Designing ADC-DAC System from Scratch for DE2 Tutorial

System Level Solutions, Inc. (USA)
14100 Murphy Avenue
San Martin, CA 95046
(408) 852 - 0067

http://www.slscorp.com

Version : 0.1.1
Date : July 10, 2007
This tutorial provides all the steps for creating a system for the ADC-DAC board from the scratch with the DE2 board. Also it shows how to create, compile, debug and run a C/C++ program using the Nios II IDE.

Table below shows the Revision history of Designing ADC-DAC System from Scratch for DE2.

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1.1</td>
<td>July 2007</td>
<td>First Publication of Designing ADC-DAC System from Scratch for DE2 Tutorial.</td>
</tr>
</tbody>
</table>

For the most up-to-date information about SLS products, go to the SLS worldwide website at http://www.slscorp.com. For additional information about SLS products, consult the source shown below.

<table>
<thead>
<tr>
<th>Information Type</th>
<th>E-mail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product literature services, SLS literature services, Non-technical customer services, Technical support.</td>
<td>support@slscorp.com</td>
</tr>
</tbody>
</table>
Typographic Conventions

Designing ADC-DAC System from Scratch for DE2, Cyclone II Edition uses the typographic conventions shown as below.

<table>
<thead>
<tr>
<th>Visual Cue</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bold Type with Initial Capital Letters</td>
<td>All Headings and Sub Headings Titles in a document are displayed in bold type with initial capital letters; Example: Introduction, Creating a Quartus II Project.</td>
</tr>
<tr>
<td>Bold Type with Italic Letters</td>
<td>All Definitions, Figure and Table Headings are displayed in Italics. Examples: Figure 2-1. Create a New System Dialog Box, Figure 2-2. SOPC Builder</td>
</tr>
<tr>
<td>1.</td>
<td>Numbered steps are used in a list of items, when the sequence of items is important. such as steps listed in procedure.</td>
</tr>
<tr>
<td>2.</td>
<td>Numbered steps are used in a list of items, when the sequence of items is important. such as steps listed in procedure.</td>
</tr>
<tr>
<td>•</td>
<td>Bullets are used in a list of items when the sequence of items is not important.</td>
</tr>
<tr>
<td>Courier type</td>
<td>Anything that must be typed exactly as it appears is shown in Courier type. For example <code>cpu</code></td>
</tr>
<tr>
<td></td>
<td>The hand points to information that requires special attention.</td>
</tr>
<tr>
<td></td>
<td>The caution indicates required information that needs special consideration and understanding and should be read prior to starting or continuing with the procedure or process.</td>
</tr>
<tr>
<td></td>
<td>The warning indicates information that should be read prior to starting or continuing the procedure or processes.</td>
</tr>
<tr>
<td></td>
<td>The feet direct you to more information on a particular topic.</td>
</tr>
</tbody>
</table>
Contents

About this Tutorial ... iii
 Introduction .. iii
 How to Contact SLS .. iii
 Typographic Conventions .. iv

Figures .. vii

1. **Introduction** ... 1
 Hardware & Software Requirements ... 1

2. **Designing & Compiling** .. 2
 Creating a Quartus II Project .. 2
 Start SOPC builder... 2
 Specify Target Hardware Settings 3
 Adding CPU & Peripherals .. 4
 Nios II 32-bit CPU .. 5
 JTAG UART ... 6
 Timer ... 8
 Tristate Bridge .. 8
 SRAM Memory .. 9
 Parallel I/O for ADC Output Start Bit 10
 Parallel I/O for ADC Output Enable Bit 11
 Parallel I/O for ADC Output Address Latch Enable Bit 12
 Parallel I/O for ADC Output Address Bits 13
 Parallel I/O for ADC Input End Of Character Bit 14
 Parallel I/O for ADC Input Data Byte 15
 Parallel I/O for DAC Output Data Byte 17
 Parallel I/O for LEDs .. 18
 Parallel I/O for Pushbutton Switches 19
 Generating the System .. 21
Adding the Quartus II Symbol to the BDF ... 22
Compiling the Design ... 40

3. Programming .. 42

4. Running Nios II IDE ... 44
 Creating the Software .. 44
 Building the Project .. 50
 Running the Project ... 51
Figures

Figure 2-1. Create New System Dialog Box ... 3
Figure 2-2. SOPC Builder .. 4
Figure 2-3. Nios II Configuration Wizard - Nios II Core Tab 5
Figure 2-4. Nios II Configuration Wizard - JTAG Debug Module 6
Figure 2-5. JTAG UART Configuration Wizard ... 7
Figure 2-6. Timer Configuration Wizard .. 8
Figure 2-7. Avalon Tristate Bridge Configuration Wizard .. 9
Figure 2-8. SRAM Memory Configuration Wizard ... 10
Figure 2-9. PIO Configuration Wizard For ADC Output Start Bit 11
Figure 2-10. PIO Configuration Wizard For ADC Output Enable Bit 12
Figure 2-11. PIO Configuration Wizard For ADC Output Address Latch Enable Bit 13
Figure 2-12. PIO Configuration Wizard For ADC Output Address Bits 14
Figure 2-13. PIO Configuration Wizard For ADC Input End Of Character Bit 15
Figure 2-14. PIO Configuration Wizard For ADC Input Data Byte 16
Figure 2-15. PIO Configuration Wizard For DAC Output Data Byte 17
Figure 2-16. PIO Configuration Wizard For LEDs ... 18
Figure 2-17. PIO Configuration Wizard For Pushbutton Switches-Basic Settings 19
Figure 2-18. PIO Configuration Wizard For Pushbutton Switches-Input Options Settings ... 20
Figure 2-19. SOPC Builder After Adding All Components ... 21
Figure 2-20. Generating the System ... 22
Figure 2-21. New Block Design File .. 23
Figure 2-22. BDF System_Top Symbol .. 24
Figure 2-23. Generate Pins ... 25
Figure 2-24. Autogenerated Pins for Symbol .. 25
Figure 2-25. Pin Properties ... 26
Figure 2-26. Symbol Window ... 27
Figure 2-27. MegaWizard Plug-In Manager [page 2C] ... 28
Figure 2-28. MegaWizard Plug-In Manager [page 3] ... 29
Figure 2-29. MegaWizard Plug-In Manager [page 4] ... 30
Figure 2-30. MegaWizard Plug-In Manager [page 5] ... 31
Figure 2-31. MegaWizard Plug-In Manager [page 6] ... 32
Figure 2-32. MegaWizard Plug-In Manager [page 7] ... 33
1. Introduction

This tutorial walks you through the hardware & software development flow. It shows you how to use SOPC Builder and the Quartus II software to create and use your own Nios II system.

This tutorial is basically for users who are new to the Nios II processor as well as users who are new to the concept of using embedded systems in FPGA. This tutorial guides you through the steps necessary to create and compile a ADC-DAC System Design, called sc_adcdac_refdes_de2. This simple, single-master ADC-DAC control system consists of a Nios II embedded processor and associated system peripherals as well as interconnections for use with the input & output hardware available on the DE2 board.

This tutorial is divided into the following three sections:

- **‘Designing & Compiling’** - Teaches you how to use SOPC builder to create the ADC-DAC module in block design file (.bdf) and how to compile the ADC-DAC design using the Quartus II Compiler.
- **‘Programming’** - Teaches you how to use the Quartus II Programmer and the USB-Blaster cable to configure the FPGA on DE2 board.
- **‘Running the Software on Your Nios II System’** - Provides the instructions for running software on your Nios II system using the Nios II Integrated Development Environment (IDE).

Hardware & Software Requirements

The user will require following hardware & software

- A PC running with Win 2000/XP OS
- Nios II Embedded Processor
- The Quartus II Software, version 6.1
- DE2 Development Kit
To use the instructions in this section, you need to be familiar with the Quartus II software interface-specifically tool bars. Refer to Quartus II help for more information about using the Quartus II software.

Here are the steps to create a new Quartus II project:

1. Open the Quartus II.
3. Click Next.
4. Select Working Directory of the Project, Name of the project as ‘sc_adcdac_refdes_de2’ & top-level entity as ‘sc_adcdac_refdes_de2’.
5. Click Next.
6. Click Next.
7. Select the family as ‘Cyclone II’.
8. We will select the FPGA (which is Cyclone II EP2C35F672C6) for DE2 board, so under Filters / Speed Grade select 6. Then under Available devices: Select ‘EP2C35F672C6’. Click Next.
9. Click Next.
10. Click Finish.

Start SOPC builder

SOPC builder is a software tool that allows you to create a fully functioning, ADC-DAC system module. A complete ADC-DAC system module contains a Nios II embedded processor and its associated peripherals.

To start SOPC builder, perform the following steps:

1. Open the Quartus II software.
2. Choose SOPC Builder (Tools menu). SOPC Builder displays the Create New System dialog box.
3. Type ‘System_Top’. See Figure 2-1.
4. Specify Verilog or VHDL in HDL Language field.

SOPC Builder generates plain text Verilog HDL or VHDL for all of its native components depending on the language you choose.

Figure 2-1. Create New System Dialog Box

5. Click OK. The Altera SOPC Builder - System_Top window appears and the System Contents tab is displayed.

You are now ready to set the speed and add the Nios II CPU and peripherals to your system. The components you will be adding are located in the module pool on the left hand side of the System Content tab. See Figure 2-2.

Specify Target Hardware Settings

The functionality of the SOPC Builder system depends on the hardware on which it will run. Thus, specifying the target board is the first step in creating a system.

- Choose a board type in the Target pull-down menu. As DE2 is not yet added in the menu, keep the ‘Unspecified Board’.
- Select the System Clock Frequency as 27Mhz.
Adding CPU & Peripherals

This section describes adding following modules to the SOPC Builder.

- Nios II 32-bit CPU
- JTAG UART
- Timer
- Tristate Bridge
- SRAM Memory
- Parallel I/Os for
 - ADC Output Start Bit
 - ADC Output Enable Bit
 - ADC Output Address Latch Enable Bit
 - ADC Output Address Bits
 - ADC Input End of Character Bit
Designing & Compiling

- ADC Input Data Byte
- DAC Output Data Byte
- LEDs
- Pushbutton Switches

Nios II 32-bit CPU

To add the Nios II 32-bit CPU, named CPU, perform the following steps:

1. Under Avalon Modules, select **Nios II Processor - Altera Corporation**.
2. Click **Add**. The Nios II configuration wizard titled Altera Nios II - cpu_0 displays.
3. Specify the following options in the **Nios II Core** tab:
 - Select the **processor core**: Nios II/s as in Figure 2-3.
 - Instruction Cache Size: **4Kbytes**

Figure 2-3. Nios II Configuration Wizard - Nios II Core Tab

4. Click the **JTAG Debug Module** tab and choose the **selected tab** shown in Figure 2-4.
Adding CPU & Peripherals

Figure 2-4. Nios II Configuration Wizard - JTAG Debug Module

5. Clicking **Finish**, you return to the SOPC Builder **System Content** tab and an instance of the CPU named cpu_0 now appears in the table of available components.

6. Right click **cpu_0** and select **Rename**.

7. Type **cpu** and press **Enter**.

It is recommended to rename the components for avoiding ambiguity in further design process.

JTAG UART

The **JTAG UART** interface component is added to reduce the number of connections necessary to ‘talk’ to the Nios II. To add it

1. Select **Communication > JTAG UART** and click **Add**. The JTAG UART - jtag_uart_0 wizard displays as shown in Figure 2-5.
2. Accept the default options by clicking **Finish**. You return to the SOPC Builder **System Contents** tab and an instance of the JTAG UART named `jtag_uart_0` now appears in the table of available components.

3. Right click `jtag_uart_0` and select **Rename**.

4. Type `jtag_uart` and press **Enter**.
Adding CPU & Peripherals

8 System Level Solutions

July 2007 Designing ADC-DAC System from Scratch for DE2

Timer

The Timer is necessary for some of the default device drivers provided in the HAL system library, for example, the JTAG UART. To add the timer perform the following steps:

1. Choose Other > Interval Timer and click Add.
2. Leave the default settings in the Avalon Timer - timer_0 window. Figure 2-6.

Figure 2-6. Timer Configuration Wizard

3. Click Finish. You return to the SOPC Builder System Contents tab and an instance of the Timer named timer_0 now appears in the table of available components.

4. Right click timer_0 and select Rename.

5. Type timer and press Enter.

Tristate Bridge

For the ADC-DAC system to communicate with Tristate memory external to the FPGA on the DE2, you must add a bridge between the Avalon bus and external memory controller. To add this:
1. Select Bridges > Avalon Tri-State Bridge and click Add. The Avalon Tri-State Bridge - tri_state_bridge_0 wizard displays. See Figure 2-7.

Figure 2-7. Avalon Tristate Bridge Configuration Wizard

![Avalon Tristate Bridge Configuration Wizard](image)

- **Incoming Signals**
 - Registered
 - Increases off-chip Fmax, but also increases latency.
 - Not registered
 - Reduces latency, but also reduces off-chip Fmax.

NOTE: Check the input Setup Times analysis in the Quartus Compilation Report to be sure your bus inputs meet system-level timing requirements.

Outgoing address and control signals are always registered.

2. Click Finish. You return to the SOPC Builder System Content tab and an instance of the Tri_state_bridge named tri_state_bridge_0 now appears in the table of available components.

3. Right click tri_state_bridge_0 and select Rename.

4. Type tri_state_bridge and press Enter.

SRAM Memory

Depending on which hardware you are using user has to select the external SRAM or any memory. We shall be using SRAM available on DE2 board.

SLS has developed a generic SRAM controller which is provided in the reference design directory. Therefore, before following the steps mentioned below, copy the contents of the folder `..<../SLS_ADC-DAC_Board/ADC-DAC_Reference_Designs/Components>` to `<Quartus installation path>/quartus/sopc_builder/components` directory. Go to SOPC builder File menu and click Refresh Component List.

To add SRAM Memory Controller perform the following steps:
1. Select Memory > SLS_IS61LV6416L_10T_SRAM-sram_0 and click Add.

2. The SRAM wizard displays. See Figure 2-8.

3. Set Memory Size = 512 kB

Figure 2-8. SRAM Memory Configuration Wizard

4. Click Finish. You return to the SOPC Builder System Content tab and an instance of the SRAM named sram_0 now appears in the table of available components.

5. Right click sram_0 and select Rename.

6. Type sram and press Enter.

Parallel I/O for ADC Output Start Bit

To provide an interface for ADC Output Start Bit on DE2 Board, add the PIO by performing the following steps:

1. Select Other > PIO (Parallel IO) and click Add.

2. Specify the Options. See Figure 2-9.
3. Click Finish. You return to the SOPC Builder System Contents tab and an instance of the PIO named pio_0 now appears in the table of available components.

4. Right click pio_0 and select Rename.

5. Type adc_start and press Enter.

Figure 2-9. PIO Configuration Wizard For ADC Output Start Bit

Parallel I/O for ADC Output Enable Bit

To provide an interface for ADC Output Enable Bit on DE2 Board, add the PIO by performing the following steps:

1. Select Other >PIO (Parallel IO) and click Add.

2. Specify the Options. See Figure 2-10.
 - Width =1 bits
 - Direction = Output ports only.
3. Click Finish. You return to the SOPC Builder System Contents tab and an instance of the PIO named pio_0 now appears in the table of available components.

4. Right click pio_0 and select Rename.

5. Type adc_oe and press Enter.

Figure 2-10. PIO Configuration Wizard For ADC Output Enable Bit

Parallel I/O for ADC Output Address Latch Enable Bit

To provide an interface for ADC Output Address Latch Enable Bit on DE2 Board, add the PIO by performing the following steps:

1. Select Other > PIO (Parallel IO) and click Add.

2. Specify the Options. See Figure 2-11.
 - **Width** = 1 bits
 - **Direction** = Output ports only.

3. Click Finish. You return to the SOPC Builder System Contents tab and an instance of the PIO named pio_0 now appears in the table of available components.

4. Right click pio_0 and select Rename.
5. Type `adc_ale` and press **Enter**.

Figure 2-11. PIO Configuration Wizard for ADC Output Address Latch Enable Bit

Parallel I/O for ADC Output Address Bits

To provide an interface for ADC Output Address Bits on DE2 Board, add the PIO by performing the following steps:

1. Select **Other > PIO** (Parallel IO) and click **Add**.

2. Specify the Options. See **Figure 2-12**.
 - **Width** = 3 bits
 - **Direction** = **Output ports only**.

3. Click **Finish**. You return to the SOPC Builder **System Contents** tab and an instance of the PIO named **pio_0** now appears in the table of available components.

4. Right click **pio_0** and select **Rename**.

5. Type `adc_add` and press **Enter**.
Parallel I/O for ADC Input End Of Character Bit

To provide an interface for ADC Input End of Character Bit on DE2 Board, add the PIO by performing the following steps:

1. Select Other > PIO (Parallel IO) and click Add.
2. Specify the Options. See Figure 2-13.
 - Width = 1 bits
 - Direction = Input ports only.
 - Accept Input Options and Simulation as default.
3. Click Finish. You return to the SOPC Builder System Contents tab and an instance of the PIO named pio_0 now appears in the table of available components.
4. Right click pio_0 and select Rename.
5. Type adc_eoc and press Enter.
Figure 2-13. PIO Configuration Wizard For ADC Input End Of Character Bit

To provide an interface for ADC Input Data Byte on DE2 Board, add the PIO by performing the following steps:

1. Select Other > PIO (Parallel IO) and click Add.

2. Specify the Options. See Figure 2-14.
 - Width = 8 bits
 - Direction = Input ports only.
 - Keep the default settings under Input Options and Simulation as default.
 - Click Finish

3. You return to the SOPC Builder System Contents tab and an instance of the PIO named pio_0 now appears in the table of available components.

4. Right click pio_0 and select Rename.

5. Type adc_data and press Enter.

Parallel I/O for ADC Input Data Byte
Figure 2-14. PIO Configuration Wizard For ADC Input Data Byte
Parallel I/O for DAC Output Data Byte

To provide an interface for DAC Output Data Byte on DE2 Board, add the PIO by performing the following steps:

1. Select Other > PIO (Parallel IO) and click Add.
2. Specify the Options. See Figure 2-15.
 - Width = 8 bits
 - Direction = Output ports only.
 - Click Finish.
3. You return to the SOPC Builder System Contents tab and an instance of the PIO named pio_0 now appears in the table of available components.
4. Right click pio_0 and select Rename.
5. Type dac_data and press Enter.

Figure 2-15. PIO Configuration Wizard For DAC Output Data Byte
Parallel I/O for LEDs

To provide an interface for LEDs on the DE2 Board, add the PIO by performing the following steps:

1. Select Other > PIO (Parallel IO) and click Add.
2. Specify the Options. See Figure 2-16.
 - Width = 4 bits
 - Direction = Output ports only.
 - Click Finish.
3. You return to the SOPC Builder System Contents tab and an instance of the PIO named pio_0 now appears in the table of available components.
4. Right click pio_0 and select Rename.
5. Type led_pio and press Enter.

Figure 2-16. PIO Configuration Wizard For LEDs
Parallel I/O for Pushbutton Switches

To provide an interface for Pushbutton Switches on DE2 Board, add the PIO by performing the following steps:

1. Select Other > PIO (Parallel IO) and click Add.
2. Specify the Options. See Figure 2-17.
 - Width = 4 bits
 - Direction = Input ports only.

3. Click Input Options Tab
 - Under Edge Capture Register, Check Synchronously Capture. Under Synchronously capture, select option Either Edge. See Figure 2-18.
 - Under Interrupt, check Generate IRQ. Under Generate IRQ, select Edge option. See Figure 2-18.
4. Click Finish. You return to the SOPC Builder System Contents tab and an instance of the PIO named pio_0 now appears in the table of available components.
5. Right click pio_0 and select Rename.
6. Type `key_pio` and press **Enter**.

Figure 2-18. PIO Configuration Wizard For Pushbutton Switches-Input Options Settings

After adding all components, the complete SOPC builder system looks like Figure 2-19.
Generating the System

To generate the design logic, perform the following steps.

1. Click the System Generation tab.

2. Specify the following settings from the Options window. Figure 2-20.
 - HDL: Check this box
 - Simulation: Check this box if you have Modelsim installed and would like to simulate the design.
3. Click Generate. See Figure 2-20.

4. When generation is complete, the SYSTEM GENERATION COMPLETED message displays. “DO NOT EXIT SOPC BUILDER AT THIS POINT.” We will return to this window prior to testing the system with software.

Adding the Quartus II Symbol to the BDF

During generation, SOPC Builder creates a symbol of the System_Top, for using in Quartus II. To add the symbol perform the following steps:

2. Under Device Design Files, select Block Diagram/Schematic File. See Figure 2-21.
3. Click OK. You are return to the Quartus II software and double click anywhere inside the BDF window. The Symbol dialog box appears. See Figure 2-22.
4. From Libraries, expand the **Project directory** by clicking the + sign nearby.

5. Click **System_Top**. A large symbol will appear representing the **ADCDAC system module** you just created.

6. Click **OK**. The Symbol dialog box closes and an outline of the **System_Top** symbol is attached to the pointer.

7. Place the **symbol** in the Block Diagram file by clicking the left mouse button.

8. You can generate the input and output node by selecting the symbol and right-click on it and select **Generate Pins for Symbol Ports**. See Figure 2-23.
9. Input, output and bidirectional pins for the symbol will be automatically generated and connected accordingly. See Figure 2-24.

10. The autogenerated pin names can be changed. Right click the **pin name** and select **Properties**. The Pin Property dialog box appears as shown in Figure 2-25.
11. You can give all the name according to Table 2-1. The names are given for ease of reference.

<table>
<thead>
<tr>
<th>Pin Name of the Symbol</th>
<th>Custom Pin Names</th>
</tr>
</thead>
<tbody>
<tr>
<td>clk</td>
<td>clk</td>
</tr>
<tr>
<td>reset_n</td>
<td>reset_n</td>
</tr>
<tr>
<td>in_port_to_the_adc_data[7..0]</td>
<td>adc_data[7..0]</td>
</tr>
<tr>
<td>in_port_to_the_adc_eoc</td>
<td>adc_eoc</td>
</tr>
<tr>
<td>in_port_to_the_key_pio[3..0]</td>
<td>key[3..0]</td>
</tr>
<tr>
<td>out_port_from_the_adc_add[2..0]</td>
<td>adc_add[2..0]</td>
</tr>
<tr>
<td>out_port_from_the_adc_ale</td>
<td>adc_ale</td>
</tr>
<tr>
<td>out_port_from_the_adc_oe</td>
<td>adc_oe</td>
</tr>
<tr>
<td>out_port_from_the_adc_start</td>
<td>adc_start</td>
</tr>
<tr>
<td>out_port_from_the_dac_data[7..0]</td>
<td>dac_data[7..0]</td>
</tr>
</tbody>
</table>
12. Add the counter by following the steps below:
 - Double click anywhere inside the BDF window.
 - It will pops up the Symbol window.
 - Select `<dirve path>/altera../megafunctions/arithmetic/Ipm_Counter`. See Figure 2-26. Click OK.

Figure 2-26.Symbol Window

out_port_from_the_led_pio[3..0]	ledg[3..0]
read_n_to_the_sram	sram_oe_n
select_n_to_the_sram	sram_ce_n
tri_state_bridge_address[18..0]	sram_add[18..0]
tri_state_byteenable[1..0]	sram_be_n[1..0]
tri_state_bridge_data[15..0]	sram_data[15..0]
write_n_to_the_sram	sram_we_n
Adding the Quartus II Symbol to the BDF System Level Solutions

- It will pops up the MegaWizard Plug-In Manager window. See Figure 2-27.
- Give the name `counter` in the Output file text box. See Figure 2-27.

Figure 2-27. MegaWizard Plug-In Manager [page 2C]

- Click Next. You will go to the next page of MegaWizard.
- Select the output bus width as 6 bits. See Figure 2-28.
• Click **Next**. You will see the page 4 of MegaWizard.
• Leave the default settings as shown in **Figure 2-29**.
Figure 2-29. MegaWizard Plug-In Manager [page 4]

- Click Next.
• Under Synchronous inputs, Check the **Clear box**. See Figure 2-30.
• Click **Next**.
• You will see page 6 of MegaWizard. See Figure 2-31.
Figure 2-31. MegaWizard Plug-In Manager [page 6]

- Click Next.
- You will see page 7 of MegaWizard. See Figure 2-32.
13. Now the clk input of counter is directly connected to the clk input of the System_Top. The sclr input of the counter is connected to the reset input of the System_Top using NOT gate.

14. For selection of the NOT gate double click inside the block diagram and select <drive path>:/.../library/primitives/logic/not. See Figure 2-33.
15. Then by using orthogonal node tool, you can connect the input of NOT gate to the reset input of the System_Top and the output of the NOT gate to the sclr input of the counter. See Figure 2-34.
16. Now you have to expand the line as shown in Figure 2-35. Give the name `cntr_out[5..0]`.
17. Now for the ADC clock output, add output symbol by selecting it from the library `<drive path>:/.../library/primitives/pin/output`.

18. Give the output pin name as `adc_clk`.

19. Do not connect it with the output of the counter stretch its line as shown in Figure 2-36. Give the name as `cntr_out[5]` and press Enter.
20. After assignment of the IO pins, select Assignment>Settings. The Settings Dialog Box pops up as shown in Figure 2-37.

21. In Device dialog box click the button Device & Pin Options.

22. Device and Pin options dialog box pops up as shown in Figure 2-38.

23. Click the Unused pins Tab. Select As Input tri-stated in Reserve all unused pins combo box.

24. Click OK. You will return to Device Settings window.

25. Click OK.

26. Now select the Processing from the menu bar and click on Start and select the Start Analysis And Synthesis.

27. For assignment open the Assignments from menu bar and select the Assignment Editor. Select the category as pin and then you can see the list of all pins used in the project. If you do not see the pins then go to View menu and select Show All Known Pin Names.
28. Now you have to go to the sc_adcdac_refdes_de2.csv file at SLS_ADC-DAC_Board/ADC-DAC_Reference_Designs folder and select the pins and copy it. Open the Quartus II software and paste it in the assignment editor.
Figure 2-38. Device & Pin Options

29. After adding Inputs/Output, **Inouts and pin assignments** the final BDF looks like Figure 2-39. Please refer the provided Reference Design.

30. Choose **File>Save**.
Adding the Quartus II Symbol to the BDF

Figure 2-39. Final BDF

Note: to Figure 2-39.

(1) In this tutorial we are using only one memory (SRAM). In order to disable SDRAM and FLASH memories, the pins are at Pull up status.

(2) You can assign the pin number using the SLS_ADC-DAC_Board/ADC-DAC_Reference_Designs/sc_adcdac_refdes_de2.csv file.
Compiling the Design

During compilation, the Compiler locates and processes all design, project files, generates messages and reports related to the current compilation, creates the SRAM object file (.sof) as well as any optional programming files.

To compile the sc_adcdac_refdes_de2 design, follow these steps:

1. Choose Start Compilation (Processing menu), or click the Start Compilation toolbar button. If you get a message asking if you want to save the changes you made the BDF file, choose Yes.

2. When compilation completes, you can view the results in the ADC-DAC Compilation Report window. See Figure 2-40.

Figure 2-40. Compilation Report Window
3. Programming

After successful compilation, the Quartus II Compiler generates one or more programming files that the Programmer uses to program or configure a device.

To program your design, perform the following steps.

1. Choose **Programmer (Tools menu)**. The Programmer window opens.
2. In the Mode list of the programmer window, make sure **JTAG** is selected.
3. Click **Hardware Setup**. to configure the programming hardware. The Hardware Setup dialog box appears.
4. From the Hardware column, select **USB Blaster**.
5. Click **Close** to exit the Hardware Setup window.
6. In the Programmer window, turn on **Program/Configure**. See Figure 3-1.
7. Click **Start**.
Figure 3-1. Programming Window
We will be using Nios II Integrated Development Environment (IDE) to run our software on top of Nios II System. To start the Nios II IDE from the Quartus II software, perform the following steps:

Creating the Project

1. Click the **System Generation** tab of the SOPC Builder, then click the **Run Nios II IDE** button.
2. From the opening window, choose **File>New>Nios II C/C++ Application**. See *Figure 4-1*.
3. You will see the New Project Wizard Dialog Box as shown in *Figure 4-2*.

Figure 4-1. New Project

4. The user has been asked to select Blank Project, since SLS has provided a reference C file to access the ADC-DAC on DE2. To import this C file into this project do the following steps.
 - Select the **Blank Project**
 - Give a **Name** to the project as **ADCDAC_DE2_Board**.
 - Select the SOPC builder system by clicking on **Browse** and selecting the **System_Top.ptf** file in the reference design. See *Figure 4-2*.

44

Designing ADC-DAC System from Scratch for DE2
5. Click Next
6. Click Finish.
7. You will observe your project created under the Nios C/C++ Projects Tab. See Figure 4-3.
Creating the Project

Figure 4-3. Listing of Your Project under Nios II C/C++ Project Tab

8. Select the Project (ADCDAC_DE2_Board). Right Click and hit Import. See Figure 4-4.

Figure 4-4. Importing File System

9. You will now be asked for the details of the file to be imported.
 - You have to select the file system as shown in Figure 4-4.
• Click **Next**. You will see the import dialog box as shown in Figure 4-5.

Figure 4-5. Import Dialog Box

• Browse to `SLS_ADC-DAC_BoardADCDAC_Reference_Designs/software`. See Figure 4-6.
• Click **OK**. You will return back to Import Wizard.
10. Select the `sc_adcdac_app.c` file in the template by checking the box. See Figure 4-7.

11. Click Finish.
12. Observe the inserted `sc_adcdac_app.c` file template in the application list. See Figure 4-8.
Building the Project

50 System Level Solutions
July 2007
Designing ADC-DAC System from Scratch for DE2

Figure 4-8. Inserted C file template in the application list

You can browse through the contents of the file by double clicking the file Name in the list.

Building the Project

After successful creating your project, its now time to build your project. To build your project follow steps below:

1. Right click the Name of the Project and select “Build Project” to build your project. See Figure 4-9.
2. You will observe the window. See Figure 4-10.

Figure 4-10. Build Process

Running the Project

After building the project successfully, it's now time to run the project on the hardware. There are two ways to run your project.

1. Select Run > Run.. as shown in Figure 4-11.
Figure 4-11. Run Option

2. It will pops up Run Dialog Box as shown in Figure 4-12.
3. Under Project, select the Nios II C/C++ Project by browsing your ADC-DAC Project.

4. Click on Target Connection Tab. You will see the Figure 4-13.
5. Select the target Hardware **USB-Blaster [USB-0]** under JTAG Cable. Click **Refresh**.

6. Click **Apply**.

7. Click **Run**.

8. Alternatively you can run the project by Right click the **Project** and select **Run As > Nios II Hardware. Figure 4-14.**
9. You will observe the console window as shown in Figure 4-15.
10. The Console Window asks for the selection of choice from the following options:
 - 1. Analog To Digital Converter
 - 2. Digital To Analog Converter
 - 3. Auto Test
 - 4. Exit
 Please enter your choice:

Figure 4-15. IDE Console Output

![IDE Console Output](image-url)
11. If you select **Option 1** and press enter, following message will be displayed. See Figure 4-16.

Figure 4-16. Analog to Digital Selection Console Window

- Give the analog input at pin IN0 and connect GND_ADC to ground.
- Enter analog input sample number and press **Enter**. You shall see the sample values displayed.
- Following figure shows the output window for 5V DC analog input at IN0 and 200 samples as analog input sample number. See Figure 4-17.

Here each reading is displayed after 10 samples. It shows the average value of 10 sample. Therefore only 20 readings are displayed here.
12. If you select Option 2 and press enter, it will display the following message. See Figure 4-18.

Give the digital input signal range between 0 to 255 and press Enter
Running the Project

- The analog output can be measured at IOUT_n pin and you can see the display as shown in Figure 4-19.

Figure 4-19. Digital to Analog Output Console Window

If you select **Option 3** and press enter, following message will be displayed. See Figure 4-20.

Figure 4-20. Auto Test Selection Console Window

This is an **AUTO TEST** that requires a loop back connection. Therefore, make the connections as mentioned below.

- Connect IOUT_n i.e. output of the DAC to the IN0 i.e. input of the ADC, forming a loop.
- Connect the GND_ADC to ground
After successful connection, you will be able to see the following window. See Figure 4-21.

Figure 4-21. Auto Test Output Console Window

<table>
<thead>
<tr>
<th>Analog Input</th>
<th>Digital Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.304118</td>
<td>0</td>
</tr>
<tr>
<td>0.196078</td>
<td>70</td>
</tr>
<tr>
<td>0.274510</td>
<td>50</td>
</tr>
<tr>
<td>0.559054</td>
<td>90</td>
</tr>
<tr>
<td>0.590255</td>
<td>110</td>
</tr>
<tr>
<td>0.569020</td>
<td>150</td>
</tr>
<tr>
<td>0.569225</td>
<td>120</td>
</tr>
<tr>
<td>0.509804</td>
<td>90</td>
</tr>
<tr>
<td>0.274510</td>
<td>50</td>
</tr>
<tr>
<td>0.196078</td>
<td>70</td>
</tr>
<tr>
<td>0.304118</td>
<td>0</td>
</tr>
</tbody>
</table>

14. If you select **Option 4**, it will exit from the procedure of conversion.

For details on the hardware for ADC-DAC Board refer to the ADC-DAC Board Reference Manual.