T-1 3/4 (5mm) SOLID STATE LAMP

Part Number: L-53F3C

Features
- Mechanically andspectrally matched to the phototransistor.
- RoHS compliant.

Description
F3 Made with Gallium Arsenide Infrared Emitting diodes.

Features
- Mechanically and spectrally matched to the phototransistor.
- RoHS compliant.

Notes:
1. All dimensions are in millimeters (inches).
2. Tolerance is ±0.25(0.01") unless otherwise noted.
3. Lead spacing is measured where the leads emerge from the package.
4. The specifications, characteristics and technical data described in the datasheet are subject to change without prior notice.

Package Dimensions

Kingbright
Selection Guide

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>@ 20mA Min.</td>
<td>@ 50mA Min.</td>
<td>281/2</td>
</tr>
<tr>
<td>L-53F3C</td>
<td>F3 (GaAs)</td>
<td>Water Clear</td>
<td>15</td>
<td>55</td>
<td>20°</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>*8</td>
<td>*25</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. 91/2 is the angle from optical centerline where the luminous intensity is 1/2 of the optical peak value.
2. Radiant Intensity/ luminous flux: +/-15%.
*Radiant Intensity value is traceable to the CIE127-2007 compliant national standards.

Electrical / Optical Characteristics at TA=25°C

<table>
<thead>
<tr>
<th>Parameter</th>
<th>P/N</th>
<th>Symbol</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward Voltage [1]</td>
<td>F3</td>
<td>Vr</td>
<td>1.2</td>
<td>1.6</td>
<td>V</td>
<td>If=20mA</td>
</tr>
<tr>
<td>Reverse Current</td>
<td>F3</td>
<td>Ir</td>
<td>10</td>
<td></td>
<td>uA</td>
<td>Vr = 5V</td>
</tr>
<tr>
<td>Capacitance</td>
<td>F3</td>
<td>C</td>
<td>90</td>
<td></td>
<td>pF</td>
<td>Vf=0V;f=1MHz</td>
</tr>
<tr>
<td>Peak Spectral Wavelength</td>
<td>F3</td>
<td>λP</td>
<td>940</td>
<td></td>
<td>nm</td>
<td>If=20mA</td>
</tr>
<tr>
<td>Spectral Bandwidth</td>
<td>F3</td>
<td>Δλ1/2</td>
<td>50</td>
<td></td>
<td>nm</td>
<td>If=20mA</td>
</tr>
</tbody>
</table>

Notes:
1. Forward Voltage: +/-0.1V.
2. Wavelength value is traceable to the CIE127-2007 compliant national standards.

Absolute Maximum Ratings at TA=25°C

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>F3</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power dissipation</td>
<td>Po</td>
<td>80</td>
<td>mW</td>
</tr>
<tr>
<td>DC Forward Current</td>
<td>If</td>
<td>50</td>
<td>mA</td>
</tr>
<tr>
<td>Peak Forward Current [1]</td>
<td>iFS</td>
<td>1.2</td>
<td>A</td>
</tr>
<tr>
<td>Reverse Voltage</td>
<td>Vr</td>
<td>5</td>
<td>V</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>TA</td>
<td>-40 To +85</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>TSTG</td>
<td>-40 To +85</td>
<td>°C</td>
</tr>
<tr>
<td>Lead Solder Temperature [2]</td>
<td></td>
<td>260°C For 3 Seconds</td>
<td></td>
</tr>
<tr>
<td>Lead Solder Temperature [3]</td>
<td></td>
<td>260°C For 5 Seconds</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. 1/100 Duty Cycle, 10μs Pulse Width.
2. 2mm below package base.
3. 5mm below package base.
L-53F3C

Relative Radiant Intensity vs. Wavelength

Forward Current (mA)

Forward Voltage (V)

Radiant Intensity vs. Forward Voltage

Radiant Intensity vs. In-Forward Current (mA)

Radiant Intensity vs. Ambient Temperature Ta (°C)

Spatial Distribution
PACKING & LABEL SPECIFICATIONS

L-53F3C

Kingbright

P/N: L-53xxx

QTY: 1,000 pcs
Q.C. [QC]
S/N: XXXX
CODE: XXX

LOT NO:

RoHS Compliant
PRECAUTIONS

1. The lead pitch of the LED must match the pitch of the mounting holes on the PCB during component placement. Lead-forming may be required to insure the lead pitch matches the hole pitch. Refer to the figure below for proper lead forming procedures. (Fig. 1)

 ![Fig. 1 Diagram]

 "○" Correct mounting method "×" Incorrect mounting method

2. When soldering wire to the LED, use individual heat-shrink tubing to insulate the exposed leads to prevent accidental contact short-circuit. (Fig. 2)

3. Use stand-offs (Fig. 3) or spacers (Fig. 4) to securely position the LED above the PCB.

 ![Fig. 2 Diagram]
 ![Fig. 3 Diagram]
 ![Fig. 4 Diagram]

4. Maintain a minimum of 2mm clearance between the base of the LED lens and the first lead bend. (Fig. 5 and 6)

5. During lead forming, use tools or jigs to hold the leads securely so that the bending force will not be transmitted to the LED lens and its internal structures. Do not perform lead forming once the component has been mounted onto the PCB. (Fig. 7)
6. Do not bend the leads more than twice. (Fig. 8)

7. During soldering, component covers and holders should leave clearance to avoid placing damaging stress on the LED during soldering.

8. The tip of the soldering iron should never touch the lens epoxy.
9. Through-hole LEDs are incompatible with reflow soldering.
10. If the LED will undergo multiple soldering passes or face other processes where the part may be subjected to intense heat, please check with Kingbright for compatibility.
11. Recommended Wave Soldering Profiles:

![Wave Soldering Profile](image)

Notes:
1. Recommend pre-heat temperature of 105°C or less (as measured with a thermocouple attached to the LED pins) prior to immersion in the solder wave with a maximum solder bath temperature of 260°C.
2. Peak wave soldering temperature between 245°C ~ 255°C for 3 sec (5 sec max).
3. Do not apply stress to the epoxy resin while the temperature is above 85°C.
4. Fixtures should not linear stress on the component when mounting and during soldering process.
5. SAC 305 solder alloy is recommended.
6. No more than one wave soldering pass.

Detailed application notes are listed on our website.
http://www.kingbright.com/application_notes