility
© 2010 Microchip Tech
Each of the Speech Encoding/Decoding libraries described in this document includes
a PC-based speech encoding utility that allows you to create your own encoded speech
files on your personal computer. The files created from the speech encoding utility can
then be built into your application for playback on the dsPIC device using the
corresponding Decoder function. This chapter describes how to use the speech
encoding utility. Items discussed include:
• System Requirements
• Overview
• Encoding Speech from a Microphone
• Encoding Speech from a WAVE (.wav) file
• Recommendations for Encoding from a Microphone
• Using the Command Line Decoder
6.1 SYSTEM REQUIREMENTS

The system requirements are as follows:
• PC running Windows 95/98/ME/NT 4.0/2000/XP
• Sound card
• Microphone
6.2 OVERVIEW

The Speech Encoding and Decoding functions are designed to optimize computational
performance and minimize RAM usage for speech-based applications embedded in
dsPIC devices. The Speech Encoding Utility allows you to create encoded speech files
from a microphone or from a pre-recorded WAVE (.wav) file, as shown in Figure 6-1,
and target the encoded file for on-chip or off-chip memory.

FIGURE 6-1: OVERVIEW OF SPEECH ENCODING UTILITY

The encoding process creates three output files:
• Source file for your application, in either C (*.c) or assembly (*.s) format
• Raw uncompressed (8 kHz, 16-bit mono) speech file (*.raw)
• Encoded (*.spx) file

Speech
Encoding

Utility
.wav File

Designated Filename

source file (*.c or *.s)
raw file (*.raw)
encoded file (*.spx)
nology Inc.
 DS70295B-page 51

dsPIC® DSC Speech Coding Solutions User’s Guide

DS70295B-page 52
The Speech Encoding Utility allows you to select the type of memory in which to store
your encoded speech file. The target memory selection ensures that the file is encoded
in the correct format for:
• Program Memory
• RAM
• Data EEPROM (only supported for dsPIC30F and Speex Library)
• External Flash (only supported for dsPIC30F and Speex Library)
External Flash memory allows you to store several minutes of speech (one minute of
speech requires 60 Kbytes of memory). It is supported through a dsPIC30F general
purpose I/O port.
The encoded source file must be added to your MPLAB IDE project and built into your
application. The *.raw and *.spx files remain on your PC for your use.

FIGURE 6-2: OVERVIEW OF SPEECH ENCODING UTILITY

Speech
Encoding

Utility

source file (*.c or *.s) MPLAB® IDE
project file (*.mpx)

PC Hard Drive
6.3 ENCODING SPEECH FROM A MICROPHONE

To create your own encoded speech file from a microphone, use this procedure.
Select microphone input:
1. Launch the Windows Master Volume Control

(Start>Programs>Accessories>Entertainment>Volume Control). When the
Master Volume dialog displays, select Options>Properties, as shown in
Figure 6-3.
Note: The dialogs illustrated here reflect a PC running Windows® XP. The dialogs
may vary slightly based on the operating system you are using.
FIGURE 6-3: MASTER VOLUME CONTROL
© 2010 Microchip Technology Inc.

Speech Encoding Utility

© 2010 Microchip Tech
2. On the Properties dialog (Figure 6-4), select Adjust volume for Recording and
Microphone, then click OK.

FIGURE 6-4: MASTER VOLUME PROPERTIES DIALOG

3. When the Recording Control dialog displays the microphone volume controls,
adjust the settings for your environment.

FIGURE 6-5: RECORDING CONTROL DIALOG

Set Microphone volume control
for your environment
nology Inc.
 DS70295B-page 53

dsPIC® DSC Speech Coding Solutions User’s Guide

DS70295B-page 54
Configure Speech Encoding Utility:
1. Launch the speech encoding utility from the desktop icon or Quick Start menu

set up in the installation process. If you choose not to install the icons, navigate
to the dsPIC DSC Speech Encoding/Decoding Libraries installation folder and
launch the dsPICSpeechRecord.exe file. The program window displays the
current encoder settings, as shown in Figure 6-6.

FIGURE 6-6: SPEECH ENCODING UTILITY

2. Select Input>Mic.
3. Select Output>Array Name. When the Array name dialog appears, as shown in

Figure 6-7. Click OK to accept the default array name (speex_data).

FIGURE 6-7: ARRAY NAME DIALOG

4. Select Output>Filename. When the Save As dialog appears, designate the file
name and location.

5. From the Target Memory menu, select the type of memory you want to use (see
Table 6-1).

TABLE 6-1: TARGET MEMORY MENU FUNCTIONS
Memory Type Encoded File Characteristics

Data EEPROM Generate a “C” source file (*.c) to be stored in data EEPROM
External Flash Generate an assembly source file (*.s) to be stored in external Flash

memory
Program Memory Generate an assembly source file (*.s) to be stored in program

memory
RAM Generate a “C” source file (*.c) to be stored in RAM
© 2010 Microchip Technology Inc.

Speech Encoding Utility

© 2010 Microchip Tech
6. Select Options>VAD, to apply additional compression to voids (silent periods) in
the speech file.

Record Your Message:
1. Click Record and speak into the microphone. Observe the time being used.
Note: The speech encoding utility has no knowledge about the available memory
in your system. You must ensure that the generated source file will fit within
your application memory constraints. For instance, the data EEPROM on
the dsPIC30F6014A is 4096 bytes, which can store approximately four
seconds of Speex-encoded speech.
2. Click Stop to stop the recording. An Encoding Completed message displays the
properties of the three output files generated, as shown in Figure 6-8.

FIGURE 6-8: ENCODING COMPLETE MESSAGE
6.4 ENCODING SPEECH FROM A WAVE (.wav) FILE

To encode speech from a WAVE (.wav) file:
1. Select Input>Speech File.
2. Select the output filename and array name from the Output menu.
3. Select the target memory from the Target Memory menu (see Table 6-1).
4. Enable or disable VAD from the Options menu.
5. Press the Encode button.
6. Select the WAVE (.wav) file to encode.
Note: You must ensure that the source WAVE (.wav) file has compatible
characteristics. An incompatible format will generate an error message, as
shown in Figure 6-9.
FIGURE 6-9: WAVE (.wav) FILE FORMAT ERROR MESSAGE

If everything is successful, an Encoding Completed message displays the
properties of the three output files generated, as shown in Figure 6-8.
nology Inc. DS70295B-page 55

dsPIC® DSC Speech Coding Solutions User’s Guide
6.5 RECOMMENDATIONS FOR ENCODING FROM A MICROPHONE
DS70295B-page 56
When making encoded speech files from a microphone, it is recommended that you
speak as clearly as possible in your natural tone of voice. The encoder is not language
specific, so any language can be used with the speech encoding utility.
A wide variety of low-cost PC microphones are available in the marketplace. If you are
not satisfied with the quality of the playback of the encoded file, try a different
microphone. Testing at Microchip with the LabTec Axis301 headset microphone has
demonstrated good results across a cross section of speakers.
6.6 USING THE COMMAND LINE DECODER

The encoded data available in the C file array is also available in the binary format
in .spx file. The encoded data can be decoded using the decoder application file
(AWSpeexDec.exe) in the speech encoding utility home directory. The decoded data
will be in raw format. You may want to play a raw file to assess the quality of the Speex
Codec or to use it for the PESQ based MOS evaluation. Since a decoded raw file is not
a WAVE (.wav) file (it does not have headers), you will need an audio editing utility
(such as CoolEdit) to listen to the file.
The decoder usage is:
 decoder sourcefilename destinationfilename
The source file is the generated .spx file. The destination file is the raw file produced
as a result of decoding. This file will have the extension that you give it (.raw is
recommended).
© 2010 Microchip Technology Inc.

dsPIC® DSC SPEECH CODING

SOLUTIONS USER’S GUIDE

Chapter 7. Using Flash Memory for Speech Playback
© 2010 Microchip Tech
The Speex Speech Encoding/Decoding Library supports an external memory interface
for dsPIC30F devices, which can be used to store real-time encoded data and/or
play back encoded data. This chapter provides information on the use of external Flash
memory with the library. Items discussed in this chapter include:
• Using External Flash Memory
• Storing Speech Encoding Utility Data to External Flash Memory
• Building a Loadable Hex File for External Flash Memory
• Programming the Hex File to External Flash Memory
• Running the EFP Utility
• Error Handling
• Other External Solutions
7.1 USING EXTERNAL FLASH MEMORY

For dsPIC30F devices, the Speex Speech Encoding/Decoding Library supports an
external memory interface, which can be used to store encoded data and/or play back
encoded data. This capability provides a solution for store and playback applications
and memory-constrained, playback-only applications. The library includes Flash
memory drivers for an AMD29F200B memory device. The AMD29F200B is a
popular 5.0V Flash memory with a memory size of 128K x 16-bit and fast programming
time.
Although the dsPIC30F does not have a dedicated external bus interface, you can
interface to external Flash memory through general purpose I/O pins. A reference
design for a 16-bit interface to the AMD29F200B in Word mode is provided in
Appendix B. This reference design features a 2x30 header, which conveniently plugs
into the top of header J19 of the dsPICDEM™ 1.1 Plus Development Board. The
required I/O lines for this interface are shown in Table 7-1.

TABLE 7-1: PINS USED FOR EXTERNAL MEMORY INTERFACE

The reference design provided in Appendix B and the accompanying utility
programming software only supports the lower 64K addresses of AMD29F200B
memory. All 16 bits of PORTD are used to address external memory and the 17th
address line is tied low. This 64 K word interface can store approximately two minutes
of compressed speech. If 128 K words are required, the 17th address bit can be
implemented from any unused general purpose I/O pin.

dsPIC30F Pin Application Function

RA6 Control RY/BY pin of the external memory
RA7 Control WE pin of the external memory
RC13 Control LE pin of the control circuitry
RD0-RD15 Transmit address to the external memory

Receive data from the external memory
RF7 Control CE pin of the external memory
RF8 Control OE pin of the external memory
nology Inc. DS70295B-page 57

dsPIC® DSC Speech Coding Solutions User’s Guide

DS70295B-page 58
7.1.1 Encoding to External Flash Memory
In the store and playback applications such as voice recorders and answering
machines, data encoded by the library must be stored in a manner that enables it to be
played back later. All dsPIC30F processors feature Flash program memory.
Unfortunately, the on-chip Flash memory is not suitable for storing real-time encoded
speech because the processor is forced to stall for up to 2 ms while the Flash program
memory is programmed. During this time, the processor is unable to service the DCI or
ADC interrupts to sample incoming speech data. Ultimately, the use of on-chip flash
memory to store speech would result in many lost frames of speech.
A better approach to the real-time storage issue is to use external Flash memory. The
AMD29F200B features a 12 μs programming time (per word), which makes it suitable
for use in the Speex library. Since speech frames are encoded to a maximum size of
20 bytes, approximately 120 μs are required to write to the flash every 20 ms. This
modest amount of overhead makes the AMD29F200B a good choice for real-time
speech storage.

7.1.2 Decoding Speech from Flash Memory
External Flash memory can be used as a memory source for decoding speech. The
external Flash memory is useful for store-and-playback applications and playback-only
applications that require more memory than is available on-chip.
Using the external Flash for speech playback is straightforward. The library provides
the ability to read a block of data from Flash memory and use the data as input to the
libDecoder() function. Approximately 20 instruction cycles are required to read one
word from the external Flash memory.
7.2 STORING SPEECH ENCODING UTILITY DATA TO EXTERNAL FLASH
MEMORY
The speech encoding utility (see Chapter 6. “Speech Encoding Utility”) can encode
speech data from your personal computer and target it for storage in external Flash
memory. The output of the speech encoding utility is a source file that contains only
encoded speech data. The data in this file must be stored in external Flash memory.
Storing the data file to external Flash memory is a two step process:
• First, the source file must be built into a hex file so that it can be loaded into Flash

memory.
• Then, a programmer or programming utility must program the hex file into Flash

memory.
7.3 BUILDING A LOADABLE HEX FILE FOR EXTERNAL FLASH MEMORY

The loadable hex file is generated by using the MPLAB C30 Language Tools with an
MPLAB IDE project that contains a special linker script file. A standard dsPIC30F linker
script file (such as p30f6014A.gld) generates a hex file targeted for the dsPIC30F
memory. The linker script contains information that creates sections for interrupt vector
tables, program memory, data EEPROM and data memory. The memory map of the
AMD29F200B Flash memory contains only one section, so you must use a custom
linker script with the MPLAB C30 Language Tools to generate a hex file targeted for the
AMD29F200B.
© 2010 Microchip Technology Inc.

Using Flash Memory for Speech Playback

© 2010 Microchip Tech
The installation directory, \Speex_PC\ExternalFlashHexMaker,contains an
MPLAB IDE project with the custom linker script file external_flash.gld. To use
this file, open the MPLAB IDE project titled External_Flash.mcp. You will see that
the linker script (external_flash.gld) is already added to this project, so all you
have to do is add the source file created from the speech encoding utility and build the
project. Follow the given below steps:
1. Open the External_Flash project from MPLAB IDE.
Note: The default path is C:\Speex v2.0\Speex_PC\PCEU
2. Locate the speech file that you want to load into Flash memory.
3. Add the assembly file (with *.s extension) generated from the speech encoding

utility to the project.
4. Build the project.
After the project is built, a hex file, External_Flash.hex will be created. This file
must be next programmed to external Flash memory.
7.4 PROGRAMMING THE HEX FILE TO EXTERNAL FLASH MEMORY

The Speex Library is distributed with a programming utility that runs on the
dsPIC30F device and is capable of in-circuit programming of the external Flash
memory. The External Flash Programmer (EFP) utility is distributed in the
\Speex_PC\ExternalFlashProgrammer folder.
The EFP utility can erase and program the AMD29F200B Flash memory. It interfaces
through a UART with a generic terminal program such as Windows HyperTerminal®.
Programming is performed by sending a hex file to the EFP utility. The EFP utility
parses and processes the hex file and programs the AMD29F200B Flash memory one
word at a time. The EFP utility runs on the dsPICDEM 1.1 Plus Development Board,
but the software can be tailored to run on your own hardware platform.

7.4.1 Building the EFP Utility
The EFP utility consists of the files shown in Table 7-2. To build the EFP project, follow
the given below steps:
1. Launch MPLAB IDE and open the efp.mcp project located in the

\Speex_PC\ExternalFlashProgrammer folder.
2. Build the project by selecting Project>Build All.
After the EFP utility is built, it is ready to be downloaded to your target for external Flash
memory programming.

TABLE 7-2: EFP SOURCE FILES
Filename Purpose

bin2asc.s Binary to ASCII conversion function
config.c dsPIC30F configuration setting definitions
dspic9600.ht HyperTerminal configuration file for 9600 baud
dspic19200.ht HyperTerminal configuration file for 19200 baud
flash.c Flash memory functions
main.c EFP utility executive functions
parser.c Hex file parser functions
read.s Flash memory read function
uart.c UART interface functions
emp.h Header file for constants and type definitions
nology Inc. DS70295B-page 59

dsPIC® DSC Speech Coding Solutions User’s Guide

DS70295B-page 60
7.4.2 Modifying the EFP Utility
By default, the EFP utility interfaces with the terminal program via UART2 operating at
a baud rate of 19200 with external clock and system frequency of 24.576 MIPS. The
maximum baud rate at which you can operate the EFP is 19200. You can run the utility
using a slower rate, but this will lengthen the external Flash programming time. You can
alter the baud rate and system frequency using the #define statements in the emp.h
header file, as shown in Example 7-1.

EXAMPLE 7-1: #DEFINE STATEMENTS IN THE emp.h HEADER FILE

If you modify the system clock source or PLL setting, you must also modify the
configuration bit setting defined in config.c before rebuilding the project:

_FOSC(CSW_FSCM_OFF & ECIO_PLL16); // use EC with x16 PLL

7.4.3 PC UART Software
Windows HyperTerminal is used to transmit the target hex file to the dsPIC30F,
enabling it to be programmed to external memory. HyperTerminal must be configured
to operate in the following mode:
• Specified baud rate (19200 baud max)
• Eight data bits, no parity bits and one stop bit
• Flow control off
ANSI emulation:
• Echo typed characters locally
• Force incoming data to 7-bit ASCII
Start the HyperTerminal application and set the session as described above, or double
click one of the provided configuration files (dspic19200.ht or dspic9600.ht) to
set the communication parameters.

emp_d.h Header file for global data
emp_f.h Header file for function prototypes
emp_m.h Header file for macros

TABLE 7-2: EFP SOURCE FILES (CONTINUED)
Filename Purpose

#define BAUD_RATE 192 /* 19200 baud (in hundreds) */
#define CLOCK 61440 /* 6.144MHz (in hundreds) */
#define PLL_MULTIPLY 16 /* PLL setting */
Note: Any Windows terminal program that supports ASCII communication can be
used to interface with the EFP utility. The maximum baud rate is 19200;
however, lower baud rates can be used.
© 2010 Microchip Technology Inc.

Using Flash Memory for Speech Playback
7.5 RUNNING THE EFP UTILITY
© 2010 Microchip Tech
After you build the EFP utility for your system, as described in Section 7.4.1 “Building
the EFP Utility”, you can use it to erase, program and read external Flash memory.
The EFP utility distributed with the Speex Library is targeted specifically for the
dsPICDEM 1.1 Plus Development Board. You may need to modify the EFP utility if you
use your own hardware platform.

7.5.1 Erasing the External Flash
The external Flash memory must be erased before it can be programmed. You can
erase external Flash memory from the dsPICDEM 1.1 Plus Development Board by
following this procedure:
1. Press and release switch SW4. LEDs 1-4 begin to flash in unison.
2. Press and release switch SW3.
3. Press and release switch SW2.
4. Press and release switch SW1.
The chip erase cycle begins, lasting 2-5 seconds. LEDs 3-4 turn off while LEDs 1-2
remain on momentarily to indicate that the chip is being erased. When the erase cycle
completes, LEDs 1-2 turn off and LED4 blinks five times.
You can now program the external Flash memory.
If the erase cycle fails, LED4 blinks continuously. To recover from this situation, reset
the dsPIC30F and repeat the erase key sequence.
You can abort an erase cycle after initiating the key sequence by pressing switch SW4
again, while the LEDs are flashing. The EFP utility will return to its idle state. However,
once the erase cycle has started (i.e., after you have pressed SW1 in sequence and
the LEDs have stopped blinking), you must wait for the erase cycle to complete.
Note: No programming or memory verification can take place once the erase
sequence has been started. Always complete or abort the erase sequence
before performing other operations.
7.5.2 Programming the External Flash
To program external Flash memory (after it has been erased), send the target hex file
generated from the ExternalFlashHexMaker project (External_Flash.hex) to
the EFP utility using Windows HyperTerminal (or other comparable terminal software).
Follow this process:
1. Start the HyperTerminal application (using the required settings described in

Section 7.4.3 “PC UART Software”).
2. Download the target hex file by selecting Transfer>Send Text File. As the

download begins, you will see the hex file echoed on the HyperTerminal screen.
Also, LEDs 1-4 on the dsPICDEM board will randomly light as the hex file loads.

3. After the download has successfully completed, LEDs 1-4 turn off and LED3
blinks five times.
Note: If the programming has failed, LED3 will blink continuously. To recover from
this situation, reset the dsPIC30F. Programming will fail if the external Flash
memory has not been erased before programming begins.
During programming, no erasing or verifying of memory can take place. You
must wait until programming has completed to perform further operations.
4. Verify the programming as described in Section 7.5.3 “Verifying the
Programming of External Flash”.
nology Inc. DS70295B-page 61

dsPIC® DSC Speech Coding Solutions User’s Guide

DS70295B-page 62
7.5.3 Verifying the Programming of External Flash
It is recommended that you compare the program you load into the external Flash
memory with the contents of the hex source file. Pressing switch SW1 causes the EFP
utility to read the last programmed memory locations (starting from address 0x0), and
transmit them back over the UART to the HyperTerminal.
Use the following procedure to verify a program:
1. From the HyperTerminal, select Transfer >Capture Text.
2. On the dsPICDEM 1.1 board, press switch SW1. When the EFP utility detects

the switch action, it reads the last programmed memory locations (starting from
address 0x0) and transmits them via the UART to the HyperTerminal.

3. When the read operation completes, LED1 blinks five times.
4. From the HyperTerminal, select Transfer>Capture Text>Stop to stop the

HyperTerminal capture.
5. Compare the data returned from the EFP utility with the contents of the

External_Flash.hex file.
Note: If you press switch SW1 before the external Flash memory has been
programmed, or after a dsPIC30F Reset, the first 256 words of external
memory are read and transmitted. This content may not match the
External_Flash.hex file.
7.5.4 Reading the External Flash
The EFP utility can be used to read the lower 64 K words of AMD29F200B memory.
You may want to use this capability to examine what is stored in the Flash memory.
Use the following procedure to read the external Flash memory and store in a text file:
1. From the HyperTerminal, select Transfer>Capture Text.
2. On the dsPICDEM 1.1 Plus board, press switch SW2. When the EFP detects the

switch action, it reads the lower 64K words (starting from address 0x0) and
transmits them via the UART to the HyperTerminal.

3. When the read operation completes, LED2 blinks five times.
4. From the HyperTerminal Transfer>Capture Text>Stop to stop the HyperTerminal

capture.
Note: The data transfer will take several minutes to complete. No other operations
can be performed while the EFP utility is reading external memory.
© 2010 Microchip Technology Inc.

Using Flash Memory for Speech Playback
7.6 ERROR HANDLING
© 2010 Microchip Tech
The EFP utility presently does not recover from Flash memory program or erase errors.
It will continue to process with other errors. If a Flash memory program or erase error
occurs, the EFP utility must be reset. Error handling is summarized in Table 7-3.

TABLE 7-3: EMF ERROR HANDLING
Error Indication

Flash erase failure LED4 toggles (blinks) indefinitely
Flash programming failure LED3 toggles (blinks) indefinitely
Hex record checksum failure Pin RG15 toggles on each hex record that fails, but processing

continues
UART Receive Error
(framing or overflow)

LED1 lights, but processing continues
7.7 OTHER EXTERNAL SOLUTIONS

The Speex Library includes drivers for interfacing with an AMD29F200B Flash memory.
However, you can use any external memory that satisfies your application's
requirements. Serial EEPROMs, byte-wide nonvolatile memories or other 16-bit
nonvolatile memories can integrate with the library. Important memory selection
considerations are device programming time and device read time.
To use an alternate external memory solution, your own set of drivers must be written
and used in place of the drivers provided with the library. For detailed information on
real-time interfacing with the library, review the guidelines in Chapter 4. “Integrating
Speech Encoding Into YourApplication” and Chapter 5. “Integrating Speech
Decoding Into YourApplication”.
nology Inc. DS70295B-page 63

dsPIC® DSC Speech Coding Solutions User’s Guide
NOTES:
DS70295B-page 64 © 2010 Microchip Technology Inc.

dsPIC® DSC SPEECH CODING

SOLUTIONS USER’S GUIDE

Chapter 8. Speech Coding Demos
© 2010 Microchip Tech
This chapter describes the demo applications included with the G.711, G.726A and
Speex library packages. The intent of these sample applications is to demonstrate how
the libraries can be integrated into some typical application types. These sample
applications also help familiarize users with the library API.
The G.711 and G.726A libraries include three demos: Communication, Loopback and
Playback. The Speex library also includes two demos: Communication and Playback.
Each demo application is provided for both dsPIC30F and dsPIC33F devices. Topics
covered include:
• Communication Demo
• Loopback Demo
• Playback Demo
8.1 COMMUNICATION DEMO

The Communication demo is installed in the following folders:
...\G711_dsPIC30F\demo\Communication

...\G711_dsPIC33F\demo\Communication

...\G726A_dsPIC30F\demo\Communication

...\G726A_dsPIC33F\demo\Communication

...\Speex_dsPIC30F\demo\Communication

...\Speex_dsPIC33F\demo\Communication

This demo represents a typical full-duplex communication application (e.g., a pair of
walkie-talkie units). Two dsPICDEM 1.1 Plus development boards (DM300024) are
used as the hardware platform for the demo, with each board representing a node in
the communication link.
The communication channel is modeled using an RS-232 connection between the two
boards. Both UART modules in each dsPIC device are used: one for synchronizing the
sending and receiving of blocks of data, and the other for transferring the actual data.
The on-board Si3000 Voiceband Codec is used as the speech sampling and playback
interface, with the DCI module in each dsPIC device used to communicate with the
codec.
On each dsPIC, the raw speech samples from the microphone, or obtained through the
Si3000 codec and DCI module are encoded and transmitted to the other dsPIC via the
RS-232 communication link. Encoded data received via the RS-232 link is decoded
and played on the speaker through the DCI module and Si3000 codec. The
communication demo is illustrated in Figure 8-1.
nology Inc. DS70295B-page 65

dsPIC® DSC Speech Coding Solutions User’s Guide

DS70295B-page 66
FIGURE 8-1: COMMUNICATION DEMO

To set up and run the G711 Communication demo, perform the steps as shown below.
The G.726A and Speex Communication demos use a similar procedure.
• Open the G711Communication_30f.mcw or G711Communication_33f.mcw

workspace using MPLAB IDE.
• In the G711Lib_common.h include file, set the defined value of the INITIATOR

constant to 1. Program one device.
• Set the INITIATOR constant to ‘0’, and program the other device.
• Connect the RS-232 Port A of one dsPICDEM 1.1 Plus board to the RS-232

Port A of the other board.
• Similarly, interconnect Port B of the two boards.
• Connect a microphone to the MIC IN port of each dsPICDEM 1.1 Plus board.
• Connect a speaker to the SPKR OUT port of each dsPICDEM 1.1 Plus board.
• Run the program on both the dsPIC devices. Two people can now use the demo.

Each person can speak into their microphone and can hear the other person on
their speaker.

Encoded
Data

Encoded
Data

Communication
Medium

Speex
Encoder

Speex
Encoder

Speex
Decoder

Speex
Decoder

dsPIC® DSC 1 dsPIC DSC 1
© 2010 Microchip Technology Inc.

Speech Coding Demos
8.2 LOOPBACK DEMO
© 2010 Microchip Tech
The Loopback demo is installed in the following folders:
...\G711_dsPIC30F\demo\Loopback

...\G711_dsPIC33F\demo\Loopback

...\G726A_dsPIC30F\demo\Loopback

...\G726A_dsPIC33F\demo\Loopback

This demo represents a full-duplex application, but the one not involving
communication. Only one dsPICDEM 1.1 Plus development board is used as the
hardware platform for this demo and no communication link is needed.
The on-board Si3000 Voiceband Codec is used as the speech sampling and playback
interface, with the DCI module in the dsPIC device used to communicate with the
codec.
The raw speech samples from the microphone, or obtained through the Si3000 codec
and DCI module are encoded. This encoded data is immediately decoded and played
on the speaker through the DCI module and Si3000 codec.
Essentially, the microphone signal is looped back to the speaker, but only after it has
been encoded and decoded. The demo is illustrated in Figure 8-2.

FIGURE 8-2: LOOPBACK DEMO

To set up and run the G711 Loopback demo, perform the steps as shown below. The
G.726A Loopback demo uses a similar procedure. There is no Speex Loopback demo
at this time.
• Open the G711Loopback_30f.mcw or G711Loopback_33f.mcw workspace

using MPLAB IDE.
• Connect a microphone to the MIC IN port of the dsPICDEM 1.1 Plus board.
• Connect a speaker to the SPKR OUT port of the dsPICDEM 1.1 Plus board.
• Run the program on the dsPIC device. You can speak into the microphone and

hear your own speech on the speaker. Notice the lack of degradation in the
speech quality even after the encoding-decoding process.

SPEAKER

Speex
Decoder

Encoded
Data

dsPIC® DSC

Speex
Encoder

MICROPHONE
nology Inc. DS70295B-page 67

dsPIC® DSC Speech Coding Solutions User’s Guide
8.3 PLAYBACK DEMO
DS70295B-page 68
The Playback demo is installed in the following folders:
...\G711_dsPIC30F\demo\Playback

...\G711_dsPIC33F\demo\Playback

...\G726A_dsPIC30F\demo\Playback

...\G726A_dsPIC33F\demo\Playback

...\Speex_dsPIC30F\demo\Playback

...\Speex_dsPIC33F\demo\Playback

This demo represents a typical simplex application in which only the decoder is used
(e.g., a talking toy or a security alarm). A single dsPICDEM 1.1 Plus development board
is used as the hardware platform for the demo.
The on-board Si3000 Voiceband Codec is used as the speech sampling and playback
interface, with the DCI module in the dsPIC device used to communicate with the
codec. The on-chip Program Flash memory in the dsPIC is used to store pre-encoded
speech recordings.
On the dsPIC, the pre-encoded data stored in Program Flash memory link is decoded
and played on the speaker through the DCI module and Si3000 codec. Users can
generate their own pre-encoded data arrays using the Speech Encoding Utility included
with the library package. The demo is illustrated in Figure 8-3.

FIGURE 8-3: PLAYBACK DEMO

To set up and run the G711 Playback demo, perform the steps below. The G.726A and
Speex Playback demos utilize a similar procedure.
• Open the G711Playback_30f.mcw or G711Playback_33f.mcw workspace

using MPLAB IDE.
• Connect a speaker to the SPKR OUT port of each dsPICDEM 1.1 Plus board.
• Run the program on the dsPIC device. You can hear four successive recorded

messages output through the speaker.

SPEAKER

Speex
Decoder

Encoded
Data

dsPIC® DSC

Program
Flash Memory
© 2010 Microchip Technology Inc.

dsPIC® DSC SPEECH CODING

SOLUTIONS USER’S GUIDE

Appendix A. Si3000 Codec Configuration
A.1 INTRODUCTION
© 2010 Microchip Tech
All three of the speech encoding/decoding library packages contain include files and
demos that natively support the Silicon Labs Si3000 Voiceband Codec. When the
Si3000 codec is used with the library, it must be initialized. Initialization consists of
resetting the codec and programming its internal control registers. This section
discusses the default configuration used by the library and how you can modify the
configuration for your own system requirements.
A.2 DEFAULT CONFIGURATION

Note: For detailed information on the Si3000 codec, refer to the latest version of
Silicon Laboratories Publication Si3000-DS11 (Si3000 Voiceband Codec
with Microphone/Speaker Drive).
The Si3000 configuration can be set in the spxlib_Si3000.h header file. The default
configuration is shown in Table A-1.

TABLE A-1: DEFAULT Si3000 CONTROL REGISTER SETTINGS

Register
dsPIC
Master
Setting

dsPIC
Slave

Setting
Comments

Control 1 0x10 0x10 Speaker drive active
Mic bias selected

Control 2 0x0 0x0 Loopback enabled
High-pass filter enabled

PLL1 Divide N1 0x0 0x2 Slave setting for external clock of
6.144 MHz (for 8 kHz sampling)

PLL1 Multiply M1 0x0 0x13 Slave setting for external clock of
6.144 MHz (for 8 kHz sampling)

RX Gain Control 1 0xEA 0xEA Line input muted
Mic gain 10 dB
Handset input muted

ADC Volume Control 0x5C 0x5C RX gain 0 dB
Line out muted
Handset out muted

DAC Volume Control 0x5F 0x5F TX gain 0 dB
Speaker left active
Speaker right active

Status Report 0x0 0x0 Read-only register
Analog Attenuation 0x0 0x0 Line out 0 dB attenuation

Speaker out 0 dB attenuation
nology Inc. DS70295B-page 69

dsPIC® DSC Speech Coding Solutions User’s Guide

DS70295B-page 70
By default, the dsPIC30F/dsPIC33F is the codec clock master, and is set by the
DCIMODE symbol:

#define DCIMODE 1 // dsPIC30F clock master

The spxlib_common.h file defines several symbols, which must be set correctly for
Si3000 operation when the dsPIC is the clock master. The value assigned to FCY
automatically sets the BCG1 value of the DCI to produce the correct bit rate clock
for 8 kHz sampling. Refer to Table 3-2 for valid system operating frequencies when the
dsPIC is the clock master.
#define FCY 24576000L // Device instruction rate
#define Fs 8000L // Speech sampling rate in Hz
#define FSCKD (Fs * 256) // DCI frame clock rate
#define BCG1 ((FCY / (2*FSCKD)) - 1) // DCI bit clock control bits
A.3 SETTING THE dsPIC DSC AS A CLOCK SLAVE

Note: Setting FCY to 4.096 MHz results in a BCG1 value of ‘0’, which disables the
DCI. To run the decoder at 4.096 MHz, the dsPIC30F must be the clock
slave.
If you want to operate your application using the Si3000 codec at an operating
frequency different than those shown in Table 3-2, you will need to run the dsPIC30F
as the DCI slave. To make the dsPIC30F the codec clock slave, set the DCIMODE
symbol to ‘0’.

#define DCIMODE 0 // dsPIC30F clock slave

When the dsPIC is the clock master, the dsPIC provides the frame sync and serial bit
clocks to the Si3000 codec. However, when the dsPIC30F is the clock slave, the
Si3000 generates the frame sync and serial bit clocks, and these signals are now inputs
to the dsPIC.
To use the dsPIC as the clock slave (#define DCIMODE 0) on the dsPICDEM 1.1
Development Board, socket U6 must be populated with a clock oscillator. This clock
oscillator is the clock input to the Si3000's PLL. The values for the PLL1 Divide N1 and
PLL1 Multiply M1 must be set as described in the Si3000 Data Sheet to yield the
required 8 kHz sample rate for your chosen clock oscillator. By default, these registers
are set to work with an external 6.144 MHz clock (see Table A-1).
Note: When using this mode on the dsPICDEM 1.1 Plus Development Board,
move jumper J9 to the MASTER setting. This indicates that the Si3000 is
the clock master.
© 2010 Microchip Technology Inc.

Si3000 Codec Configuration
A.4 MODIFYING THE CODEC GAIN AND VOLUME CONTROLS
© 2010 Microchip Tech
The default Si3000 control register settings used by the library (as shown in Table A-1)
may not be suitable for your application requirements. For example, you may need a
louder output signal for speech playback or a softer input signal for speech encoding.
The following set of #define statements are provided for reference only, and are not
contained in the distributed source files. If you wish to use them, you must add these
symbols to the spxlib_Si3000.h header file. These symbols can be defined to set
the DACVOLUMECONTROL in steps of 3 dB, as shown in Example A-1.

EXAMPLE A-1: #define STATEMENT

To set the RXGAINCONTROL (only adjustable in steps of 10 dB), you can define the
symbols, as shown in Example A-2.

Example A-2:

To set the ADCVOLUMECONTROL in steps of 3 dB, you can define the symbols, as shown
in Example A-3.

EXAMPLE A-3:

#define DV_12_DB 0x007F /* 12dB DAC volume gain */
#define DV_9_DB 0x0077 /* 9dB DAC volume gain */
#define DV_6_DB 0x006F /* 6dB DAC volume gain */
#define DV_3_DB 0x0067 /* 3dB DAC volume gain */
#define DV_0_DB 0x005F /* 0dB DAC volume gain */
#define DV_MINUS_3_DB 0x0057 /* -3dB DAC volume gain */
#define DV_MINUS_6_DB 0x004F /* -6dB DAC volume gain */
#define DV_MINUS_9_DB 0x0047 /* -9dB DAC volume gain */
#define DV_MINUS_12_DB 0x003F /* -12dB DAC volume gain */

#define MIC_GAIN_30_DB 0x007A /* 30dB MIC gain */
#define MIC_GAIN_20_DB 0x0072 /* 20dB MIC gain */
#define MIC_GAIN_10_DB 0x006A /* 10dB MIC gain */
#define MIC_GAIN_0_DB 0x0062 /* 0dB MIC gain */

#define AV_12_DB 0x007C /* 12dB ADC volume gain */
#define AV_9_DB 0x0074 /* 9dB ADC volume gain */
#define AV_6_DB 0x006C /* 6dB ADC volume gain */
#define AV_3_DB 0x0064 /* 3dB ADC volume gain */
#define AV_0_DB 0x005C /* 0dB ADC volume gain */
#define AV_MINUS_3_DB 0x0054 /* -3dB ADC volume gain */
#define AV_MINUS_6_DB 0x004C /* -6 dB ADC volume gain */
#define AV_MINUS_9_DB 0x0044 /* -9dB ADC volume gain */
#define AV_MINUS_12_DB 0x003C /* -12dB ADC volume gain */
n
ology Inc. DS70295B-page 71

dsPIC® DSC Speech Coding Solutions User’s Guide
NOTES:
DS70295B-page 72 © 2010 Microchip Technology Inc.

dsPIC® DSC SPEECH CODING

SOLUTIONS USER’S GUIDE

Appendix B. External Flash Memory Reference Design
B.1 OVERVIEW
© 2010 Microchip Tech
This appendix provides a reference design for a 16-bit interface to the AMD29F200B
Flash memory device for operation in Word mode. This design features a 2x30 header,
which conveniently plugs into the top of header J19 of the dsPICDEM 1.1 Plus
Development Board. The required I/O lines for this interface are shown in Table B-1.

TABLE B-1: PINS USED FOR EXTERNAL MEMORY INTERFACE

This design and the utility programming software included with the Speex Speech
Encoding/Decoding Library only supports the lower 64K addresses of AMD29F200B
memory. All 16 bits of PORTD are used to address external memory, and the 17th
address line is tied low.
This 64K word interface can store approximately two minutes of compressed speech.
If 128K words are required, the 17th address bit can be implemented from any unused
general purpose I/O pin.
See Chapter 7. “Using Flash Memory for Speech Playback” for operational
information.

dsPIC30F Pin Application Function

RA6 Control RY/BY pin of the external memory
RA7 Control WE pin of the external memory
RC13 Control LE pin of the control circuitry
RD0-RD15 Transmit address to the external memory

Receive data from the external memory
RF7 Control CE pin of the external memory
RF8 Control OE pin of the external memory
Note: This circuit is only applicable to the dsPIC30F. It is not applicable to the
dsPIC33F.
nology Inc. DS70295B-page 73

dsPIC® DSC Speech Coding Solutions User’s Guide
FIGURE B-1: EXTERNAL MEMORY INTERFACE SCHEMATIC

A
D

12

G
N

D

A
D

2

M
C

LR

R
A

6

V
D

D

A
D

2

A
D

5

A
D

9

A
D

12

A
D

15

A
D

2

A
D

5

A
D

8

A
D

11

A
D

14

R
F8

A
D

14
G

N
D

A
D

10

A
D

0

A
D

4
A

D
6

G
N

D

A
D

1
A

D
0

A
D

3
A

D
4

A
D

7
A

D
6

A
D

8

A
D

10
A

D
11

A
D

14
A

D
13

V
D

D

V
D

D

V
D

D

A
D

0
A

D
1

A
D

4
A

D
3

A
D

6
A

D
7

A
D

9
A

D
10

A
D

12
A

D
13

A
D

15V
D

D

G
N

D

A
D

8

V
D

D

G
N

D

R
F7

A
D

13

G
N

D

A
D

3

R
A

7

V
D

D

A
D

0

A
D

3

A
D

6

A
D

9

A
D

12

A
D

15

G
N

D

R
F7M

C
LR

G
N

D

A
D

15
G

N
D

A
D

11

A
D

1

A
D

5
A

D
7

R
C

13

G
N

D

A
D

2
A

D
1

A
D

4
A

D
5

A
D

8
A

D
7

A
D

10
A

D
11

A
D

14
A

D
13

R
C

13

V
D

D

R
F8 R
A

7R
A

6

G
N

D

A
D

9

V
D

D

G
N

D

DS70295B-page 74 © 2010 Microchip Technology Inc.

dsPIC® DSC SPEECH CODING

SOLUTIONS USER’S GUIDE

Index
A
Allowable execution speeds..................................... 19
Application Programming Interface.......................... 19

B
Business of Microchip .. 9

C
CELP encoding .. 12
Customer Notification Service.................................... 9
Customer Support .. 10

D
Data buffer requirements

Decoding... 43
Speech encoding .. 37

Data sampling .. 39
DCI

As clock master .. 19
Master mode... 20
Slave mode... 20

Decoding
.spx file.. 56
data buffers... 43

Documentation
Conventions.. 7
Layout ... 5

dsPIC frequency requirements................................. 19

E
Encoding application.. 65
Encoding demo .. 67
External Flash Memory reference design 73
External Flash Programming Utility.......................... 59

Building ... 59
Erasing Flash.. 61
Error handling ... 63
Programming Flash .. 61
Used with UART ... 60

F
Flash memory .. 57

Decoding from .. 58
Encoding to... 58
Encoding utility.. 58
hex file .. 58
Interface.. 57

G
G.711 API

a_law_compress() function............................... 24
a_law_expand() function................................... 24
codecsetup structure .. 21
© 2010 Microchip Technology Inc.
g711Si3000 structure.. 23
µlaw_compress() function 24
µlaw_expand() function..................................... 24

G.711 decoding
Buffer management data structures.................. 47
Timing ... 47

G.711 library
Files .. 13
MIPS and memory requirements 20
Overview ... 11
Source files ... 19

G.726A API
codecsetup structure... 25
G726_decode function...................................... 28
G726_decoder_init() function............................ 29
G726_encode() function 30
G726_encoder_init() function............................ 31
g726aSi3000 structure...................................... 27

G.726A decoding
Buffer management data structures.................. 48
Timing ... 48

G.726A library
Bit rates and compression ratios....................... 11
Files .. 15
MIPS and memory requirements 20
Overview ... 11
Source files ... 19

General Technical Support .. 9

I
initialization

Speech playback... 46
Internet Address... 9

L
Library installation .. 13

M
Microchip Internet Web Site 9

P
Product Support ... 9

R
Recommended Reading .. 8

S
Sample application

Encoding ... 65
Si3000 Codec configuration 69
Software requirements ... 20
Speech decoding

Ending playback.. 50
DS70295B-page 75

dsPIC® DSC Speech Coding Solutions User’s Guide
First frame decoding ... 46
G.711 decoding .. 47
G.726A decoding .. 48
Playback ... 46
Playback initialization.. 46
Speex decoder initialization 45
Speex decoding .. 49

Speech encoding
Data buffers .. 37
Data sampling... 39
End data sampling .. 41
From .wav file ... 55
From microphone.. 52
G.711 encoding .. 40
G.726A encoding .. 40
Recommendations.. 56
Speex encoding .. 40

Speech Encoding Utility12, 51
Configuring ... 54
Installation... 51
Recording ... 55

Speech playback.. 46
Speech playback initialization 46
Speex API

codecsetup structure .. 32
libDecoder() function... 35
libDecoderInit() function.................................... 35
libEncoder() function... 36
libEncoderInit() function 36
libEncoderKill() function 36
libFullDuplexDecoder() function........................ 35
spxSi3000 structure .. 34

Speex coder... 12
Speex decoder initialization 45
Speex decoding

Buffer management data structures 49
Timing ... 49

Speex encoder
Initialization ... 39

Speex encoder heap requirements.......................... 39
Speex library

Files .. 17
MIPS and memory requirements 20
Overview... 12
Source files ... 19

W
Warranty Registration .. 8
WWW Address... 9
© 2010 Microchip Technology Inc.
 DS70295B-page 76

Index
DS70295B-page 77 © 2010 Microchip Technology Inc.

WORLDWIDE SALES AND SERVICE
DS70332B-page 78 © 2010 Microchip Te

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500
China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-6578-300
Fax: 886-3-6578-370
Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820
01/05/10
chnology Inc.

	Preface
	Chapter 1. Overview
	1.1 Overview
	1.1.1 G.711 Speech Encoding/Decoding Library
	1.1.2 G.726A Speech Encoding/Decoding Library
	1.1.3 Speex Speech Encoding/Decoding Library

	1.2 Other Features
	Figure 1-1: Typical Speech EnCoding/Decoding Application

	Chapter 2. Installation
	2.1 Installation Procedure
	2.2 G.711 Library Files
	2.2.1 G711_dsPIC30F
	2.2.1.1 demo
	2.2.1.2 inc
	2.2.1.3 src
	2.2.2 G711_dsPIC33F
	2.2.2.1 demo
	2.2.2.2 inc
	2.2.2.3 src
	2.2.3 G711_PC

	2.3 G.726A Library Files
	2.3.1 G726A_dsPIC30F
	2.3.1.1 demo
	2.3.1.2 inc
	2.3.1.3 lib
	2.3.2 G726A_dsPIC33F
	2.3.2.1 demo
	2.3.2.2 inc
	2.3.2.3 lib
	2.3.3 G726A_PC

	2.4 Speex Library Files
	2.4.1 Speex_dsPIC30F
	2.4.1.1 demo
	2.4.1.2 inc
	2.4.1.3 lib
	2.4.2 Speex_dsPIC33F
	2.4.2.1 demo
	2.4.2.2 Inc
	2.4.2.3 Lib
	2.4.3 Speex_PC
	2.4.3.1 ExternalFlashHexMaker
	2.4.3.2 ExternalFlashProgrammer
	2.4.3.3 PCEU

	Chapter 3. Application Programming Interface
	3.1 Application Programming Interface
	3.2 System Requirements
	3.2.1 Device Frequency Requirements
	3.2.2 MIPS and Memory Requirements
	3.2.3 Software Requirements

	3.3 G.711 API
	3.3.1 codecsetup Structure
	Example 3-1: codecsetup Structure
	Example 3-1: codecsetup Structure(Continued)

	3.3.2 g711Si3000 Structure
	Example 3-2: g711Si3000 Structure

	3.3.3 alaw_compress()/mlaw_compress() Function
	3.3.4 alaw_expand()/mlaw_expand() Function

	3.4 G.726A API
	3.4.1 codecsetup Structure
	Example 3-3: codecsetup Structure
	Example 3-3: codecsetup Structure (Continued)

	3.4.2 g726aSi3000 Structure
	Example 3-4: g726aSi3000 Structure

	3.4.3 G726_decode()Function
	3.4.4 G726_decoder_init()Function
	3.4.5 G726_encode()Function
	3.4.6 G726_encoder_init()Function

	3.5 Speex API
	3.5.1 codecsetup Structure
	Example 3-5: codecsetup Structure
	Example 3-5: codecsetup Structure (Continued)

	3.5.2 spxSi3000 Structure
	Example 3-6: spxSi3000 Structure

	3.5.3 libDecoder()Function
	3.5.4 libDecoderInit()Function
	3.5.5 libFullDuplexDecoder()Function
	3.5.6 libEncoder()Function
	3.5.7 libEncoderInit()Function
	3.5.8 libEncoderKill()Function

	Chapter 4. Integrating Speech Encoding Into YourApplication
	4.1 Integrating Speech Encoding
	4.2 Data Buffers
	Example 4-1: Buffer Definitions Example

	4.3 Encoder Initialization
	4.3.1 G.711 Encoder Initialization
	4.3.2 G.726A Encoder Initialization
	4.3.3 Speex Encoder Initialization

	4.4 Encoder Heap Utilization
	4.5 Data Sampling Initialization
	Example 4-2: Speex Example

	4.6 Data Sampling
	4.7 Encoding
	4.7.1 G.711 Encoding
	4.7.2 G.726A Encoding
	4.7.3 Speex Encoding

	4.8 End Data Sampling
	Example 4-3: Sample Code Sequence for Speex

	Chapter 5. Integrating Speech Decoding Into YourApplication
	5.1 Integrating Speech Decoding
	5.2 Data Buffers
	Example 5-1: Buffer Definitions Example

	5.3 Decoder Initialization
	5.3.1 G.711 Decoder Initialization
	5.3.2 G.726A Decoder Initialization
	5.3.3 Speex Decoder Initialization
	Figure 5-1: Example of multiple messages stored in Program Memory
	Example 5-2: Example of Unique Array Names

	5.4 Decoder Heap Utilization
	5.5 Decoding the First Frame
	5.6 Speech Playback Initialization
	Example 5-3: Speex Example

	5.7 Speech Playback
	5.8 Decoding
	5.8.1 G.711 Decoding
	Figure 5-2: G.711 Decoder Timeline Example

	5.8.2 G.726A Decoding
	Figure 5-3: G.726A Decoder Timeline Example

	5.8.3 Speex Decoding
	Figure 5-4: Speex Decoder Timeline Example

	5.9 Ending Speech Playback
	Example 5-4: Sample Code Sequence (for Speex)

	Chapter 6. Speech Encoding Utility
	6.1 System Requirements
	6.2 Overview
	Figure 6-1: Overview of Speech Encoding Utility
	Figure 6-2: Overview of Speech Encoding Utility

	6.3 Encoding Speech from a Microphone
	Figure 6-3: Master Volume Control
	Figure 6-4: Master Volume Properties Dialog
	Figure 6-5: Recording Control Dialog
	Figure 6-6: Speech Encoding Utility
	Figure 6-7: Array Name Dialog
	Figure 6-8: Encoding Complete Message

	6.4 Encoding Speech from a WAVE (.wav) file
	Figure 6-9: WAVE (.wav) File Format Error Message

	6.5 Recommendations for Encoding from a Microphone
	6.6 Using the Command Line Decoder

	Chapter 7. Using Flash Memory for Speech Playback
	7.1 Using External Flash Memory
	7.1.1 Encoding to External Flash Memory
	7.1.2 Decoding Speech from Flash Memory

	7.2 Storing Speech Encoding Utility Data to External Flash Memory
	7.3 Building a Loadable Hex File for External Flash Memory
	7.4 Programming the Hex File to External Flash Memory
	7.4.1 Building the EFP Utility
	7.4.2 Modifying the EFP Utility
	Example 7-1: #define Statements in the emp.h Header File

	7.4.3 PC UART Software

	7.5 Running the EFP Utility
	7.5.1 Erasing the External Flash
	7.5.2 Programming the External Flash
	7.5.3 Verifying the Programming of External Flash
	7.5.4 Reading the External Flash

	7.6 Error Handling
	7.7 Other External Solutions

	Chapter 8. Speech Coding Demos
	8.1 Communication Demo
	Figure 8-1: Communication Demo

	8.2 Loopback Demo
	Figure 8-2: Loopback Demo

	8.3 Playback Demo
	Figure 8-3: Playback Demo

	Appendix A. Si3000 Codec Configuration
	A.1 Introduction
	A.2 Default Configuration
	A.3 Setting the dsPIC DSC as a Clock Slave
	A.4 Modifying the Codec Gain and Volume Controls
	Example A-1: #define Statement
	Example A-2:
	Example A-3:

	Appendix B. External Flash Memory Reference Design
	B.1 Overview
	Figure B-1: External Memory Interface Schematic

	Index
	Worldwide Sales and Service

