Transistor Unijunction

- 1. Emitter
- 2. Base 1
- 3. Base 2

Description:

A PN Unijunction Transistor designed for use in pulse and timing circuits, sensing circuits, and thyristor trigger circuits.

Features:

- Low peak point current: 2µA (Max.)
- · Low emitter reverse current: 200nA (Max.)
- · Passivated surface for reliability and uniformity

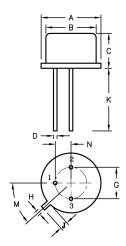
Maximum Ratings

Characteristic	Symbol	Rating	Unit		
Power Dissipation (Note 1)	P _D	300	mW		
RMS Emitter Current	I _{E(RMS)}	50	mA		
Peak Pulse Emitter Current (Note 2)	I _E	2	А		
Emitter Reverse Voltage	V _{B2E}	30	V		
Interbase Voltage	V _{B2B1}	35	V		
Operation and Storage Junction Temperature Range	T_J, T_{STG}	-65 to +150	°C		

Notes:

- 1. Derate 3mW/°C increase in ambient temperature. The total power dissipation (available power to Emitter and Base-Tow) must be limited by the external circuitry.
- 2. Capacitor discharge 10µF or less, 30V or less.

Transistor Unijunction



Electrical Characteristics (T_C = 25°C unless otherwise noted)

Parameter	Symbol Test Conditions		Min.	Тур.	Max.	Unit	
OFF Characteristics							
Intrinsic Standoff Ratio		V _{B2B1} = 10V (Note 3)	0.68	-	0.82	-	
Interbase Resistance	r _{BB}	V _{B2B1} = 3V, I _E = 0	4.7	7	9.1	kΩ	
Interbase Resistance Temperature Coefficient			0.1	-	0.9	%/°C	
Emitter Saturation Voltage	V _{EB1(sat)}	V _{B2B1} = 10V, I _E = 50mA (Note 4)	-	3.5	-	V	
Modulated Interbase Current	I _{B2(mod)}	V _{B2B1} = 10V, I _E = 50mA	-	15	-	mA	
Emitter Reverse Current	I _{EB20}	V _{B2E} = 30V, I _{B1} = 0	-	0.005	0.2	<u> μ</u> Α	
Peak Point Emitter Current	I _P	V _{B2B1} = 25V	-	1	2		
Valley Point Current	I _V	$V_{B2B1} = 20V, R_{B2} = 100\Omega$	8	10	18	mA	
Base-One Peak Pulse Voltage	V _{OB1}		6	7	-	V	

Notes

- 3. Intrinsic standoff ration is defined by the equation: $V_P V_F / V_{B2B1}$ Where: V_P = peak Point Emitter Voltage: V_{B2B1} = Interbase Voltage; V_F = Emitter to Base-One Junction Diode Drop (~0.45V @ 10µA)
- 4. Use pulse techniques: Pulse Width ~300μS, Duty Cycle ≦2% to avoid internal heating due to interbase modulation which may result in erroneous readings.

Dimensions	Α	В	С	D	G	Н	J	K	М	N
Min.	5.31	4.52	4.32	0.41	2.54	0.91	0.71	12.7	45°	1.27
Max.	5.84	4.95	5.33	0.48		1.17	1.22			

Dimensions : Millimetres

- 1. Emitter
- 2. Base 1
- 3. Base 2

Part Number Table

Description	Part Number
Transistor, Unijunction, TO-18, PN	2N2647

Important Notice: This data sheet and its contents (the "Information") belong to the members of the Premier Farnell group of companies (the "Group") or are licensed to it. No licence is granted for the use of it other than for information purposes in connection with the products to which it relates. No licence of any intellectual property rights is granted. The Information is subject to change without notice and replaces all data sheets previously supplied. The Information supplied is believed to be accurate but the Group assumes no responsibility for its accuracy or completeness, any error in or omission from it or for any use made of it. Users of this data sheet should check for themselves the Information and the suitability of the products for their purpose and not make any assumptions based on information included or omitted. Liability for loss or damage resulting from any reliance on the Information or use of it (including liability resulting from negligence or where the Group was aware of the possibility of such loss or damage arising) is excluded. This will not operate to limit or restrict the Group's liability for death or personal injury resulting from its negligence. Multicomp is the registered trademark of the Group. © Premier Farnell plc 2012.

www.element14.com www.farnell.com www.newark.com

