

DRV2605 ERM, LRA Haptic Driver Evaluation Kit

The DRV2605 is a haptic driver designed for Linear Resonant Actuators (LRA) and Eccentric Rotating Mass (ERM) motors. It provides many features which help eliminate the design complexities of haptic motor control including reduced solution size, high efficiency output drive, closed-loop motor control, quick device startup, embedded waveform library, and auto-resonance frequency tracking.

The DRV2605EVM-CT Evaluation Module (EVM) is a complete demo and evaluation platform for the DRV2605. The kit includes a microcontroller, linear actuator, eccentric rotating mass motor, sample waveforms and capacitive touch buttons which can be used to completely demonstrate and evaluate the DRV2605.

This document contains instructions to setup and operate the DRV2605EVM-CT in demo and evaluation mode.

Evaluation Kit Contents:

- DRV2605EVM-CT Demo and Evaluation board
- Mini-USB Cable
- Demonstration Mode Firmware

Needed for programming and advanced configuration:

- Code Composer Studio™ (CCS) or IAR Embedded Workbench IDE for MSP430
- MSP430 LaunchPad (MSP-EXP430G2), or MSP430-FET430UIF hardware programming tool
- DRV2605EVM-CT Firmware available on ti.com

Code Composer Studio is a trademark of Texas Instruments. I²C is a trademark of N.B.X Corporation.

All other trademarks are the property of their respective owners.

Contents

1	Getting Started				
	1.1	Evaluation Module Operating Parameters			
	1.2	Quick Start Board Setup			
2		05 Demonstration Program			
	2.1	Modes and Effects Table			
	2.2	Description of the Demo Modes			
	2.3	ROM Library Mode			
2	2.4	Waveform Library Effects List			
3		nal Hardware Modes			
	3.1 3.2	Exit Binary Counting Mode			
	3.3	Binary Counting Modes			
4		are Configuration			
7	4.1	Input and Output Overview			
	4.2	Power Supply Selection			
	4.3	Using an External Actuator			
	4.4	PWM Input			
	4.5	External Trigger Control			
	4.6	External I ² C Input	18		
	4.7	Audio-to-Haptics Input	19		
5	Measu	rement and Analysis	20		
6	MSP43	0 Firmware			
	6.1	MSP430 Pin-Out			
7		atic			
8	-				
9	Bill of N	Materials	27		
		List of Figures			
		List of rigures			
1	Board I		_		
1		Diagram			
2	ERM C	Diagramlick and Ramp Down Waveform (Button 1)	7		
2	ERM C	Diagram Plick and Ramp Down Waveform (Button 1)	7		
2 3 4	ERM C LRA Ra ERM S	Diagram Diag	7		
2 3 4 5	ERM C LRA Ra ERM S ERM S	Diagram Slick and Ramp Down Waveform (Button 1)	7		
2 3 4 5 6	ERM C LRA Ra ERM S ERM S LRA SI	Diagram Dia	77		
2 3 4 5	ERM C LRA Ra ERM S ERM S LRA SI LRA SI	Diagram Dia	77 77 88 88		
2 3 4 5 6	ERM C LRA R: ERM S ERM S LRA SI LRA SI	Diagram Dia	77 77 88 88 88		
2 3 4 5 6 7	ERM C LRA R: ERM S ERM S LRA SI LRA SI	Diagram Dia	77 77 88 88 88		
2 3 4 5 6 7 8	ERM C LRA R: ERM S ERM S LRA SI LRA AI LRA AI	Diagram Dia	77 77 88 88 88 88 88 88		
2 3 4 5 6 7 8 9	ERM C LRA RA ERM S ERM S LRA SI LRA AI LRA AI Accele	Diagram Dia	77 77 88 88 88 88 88 88 88 88 88 88 88 8		
2 3 4 5 6 7 8 9 10	ERM C LRA RA ERM S ERM S LRA SI LRA AL LRA AL Accele	Diagram Click and Ramp Down Waveform (Button 1)	77 77 88 88 88 88 89 99		
2 3 4 5 6 7 8 9 10 11 12	ERM C LRA RA ERM S LRA SI LRA AI LRA AI Accele ERM C ERM C	Diagram Click and Ramp Down Waveform (Button 1) Camp Up and Pulsing Waveform (Button 4) CharpClick_100 (Button 1) CtrongClick_60 and Release SharpClick_100 (Button 2) CharpTick2_80 (Button 1) CtrongClick 100 and Release SharpTick2 80 (Button 2) Cuto-Resonance ON (Button 1) Cuto-Resonance OFF (Button 2) Cration vs Frequency Closed Loop (Button 3) Cutopen Loop (Button 4)	77 77 88 88 88 89 99 99		
2 3 4 5 6 7 8 9 10 11 12 13	ERM C LRA RA ERM S LRA SI LRA AI LRA AI Accele ERM C ERM C	Diagram Dia	77 77 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9		
2 3 4 5 6 7 8 9 10 11 12 13	ERM C LRA RA ERM S LRA SI LRA AI LRA AI Accele ERM C ERM C ERM A LRA AI	Diagram Dia	7 7 7 8 8 8 8 9 9		
2 3 4 5 6 7 8 9 10 11 12 13 14 15	ERM C LRA RA ERM S LRA SI LRA AI LRA AI Accelei ERM C ERM C ERM A LRA AI Power	Diagram Click and Ramp Down Waveform (Button 1) Camp Up and Pulsing Waveform (Button 4) CharpClick_100 (Button 1) CtrongClick_60 and Release SharpClick_100 (Button 2) CharpTick2_80 (Button 1) CtrongClick 100 and Release SharpTick2 80 (Button 2) Cuto-Resonance ON (Button 1) Cuto-Resonance OFF (Button 2) Cration vs Frequency Closed Loop (Button 3) Clopen Loop (Button 4) Cuto-Haptics Conversion (Button 1) Cuto-Haptics Conversion (Button 1) Cuto-Haptics Conversion (Button 2) Cuto-Haptics Conversion (Button 1) Cuto-Haptics Conversion (Button 2)	77 77 77 8 8 8 8 8 9 9 9 10 10 11		
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	ERM C LRA RA ERM S LRA SI LRA AI LRA AI Accele ERM C ERM C ERM A LRA AI Power Termin	Diagram Click and Ramp Down Waveform (Button 1) Camp Up and Pulsing Waveform (Button 4) CharpClick_100 (Button 1) CtrongClick_60 and Release SharpClick_100 (Button 2) CharpTick2_80 (Button 1) CtrongClick 100 and Release SharpTick2 80 (Button 2) Cuto-Resonance ON (Button 1) Cuto-Resonance OFF (Button 2) Cration vs Frequency Closed Loop (Button 3) Cupen Loop (Button 4) Cudio-to-Haptics Conversion (Button 1) Cudio-to-Haptics Conversion (Button 2) Cuto-Resonance Conversion (Button 2)	77 77 8 8 8 8 9 9 9 10 10 10 10		
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	ERM C LRA RA ERM S LRA SI LRA AI LRA AI Accele ERM C ERM C ERM A LRA AI Power Termin Externa	Diagram Jick and Ramp Down Waveform (Button 1) Jamp Up and Pulsing Waveform (Button 4) harpClick_100 (Button 1) trongClick_60 and Release SharpClick_100 (Button 2) harpTick2_80 (Button 1) rongClick 100 and Release SharpTick2 80 (Button 2) Jito-Resonance ON (Button 1) Jito-Resonance OFF (Button 2) ration vs Frequency Plosed Loop (Button 3) Pen Loop (Button 3) Judio-to-Haptics Conversion (Button 1) Judio-to-Haptics Conversion (Button 1) Judio-to-Haptics Conversion (Button 2) Jumper Selection al Block and Test Points al PWM Input	77 77 8 8 8 8 8 9 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10		
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	ERM C LRA RA ERM S LRA SI LRA AI LRA AI Accelei ERM C ERM C ERM A LRA AI Power Termin Externa Externa	Diagram	77 77 8 8 8 8 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10		
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	ERM C LRA RI ERM S LRA SI LRA AI LRA AI Acceler ERM C ERM C ERM A LRA AI Power Termin Externa Externa Externa	Diagram	77 77 77 8 8 8 8 9 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10		
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	ERM C LRA RI ERM S LRA SI LRA AI LRA AI Accele ERM C ERM C ERM C ERM A LRA AI Power Termin Externa Externa Audio-t	Diagram	77 77 8 8 8 8 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10		
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	ERM C LRA RA ERM S LRA SI LRA AI LRA AI Accelei ERM C ERM C ERM A LRA AI Power Termin Externa Externa Audio-t Termin	Diagram Dia	77 77 77 8 8 8 8 9 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10		
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	ERM C LRA RI ERM S LRA SI LRA AI LRA AI Acceler ERM C ERM C ERM A LRA AI Power Termin Externa Externa Audio-t Termin DRV26	Diagram Dia	77 77 8 8 8 8 9 9 10 10 11 11 11 11 11 11 11 11 11 11 11		

www.ti.com

24	Measuring the DRV2605 Output Signal with an Analog Low-pass Filter	20
25	LaunchPad Programmer Connection	
26	X-Ray Top View	
27	Top Copper	24
28	Layer 2 Copper	
29	Layer 3 Copper	25
30	Bottom Copper	26
	List of Tables	
1	Mode and Effects Table	
2	DRV2605 Library Table	11
3	Binary Counting Modes	14
4	Hardware Overview	15
5	MSP430 Pin-Out	22

Getting Started www.ti.com

1 Getting Started

The DRV2605 can be used as a demonstration or evaluation tool. When the DRV2605EVM-CT Evaluation Module is powered on for the first time, a demo application automatically starts. To power the board, connect the DRV2605EVM-CT to an available USB port on your computer using the included mini-USB cable. The demo begins with a board power-up sequence and then will enter the demo effects mode. The four larger buttons (B1-B4) can be used to sample haptic effects using both the ERM and LRA motor in the top right corner. The two smaller mode buttons ("-", "+") are used to change between the different banks of effects. See the DRV2605 Demonstration Program section for a more detailed description of the demo application.

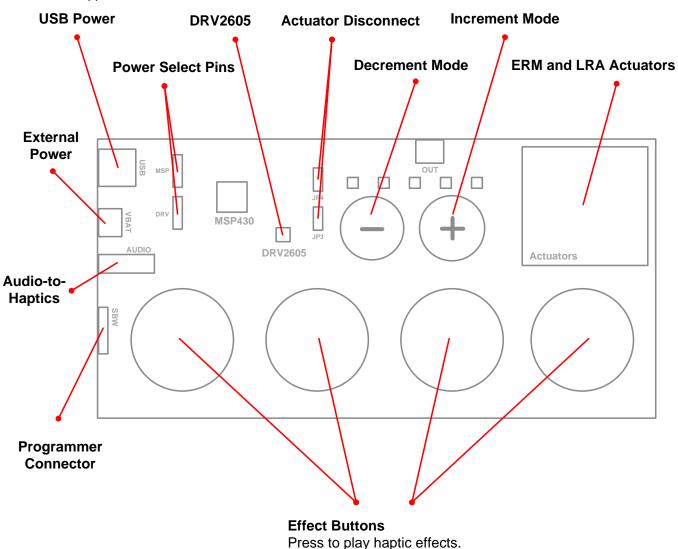


Figure 1. Board Diagram

www.ti.com Getting Started

1.1 Evaluation Module Operating Parameters

The following table lists the operating conditions for the DRV2605 on the evaluation module.

Parameter	Specification	
Supply voltage range	2.5V to 5.5V	
Power-supply Current Rating	400mA	

1.2 Quick Start Board Setup

The DRV2605EVM-CT firmware contains haptic waveforms which showcase the features and benefits of the DRV2605. Follow the instructions below to begin the demo.

1. Out of the box, the jumpers are set to begin demo mode using USB power. The default jumper settings can be found in the table below.

Jumper	Default Position	Description	
JP1	Shorted	Connect MSP430 GPIO/PWM output to DRV2605 IN/TRIG	
JP2	Shorted	3.3V reference for I ² C	
JP3, JP4	Shorted	Connect on-board actuators to DRV2605	
MSP	USB to MSP	Select USB (5V) or VBAT power for the MSP430	
DRV	USB to DRV	Select USB (5V) or VBAT power for the DRV2605	

- Connect the included mini-USB cable to the USB connector on the DRV2605EVM-CT board.
- 3. Connect the other end of the USB cable to an available USB port on a computer, USB charger, or USB battery pack.
- 4. If the board is powered correctly, the four colored LEDs will turn on, the four mode LEDs will flash, and the LRA and ERM will perform auto-calibration, indicating the board has been successfully initialized.

2 DRV2605 Demonstration Program

The sections below provide a detailed description of the demo modes and effects.

2.1 Modes and Effects Table

The effects preloaded on the DRV2605EVM-CT are listed in Table 1. The modes are selected using the "+" and "-" mode buttons in the center of the board. The current mode can be identified by the white LEDs directly above the mode buttons. Buttons B1-B4 trigger the effects listed in the description column and will change based on the selected mode.

Table 1. Mode and Effects Table

Mode	Button	Description	Actuator	Waveform Location	Interface	
	B1	Click + Ramp Down	ERM			
Mode Off	B2	Ramp Up + Pulsing	ERW			
LEDs Off	В3	Click + Ramp Down	LDA	ROM	Internal Trigger (I ² C)	
	B4	Ramp Up + Pulsing	- Pulsing			
	B1	SharpClick_100			Internal Trigger	
Mode 4	B2	StrongClick_60 + Release	EDM	DOM	Ext. Edge Trig.	
LED M4 On	В3	SoftBump_100	- ERM	ROM	Internal Trigger	
	B4	DoubleClick_100			Ext. Level Trig.	
	B1	SharpTick2_80			Internal Trigger	
Mode 3	B2	StrongClick_100 + Release	ck_100 + Release		Ext. Edge Trig.	
LED M3 On	В3	SoftBump_100	LRA	ROM	Internal Trigger	
	B4	DoubleClick_100	lick_100		Ext. Level Trig.	
	B1	LRA Auto-Resonance ON	- LRA		RTP	
Mode 2	B2	LRA Auto-Resonance OFF	LKA	μController	PWM	
LED M2 On	В3	ERM Buzz Alert (Closed Loop)	- ERM		RTP	
	B4	ERM Buzz Alert (Open Loop)	ROM		Internal Trigger	
	B1	Concentration Game		ROM	Internal Trigger (I ² C)	
Mode 1	B2	The board will display a pattern using				
LED M1 On	В3	the effect buttons. See how many times you can repeat the pattern as it	ERM and LRA			
	B4	increases by one effect each time.				
	B1	Audio-to-Haptics Enable	ERM	External Analog	A E 4 II C	
Mode 0	B2	Audio-to-Haptics Enable	LRA	Source	Audio-to-Haptics	
LED M0 On	В3	Exit A2H, Click, Return to A2H	50M 11.0A	DOM	Internal Trigger (I ² C)	
	B4	Exit A2H, Buzz, Return to A2H	ERM and LRA	ROM		

2.2 Description of the Demo Modes

The following sections describe each demo mode in more detail.

2.2.1 Mode Off – Haptics Effect Sequences

Mode Off contains a set of haptic sequences that combine a series of haptic effects. The two effects below show combinations of clicks, ramps and pulses.

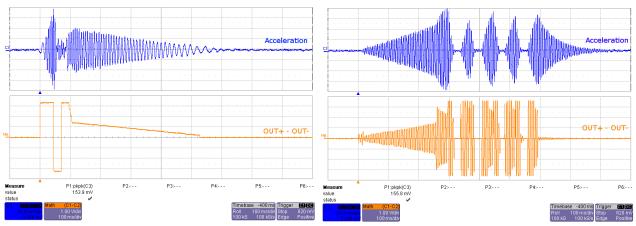


Figure 2. ERM Click and Ramp Down Waveform (Button 1)

Figure 3. LRA Ramp Up and Pulsing Waveform (Button 4)

2.2.2 Mode 4 - ERM Clicks

Mode 4 shows two different ERM click styles. Button 1 shoes a single sharp click. Button 2 shows a click and release effect. The click and release effect provides a haptic waveform on both the button press and the button release.

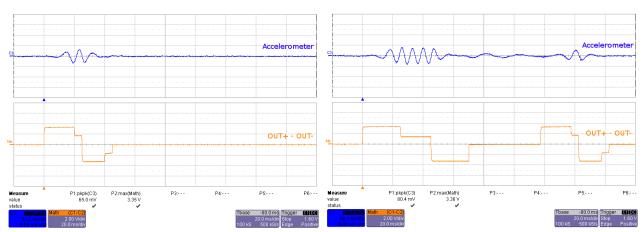


Figure 4. ERM SharpClick_100 (Button 1)

Figure 5. ERM StrongClick_60 and Release SharpClick_100 (Button 2)

2.2.3 Mode 3 - LRA Clicks

Mode 3 shows two different LRA click styles. Button 1 shoes a single sharp click and Button 2 shows a click and release effect. The click and release effect provides a haptic waveform on both the button press and the button release.

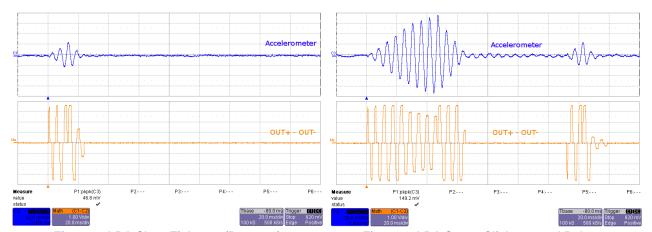


Figure 6. LRA SharpTick2_80 (Button 1)

Figure 7. LRA StrongClick 100 and Release SharpTick2 80 (Button 2)

2.2.4 Mode 2 - Alerts

Mode 2 showcases the advantages of the Smart Loop Architecture which includes auto-resonance tracking, automatic overdrive, and automatic braking.

Figure 8 and Figure 9 show the difference in acceleration when using LRA auto-resonance ON and LRA auto-resonance OFF. Notice that the acceleration is higher when driven at the resonant frequency. Also notice the start and stop time of the acceleration are much quicker when using the overdrive and braking feature of the DRV2605.

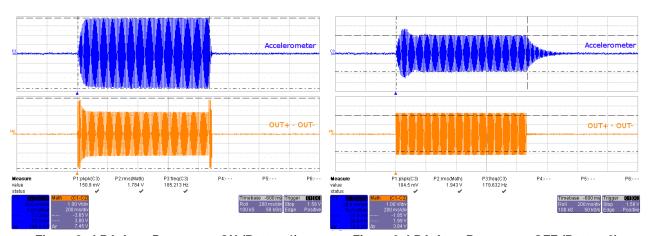


Figure 8. LRA Auto-Resonance ON (Button 1)

Figure 9. LRA Auto-Resonance OFF (Button 2)

The reason for higher acceleration can be seen in Figure 10. The LRA has a very narrow operating frequency range due to the properties of a spring-mass system. Furthermore, the resonance frequency drifts over various conditions such as temperature and drive voltage (the effects shown in Figure 10). With the Smart Loop auto-resonance feature, the DRV2605 dynamically tracks the exact resonant frequency to maximize the vibration force.



Figure 10. Acceleration vs Frequency

Figure 11 and Figure 12 show the difference between an ERM with automatic closed-loop overdrive and braking, and the open-loop library waveform with a predefined overdrive period. The closed-loop version will start and stop the actuator perfectly and will never drive too long or too short. Automatic overdrive and braking simplify the design of haptic effects by eliminating the tuning time for actuator startup and stop.

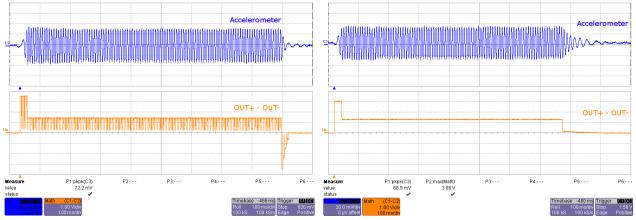


Figure 11. ERM Closed Loop (Button 3)

Figure 12. ERM Open Loop (Button 4)

2.2.5 Mode 1 – Concentration Game

Mode 1 is a game that incorporates the various LRA and ERM effects. This can be used to demonstrate haptics in a real application.

To begin playing Concentration:

- 1. Press any of the large effect buttons.
- 2. The game will then count down.
- 3. Once the countdown completes, a button will light and an effect will play.
- 4. Repeat the pattern by pressing the same buttons.
- 5. After each successfully repeated pattern, the board will repeat the same pattern and add one additional button effect to the sequence.

2.2.6 Mode 0 – Audio-to-Haptics

Audio-to-haptics is a unique feature that converts an audio signal to haptics. Take audio from music, games, or movies and automatically create haptic effects.

Buttons B1-B4 perform the following actions:

- Button 1 Audio-to-Haptics using ERM
- Button 2 Audio-to-Haptics using LRA
- Button 3 Switch to Internal Trigger and play library click effect
- Button 4 Switch to Internal Trigger and play library buzz effect

To use this mode:

- 1. Connect an audio source to the audio jack on the left side of the board. The tip of the audio connector will be applied to the input of the DRV2605.
- 2. Press button 1 which will enable Audio-to-Haptics using the on-board ERM
- 3. Decrease the volume of the audio source if the ERM is constantly vibrating or increase the volume if the ERM is not vibrating at all.
- 4. Feel the haptic vibrations as the audio plays.
- 5. Press button 2 which will enable audio-to-haptics using the on-board LRA.
- 6. Decrease the volume of the audio source if the LRA is constantly vibrating or increase the volume if the LRA is not vibrating at all.
- 7. Feel the haptic vibrations as the audio plays.
- 8. Press button 3 or 4 to trigger a click or buzz during audio-to-haptics playback.

Figure 13 and Figure 14 show the conversion process from audio to hatpics for both ERM and LRA.

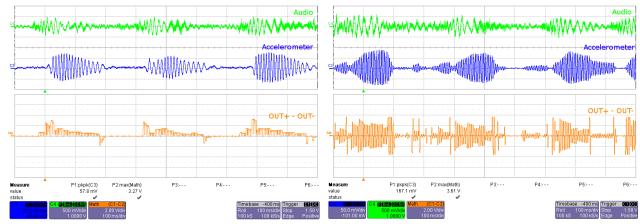


Figure 13. ERM Audio-to-Haptics Conversion (Button 1)

Figure 14. LRA Audio-to-Haptics Conversion (Button 2)

2.3 ROM Library Mode

ROM library effects can be accessed by holding the "+" button until the mode LEDs flash and the colored LEDs flash once.

Once in "Library Mode" the DRV2605 embedded ROM effects can be accessed in sequential order. For example, with all Mode LEDs off, B1 is waveform 1, B2 is waveform 2, and so on. Then when Mode LED M0 is on, B1 is waveform 5, B2 is waveform 6, and so on.

The equations for calculating the Mode and Button of an effect are:

Mode = RoundDown([Effect No.] / 4)

Button = ([Effect No.] - 1) % 4 + 1

% - is the modulo operator

To change between the 5 ERM libraries and 1 LRA library:

- 1. Select mode 31 (11111'b) using the "+" or "-" buttons.
 - B1 Press repeatedly to access ROM libraries 1-5. The current library will flash on the Mode LEDs
 - B2 Press to select the LRA ROM library
- 2. Then use the ROM effects as described above.

Each ERM library was designed for specific actuator behavior. Table 2 describes the actuator properties that are best suited for each library. Note that the rated and overdrive voltages can be changed using the rated and overdrive clamp registers in the DRV2605. The most important parameters to characterize with your actuator are the rise and brake times.

Necesia	l ibrom.	Actuator Properties					
Number	Library	Rated Voltage (V)	Overdrive Voltage (V)	Rise Time (ms)	Brake Time (ms)		
1	Library A	1.3	3	40–60	20–40		
2	Library B	3	3	40–60	5–15		
3	Library C	3	3	60–80	10–20		
4	Library D	3	3	100–140	15–25		
5	Library E	3	3	>140	>30		

Table 2. DRV2605 Library Table

2.4 Waveform Library Effects List

Below is a description of the 123 waveforms embedded in the DRV2605.

Effect ID#	Waveform Name	Effect ID#	Waveform Name	Effect ID#	Waveform Name
1	Strong Click - 100%	42	Long Double Sharp Click Medium 2 – 80%	83	Transition Ramp Up Long Smooth 2 – 0 to 100%
2	Strong Click - 60%	43	Long Double Sharp Click Medium 3 – 60%	84	Transition Ramp Up Medium Smooth 1 – 0 to 100%
3	Strong Click - 30%	44	Long Double Sharp Tick 1 – 100%	85	Transition Ramp Up Medium Smooth 2 – 0 to 100%
4	Sharp Click - 100%	45	Long Double Sharp Tick 2 – 80%	86	Transition Ramp Up Short Smooth 1 – 0 to 100%
5	Sharp Click - 60%	46	Long Double Sharp Tick 3 – 60%	87	Transition Ramp Up Short Smooth 2 – 0 to 100%
6	Sharp Click - 30%	47	Buzz 1 – 100%	88	Transition Ramp Up Long Sharp 1 – 0 to 100%
7	Soft Bump - 100%	48	Buzz 2 – 80%	89	Transition Ramp Up Long Sharp 2 – 0 to 100%
8	Soft Bump - 60%	49	Buzz 3 – 60%	90	Transition Ramp Up Medium Sharp 1 – 0 to 100%
9	Soft Bump - 30%	50	Buzz 4 – 40%	91	Transition Ramp Up Medium Sharp 2 – 0 to 100%
10	Double Click - 100%	51	Buzz 5 – 20%	92	Transition Ramp Up Short Sharp 1 – 0 to 100%
11	Double Click - 60%	52	Pulsing Strong 1 – 100%	93	Transition Ramp Up Short Sharp 2 – 0 to 100%
12	Triple Click - 100%	53	Pulsing Strong 2 – 60%	94	Transition Ramp Down Long Smooth 1 – 50 to 0%

Effect ID#	Waveform Name	Effect ID#	Waveform Name	Effect ID#	Waveform Name
13	Soft Fuzz - 60%	54	Pulsing Medium 1 – 100%	95	Transition Ramp Down Long Smooth 2 – 50 to 0%
14	Strong Buzz - 100%	55	Pulsing Medium 2 – 60%	96	Transition Ramp Down Medium Smooth 1 – 50 to 0%
15	750 ms Alert 100%	56	Pulsing Sharp 1 – 100%	97	Transition Ramp Down Medium Smooth 2 – 50 to 0%
16	1000 ms Alert 100%	57	Pulsing Sharp 2 – 60%	98	Transition Ramp Down Short Smooth 1 – 50 to 0%
17	Strong Click 1 - 100%	58	Transition Click 1 – 100%	99	Transition Ramp Down Short Smooth 2 – 50 to 0%
18	Strong Click 2 - 80%	59	Transition Click 2 – 80%	100	Transition Ramp Down Long Sharp 1 – 50 to 0%
19	Strong Click 3 - 60%	60	Transition Click 3 – 60%	101	Transition Ramp Down Long Sharp 2 – 50 to 0%
20	Strong Click 4 - 30%	61	Transition Click 4 – 40%	102	Transition Ramp Down Medium Sharp 1 – 50 to 0%
21	Medium Click 1 - 100%	62	Transition Click 5 – 20%	103	Transition Ramp Down Medium Sharp 2 – 50 to 0%
22	Medium Click 2 - 80%	63	Transition Click 6 – 10%	104	Transition Ramp Down Short Sharp 1 – 50 to 0%
23	Medium Click 3 - 60%	64	Transition Hum 1 – 100%	105	Transition Ramp Down Short Sharp 2 – 50 to 0%
24	Sharp Tick 1 - 100%	65	Transition Hum 2 – 80%	106	Transition Ramp Up Long Smooth 1 – 0 to 50%
25	Sharp Tick 2 - 80%	66	Transition Hum 3 – 60%	107	Transition Ramp Up Long Smooth 2 – 0 to 50%
26	Sharp Tick 3 – 60%	67	Transition Hum 4 – 40%	108	Transition Ramp Up Medium Smooth 1 – 0 to 50%
27	Short Double Click Strong 1 – 100%	68	Transition Hum 5 – 20%	109	Transition Ramp Up Medium Smooth 2 – 0 to 50%
28	Short Double Click Strong 2 – 80%	69	Transition Hum 6 – 10%	110	Transition Ramp Up Short Smooth 1 – 0 to 50%
29	Short Double Click Strong 3 – 60%	70	Transition Ramp Down Long Smooth 1 – 100 to 0%	111	Transition Ramp Up Short Smooth 2 – 0 to 50%
30	Short Double Click Strong 4 – 30%	71	Transition Ramp Down Long Smooth 2 – 100 to 0%	112	Transition Ramp Up Long Sharp 1 – 0 to 50%
31	Short Double Click Medium 1 – 100%	72	Transition Ramp Down Medium Smooth 1 – 100 to 0%	113	Transition Ramp Up Long Sharp 2 – 0 to 50%
32	Short Double Click Medium 2 – 80%	73	Transition Ramp Down Medium Smooth 2 – 100 to 0%	114	Transition Ramp Up Medium Sharp 1 – 0 to 50%
33	Short Double Click Medium 3 – 60%	74	Transition Ramp Down Short Smooth 1 – 100 to 0%	115	Transition Ramp Up Medium Sharp 2 – 0 to 50%
34	Short Double Sharp Tick 1 – 100%	75	Transition Ramp Down Short Smooth 2 – 100 to 0%	116	Transition Ramp Up Short Sharp 1 – 0 to 50%
35	Short Double Sharp Tick 2 – 80%	76	Transition Ramp Down Long Sharp 1 – 100 to 0%	117	Transition Ramp Up Short Sharp 2 – 0 to 50%
36	Short Double Sharp Tick 3 – 60%	77	Transition Ramp Down Long Sharp 2 – 100 to 0%	118	Long buzz for programmatic stopping – 100%
37	Long Double Sharp Click Strong 1 – 100%	78	Transition Ramp Down Medium Sharp 1 – 100 to 0%	119	Smooth Hum 1 (No kick or brake pulse) – 50%
38	Long Double Sharp Click Strong 2 – 80%	79	Transition Ramp Down Medium Sharp 2 – 100 to 0%	120	Smooth Hum 2 (No kick or brake pulse) – 40%
39	Long Double Sharp Click Strong 3 – 60%	80	Transition Ramp Down Short Sharp 1 – 100 to 0%	121	Smooth Hum 3 (No kick or brake pulse) – 30%
40	Long Double Sharp Click Strong 4 – 30%	81	Transition Ramp Down Short Sharp 2 – 100 to 0%	122	Smooth Hum 4 (No kick or brake pulse) – 20%
41	Long Double Sharp Click Medium 1 – 100%	82	Transition Ramp Up Long Smooth 1 – 0 to 100%	123	Smooth Hum 5 (No kick or brake pulse) – 10%

3 Additional Hardware Modes

Additional modes are available on the DRV2605EVM-CT that provide increased board control and functionality. The additional modes are not available in "demo" mode, but can be accessed by switching to "binary counting mode". In "binary counting mode" the mode LEDs count in binary (32 modes) rather than in "demo" mode format (only 6 modes including off).

3.1 Enter Binary Counting Mode

To enter "binary counting mode" and access the additional modes:

- 1. Press and hold the increment mode button ("+") for approximately 3 seconds until the mode LEDs flash and the colored LEDs flash once.
- 2. Press and hold the increment mode button ("+") one more time until the mode LEDs flash and the colored LEDs flash twice.
- 3. Select from the "binary counting modes" using the "+" and "-" buttons.

3.2 Exit Binary Counting Mode

To exit "binary counting mode" and return to "demo" mode:

- 1. Press and hold the decrement mode button ("-") for approximately 3 seconds.
- 2. Release the button when the actuator buzzes and mode LEDs flash.
- 3. Select from the "demo" modes using the "+" and "-" buttons.

Additional Hardware Modes www.ti.com

3.3 Binary Counting Modes

Table 3 lists the modes available in "binary counting mode".

Table 3. Binary Counting Modes

Mode	Button	Description	Notes
	B1	Set ERM Output	H 41: 1 4 4 14 DDV/2005 : 4 1/20
Mode 0	B2	Set LRA Output	Use this mode to control the DRV2605 using an external I ² C Master. Press B1 or B2 to choose between the ERM or LRA. Press
External I ² C Mode LEDs: 00000	В3	Choose Trigger	B3 to choose the trigger type. (1 - Internal, 2 - Ext. Edge, 3 - Ext.
	B4	Trigger Button	Level). Press B4 to trigger the waveform sequencer.
	B1	ERM Auto-Calibration	Run the auto-calibration. The new auto-calibration results are used
Mode 1 Auto-Calibration and	B2	LRA Auto-Calibration	for all board effects. 1 flash = successful, 3 flashes = error
Diagnostics	В3	ERM Diagnostics	Run diagnostics. 1 flash = successful, 3 flashes = error. The status
LEDs: 00001	B4	LRA Diagnostics	register bits [3:0] are displayed on the mode LEDs [3:0] when complete.
	B1	Disable PWM Mode	
Mode 2	B2	Set ERM Output	External PWM - disconnect MSP430 PWM using JP1. Connect
External PWM LEDs: 00010	B3	Set LRA Output	external PWM signal to the "PWM" testpoint at the top of the board. Select actuator using buttons B2 and B3.
LLD3. 00010	B4	-	Select actuator using buttons b2 and b3.
	B1	Return to normal mode	External PWM and Enable - disconnect MSP430 PWM using JP1.
Mode 3 External PWM and	B2	Set ERM Output	Connect external PWM signal to the "PWM" testpoint at the top of
Enable	B3	Set LRA Output	 the board. Connect an external enable signal to the "EN" testpoint. Select actuator using buttons B2 and B3. Press B1 before switching
LEDs: 00011	B4	-	modes.
	B1	AC Coupling - ERM	
Mode 4	B2	DC Coupling - ERM	Analog Input - apply an external analog signal for AC coupling on
Analog Input LEDs: 00100	В3	AC Coupling - LRA	the "Audio" jack. Apply a DC coupled signal to the "PWM" testpoint.
LLD3. 00100	B4	DC Coupling - LRA	
	B1	Alert (Auto-resonance On)	
Mode 5 Auto-resonance OFF	B2	Alert (Auto-resonance Off)	Vary the auto-resonance OFF (open-loop) output frequency and see the change in vibration force over frequency. Hold B3 or B4 for
frequency adjust	В3	Decrease output frequency	quick frequency adjustment. Compare B2 (auto-resonance off) with
LEDs:00101	B4	Increase output frequnecy	B1 (auto-resonance on).
	B1	Begin Life Test	Life Test using RTP (2 seconds on, 1 second off) - life test repeats
Mode 6 Life Test (RTP)	B2	Test Buzz	infinite times and board must be powered down to stop. Increment /
2s ON, 1s OFF	В3	Decrease output voltage (-1)	Decrement amplitude using B3 and B4. Test new amplitude using B2. Choose actuator using buttons B1 and B2 in Mode 0 or Mode
LEDs: 00110	B4	Increase output voltage (+1)	1.
	B1	Begin Life Test	
Mode 7 Life Test (RTP)	B2	Test Buzz	Life Test using RTP (Infinite Buzz) - board must be powered down to stop buzz. Incremenet / Decrement amplitude using B3 and B4.
Infinite Buzz	В3	Decrease output voltage (-1)	Test new amplitude using B2 before beginning life test. Choose
LEDs: 00111	B4	Increase output voltage (+1)	actuator using buttons B1 and B2 in Mode 0 and Mode 1.
M 1 0	B1	Begin Life Test	Life Test using PWM (2 seconds on, 1 second off) - life test repeats
Mode 8 Life Test (PWM)	B2	Test Buzz	infinite times and board must be powered down to stop. Increment /
2s ON, 1s OFF	В3	Decrease output voltage (-1)	Decrement amplitude using B3 and B4. Test new amplitude using B2. Choose actuator using buttons B1 and B2 in Mode 0 or Mode
LEDs: 01000	B4	Increase output voltage (+1)	1.
	B1	Start/Stop Recording	Decorder was this made to exact a single applitude notion. Clark
Mode 9 Recorder	B2	Create Effect	Recorder - use this mode to create a single amplitude pattern. Start by pressing the record button (B1). Then use B2 to create the
LEDs: 01001	В3	Start/Stop Play Back	pattern by tapping the button. When finished press the play back button (B3).
	B4	-	Dutton (B3).
	B1	Begin Actuator Break-in	
Mode 30 Actuator Break-in	B2		Actuator Break-in - used to break in new actuators
LEDs: 11110	В3		Totaloi Diear-III - used to bleak III Hew actuators
	B4		
	B1	Device ID	
Mode 31 About the Board	B2	Silicon Revision	About the Board - the value will appear on the mode LEDs in
LEDs: 11111	В3	Code Revision	binary. DRV2605 Device ID = 00011
	B4		

4 Hardware Configuration

The DRV2605EVM-CT is flexible and can be used to completely evaluate the DRV2605. The following sections list the various hardware configurations.

4.1 Input and Output Overview

The DRV2605EVM-CT allows complete evaluation of the DRV2605 though test points, jacks and connectors. Table 4 gives a brief description of the hardware.

Signal	Description	I/O
PWM	External input to DRV2605 IN/TRIG pin	Input / Observe
EN	External DRV2605 enable control	Input / Observe
OUT+ / OUT-	Filtered output test points for observation, connect to oscilloscope or measurement equipment	Output
OUT	Unfiltered output terminal block, connect to actuator	Output
USB	USB power (5V)	Input
VBAT	External Supply Power (2.5V-5.5V)	Input
SBW	MSP430 programming header	Input / Output
I ² C	DRV2605 and MSP430 I ² C™ bus	Input / Output
Audio	The audio jack is connected to the IN/TRIG pin of the DRV2605. When the DRV2605 is in Audio-to-Haptics mode, audio from this jack will be converted to haptics.	Input

Table 4. Hardware Overview

Hardware configuration details can be found in the following sections.

4.2 Power Supply Selection

The DRV2605EVM-CT can be powered by USB or an external power supply (VBAT). Jumpers "DRV" and "MSP" are used to select USB or VBAT for the DRV2605 and MSP430G2553, respectively. See the following table for possible configurations.

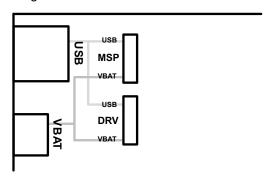


Figure 15. Power Jumper Selection

Supply Configuration	DRV	MSP	DRV2605 Supply Voltage (1)
USB – Both	USB	USB	5V
DRV2605 External Supply, MSP430 USB	VBAT	USB	VBAT
External Supply - Both	VBAT	VBAT	VBAT
USB with 3.3V LDO ⁽²⁾ - Both	USB	USB	3.3V (R4 = Short, R5 = Open)

⁽¹⁾ The DRV2605 supply must be on before operating the MSP430.

⁽²⁾ If a 3.3V DRV2605 supply voltage is preferred while using the USB as the power source, remove R5 and add a zero ohm resistor across R4.

4.3 Using an External Actuator

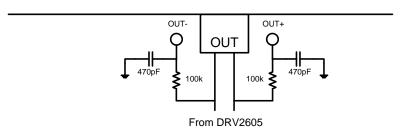


Figure 16. Terminal Block and Test Points

The DRV2605EVM-CT can be used with an external actuator. Follow the instructions below to attach an actuator to the "OUT" terminal block.

- 1. Remove jumpers JP3 and JP4, which disconnects the on-board actuators from the DRV2605.
- 2. Attach the positive and negative leads of the actuator to the green "OUT" terminal block keeping in mind polarity.
- 3. Screw down the terminal block to secure the actuator leads.

It is important to use the green terminal block when connecting an external actuator. The "OUT+" and "OUT-" testpoints have low-pass filters and should only be used for oscilloscope and bench measurements.

4.4 PWM Input

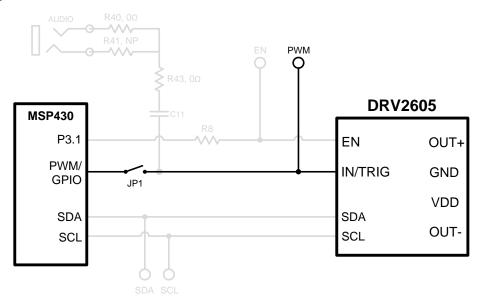


Figure 17. External PWM Input

JP1	PWM Source	
Shorted	MSP430	
Open	External PWM using PWM test point	

To control the DRV2605 using PWM follow the instructions below.

- 1. Enter Additional Hardware Modes.
- 2. Select Mode 2 (00010'b) using the increment mode button ("+").
 - B1 Disable Amplifier
 - B2 ERM Mode

- B3 LRA Mode
- B4 No function
- 3. Choose either the on-board ERM or LRA using buttons B1 or B2.
- 4. Apply the PWM signal to the PWM test point at the top of the board.

4.5 External Trigger Control

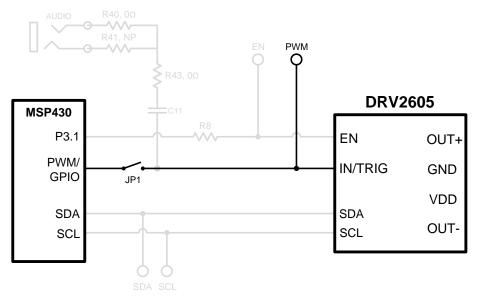


Figure 18. External Trigger Control

JP1	PWM Source
Shorted	MSP430
Open	External GPIO using PWM test point

The DRV2605 internal waveform sequencer can be triggered by controlling the IN/TRIG pin. There are two external trigger options: edge trigger and level trigger. See the data sheet for more information on these Input Trigger Modes.

In Mode 0 in the Additional Hardware Modes section, the DRV2605 can be set in external trigger mode and then triggered by using the trigger button control on button B4 or alternatively by applying an external trigger signal to the PWM test point.

4.5.1 MSP430 Trigger Control

- 1. Enter Additional Hardware Modes.
- 2. Select Mode 0 (00000'b) using the increment mode button ("+").
 - B1 Select the on-board ERM
 - B2 Select the on-board LRA
 - B3 Trigger Select (1 = Internal Trigger, 2 = Ext. Edge, 3 = Ext. Level)
 - B4 Trigger the waveform sequence using the MSP430.
- 3. Fill the waveform sequencer with waveforms using the external I²C port.
- 4. Choose either the on-board ERM or LRA using buttons B1 or B2.
- 5. Select either External Edge (2) or External Level (3) trigger using button B3. The trigger type will appear in binary on the mode LEDs.
- 6. Apply the trigger signal to the IN/TRIG pin by pressing button B4.

4.5.2 External Source Trigger Control

- 1. Remove jumper JP1.
- 2. Enter Additional Hardware Modes.
- 3. Select Mode 0 (00000'b) using the increment mode button ("+").
 - B1 Select the on-board ERM
 - B2 Select the on-board LRA
 - B3 Trigger Select (1 = Internal Trigger, 2 = Ext. Edge, 3 = Ext. Level)
 - B4 Trigger the waveform sequence using the MSP430.
- 4. Fill the waveform sequencer with waveforms using the external I²C port.
- 5. Choose either the on-board ERM or LRA using buttons B1 or B2.
- 6. Select either External Edge (2) or External Level (3) trigger using button B3. The trigger type will appear in binary on the mode LEDs.
- 7. Apply the external logic signal to the PWM test point to trigger the waveform.

4.6 External fC Input

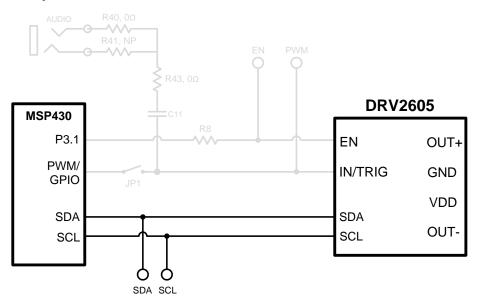


Figure 19. External I²C Input

The DRV2605 can be controlled by an external I²C source. Attach the external controller to the I²C header at the top of the board; be sure to connect SDA, SCL and GND from the external source.

I²C communication is possible only when the EN pin is set high. To enable the DRV2605 and allow external I²C control, follow the instructions below.

- 1. Enter Additional Hardware Modes.
- 2. Select Mode 0 (00000'b) using the increment mode button ("+").
 - B1 Select the on-board ERM
 - B2 Select the on-board LRA
 - B3 Trigger Select (1 = Internal Trigger, 2 = Ext. Edge, 3 = Ext. Level)
 - B4 Trigger the waveform sequence using the MSP430.
- 3. Choose either the on-board ERM or LRA using buttons B1 or B2. Either button will set the EN pin high and turn on the "Active" LED.
- 4. Begin controlling the DRV2605 using the external I²C source.

4.7 Audio-to-Haptics Input

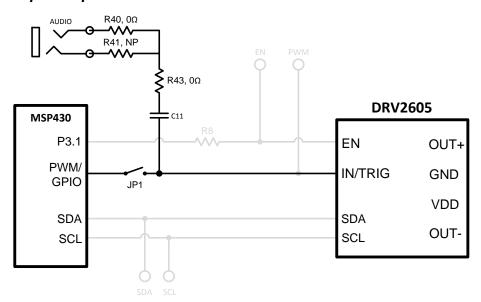


Figure 20. Audio-to-Haptics Input

The DRV2605 audio-to-haptics feature converts an audio signal to a corresponding haptics waveform. This can be used to simulate bass in music or use the audio track of a game to produce haptic effects.

To use audio-to-haptics,

1. Apply an analog line-out audio signal (not PWM) to the AUDIO jack on the left side of the board. The tip of the inserted male audio plug will be applied to the IN/TRIG pin of the DRV2605. See Figure 20.

NOTE: To get the best performance using a headphone out, you may need to adjust the volume so that the input signal is near, but does not exceed 1.8V_{neak}.

- 2. In demo mode, select Mode 0 (00001'b) using the increment mode button ("+").
- 3. In Mode 0, press either button B1 or B2 to enable the DRV2605 audio-to-haptics. Buttons B3 and B4 switch to Internal Trigger mode, play a ROM library effect, and then switch back to audio-to-haptics mode.
 - B1 Audio-to-Haptics using ERM
 - B2 Audio-to-Haptics using LRA
 - B3 Switch to Internal Trigger and play library click effect
 - B4 Switch to Internal Trigger and play library buzz effect
- 4. Play music and feel the vibrations of the actuator.

NOTE: Some audio signals will be too large or too small and the volume will need to be adjusted. Adjust appropriately so that the maximum input voltage is 1.8V and the bass of the input signal can be felt on the actuator. The audio input minimum and maximum thresholds can be adjusted using I2C. See the data sheet for more details.

5 Measurement and Analysis

The DRV2605 uses PWM modulation to create the output signal for both ERM and LRA actuators. To measure and observe the DRV2605 output waveform, connect an oscilloscope or other measurement equipment to the filtered output test points, "OUT+" and "OUT-".

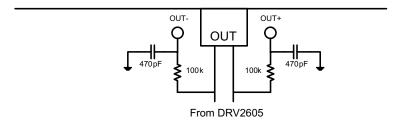


Figure 21. Terminal Block and Test Points

The DRV2605 drives LRA and ERM actuators using a 20kHz PWM modulated waveform, but only the frequencies around the LRA resonant frequency or the ERM DC drive voltage are relevant to the haptic actuator vibration. The higher frequency switching content does not contribute to the vibration strength of the actuator and can make it difficult to interpret the modulated output waveform on an oscilloscope. The oscilloscope image on the left shows the DRV2605 unfiltered waveform and the image on the right shows a filtered version used for observation and measurement.

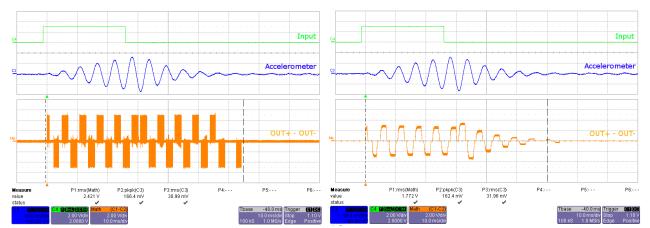


Figure 22. DRV2605 Unfiltered Waveform

Figure 23. DRV2605 Filtered Waveform

If the DRV2605EVM-CT filter is not used, TI recommends using a 1st-order, low-pass filter with a cutoff between 1kHz and 3.5kHz. Below is a recommended output filter for use while measuring and characterizing the DRV2605 in the lab.

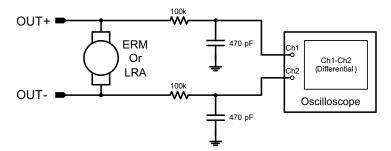


Figure 24. Measuring the DRV2605 Output Signal with an Analog Low-pass Filter

www.ti.com MSP430 Firmware

6 MSP430 Firmware

The MSP430 firmware on the DRV2605EVM-CT can be modified or reprogrammed to create new haptic effects or behaviors. Find the latest firmware source code and binaries on Tl.com. Follow the instructions below to modify or reprogram the DRV2605EVM-CT.

- 1. Purchase one of the following MSP430G2553 compatible programmers:
 - MSP430 LaunchPad (MSP-EXP430G2) requires the additional purchase of a header for J4 (recommended)
 - Digi-Key: ED8650-ND
 - Mouser: 575-500201
 - MSP430-FET430UIF requires a JTAG to Spy-Bi-Wire adapter (MSP-JTAGSBW if available)
- 2. Download and install Code Compose Studio (CCS) or IAR Embedded Workbench IDE.
- 3. Download the DRV2605EVM-CT source code and binaries from Tl.com.
- 4. Connect the programmer to an available USB port.
- 5. Connect the programmer to the "SBW" header on the DRV2605EVM-CT.
- 6. In CCS.
 - (a) Open the project file by selecting Project > Import Existing CCS Project.
 - (b) Select Browse and navigate to the DRV2605EVM-CT project folder, then press OK.
 - (c) Select the checkbox next to the DRV2605EVM-CT project in the "Discovered projects" window and then press "Finish".
 - (d) Before compiling, navigate to Project > Properties > Build > MSP430 Compiler > Advanced Options > Language Options and make sure the checkbox for "Enable support for GCC extensions (--gcc)" is checked.
- 7. In IAR,
 - (a) Create a new MSP430 project in IAR,
 - (b) Select the MSP430G2553 device,
 - (c) Copy the files in the project folder downloaded from Tl.com to the new project directory.

Figure 25 shows the connection between the MSP430 LaunchPad (MSP-EXP430G2) and the DRV2605EVM-CT.

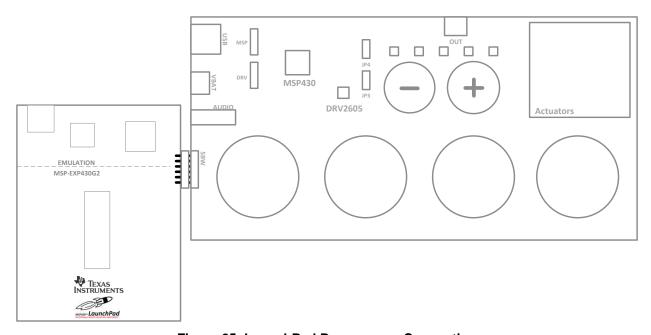
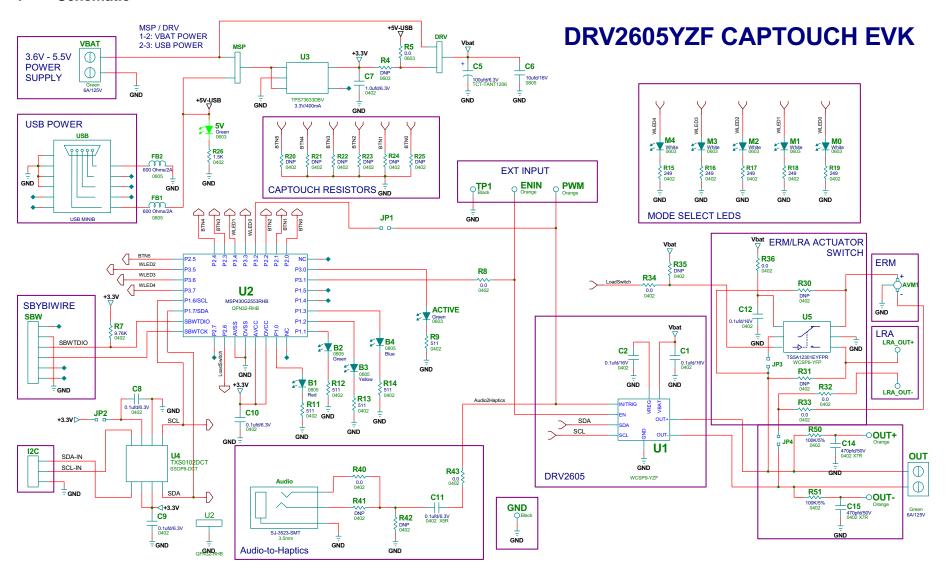


Figure 25. LaunchPad Programmer Connection

MSP430 Firmware www.ti.com

6.1 MSP430 Pin-Out

The DRV2605EVM-CT contains a MSP430G2553 low-cost microcontroller which controls the board and contains sample haptic effects. The pin-out for the microcontroller can be found in Table 5.


Table 5. MSP430 Pin-Out

#	Label	Description	
1	P1.1	Green LED	
2	P1.2	Yellow LED	
3	P1.3	Blue LED	
4	P1.4	VREF+	
5	P1.5	Audio-to-Haptics	
6	P3.1	Enable	
7	P3.0	Actuator Mode Selection	
8	NC		
9	P2.0	Button 1	
10	P2.1	Button 2	
11	P2.2	Button 3	
12	P3.2	PWM	
13	P3.3	WLED 0	
14	P3.4	WLED 1	
15	P2.3	Button 4	
16	P2.4	"+" Button	
17	P2.5	"-" Button	
18	P3.5	WLED 2	
19	P3.6	WLED 3	
20	P3.7	WLED 4	
21	P1.6/SCL	I ² C Clock	
22	P1.7/SDA	I ² C Data	
23	SBWTDIO	Spy-Bi-Wire Data	
24	SBWTCK	Spy-Bi-Wire Clock	
25	P2.7		
26	P2.6	LRA/ERM Load Switch	
27	AVSS	Analog Ground	
28	DVSS	Digital Ground	
29	AVCC	Analog Supply	
30	DVCC	Digital Supply	
31	P1.0	Red LED	
32	NC		

www.ti.com

7 **Schematic**

Schematic

Layout www.ti.com

8 Layout

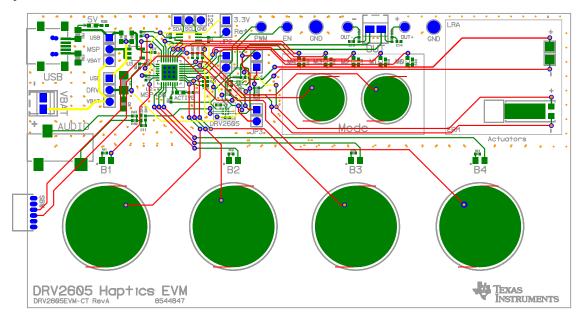


Figure 26. X-Ray Top View

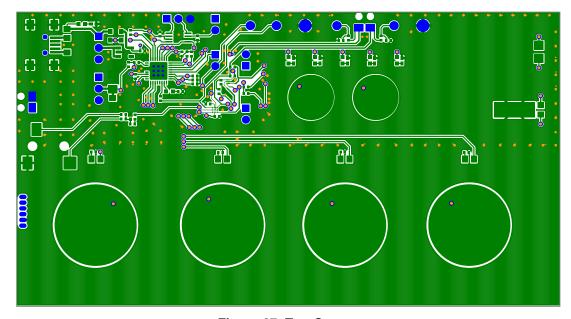


Figure 27. Top Copper

www.ti.com Layout

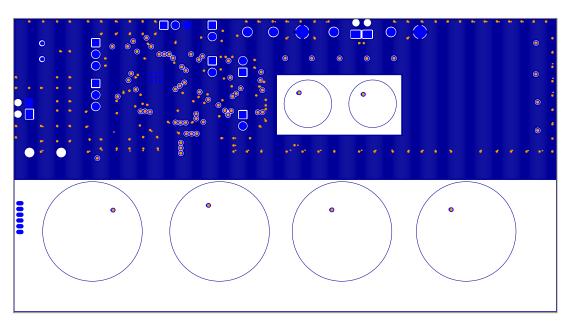


Figure 28. Layer 2 Copper

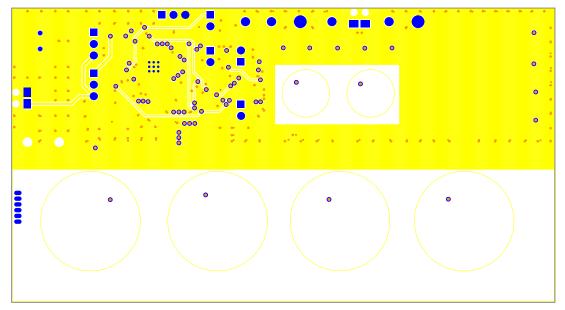


Figure 29. Layer 3 Copper

Layout www.ti.com

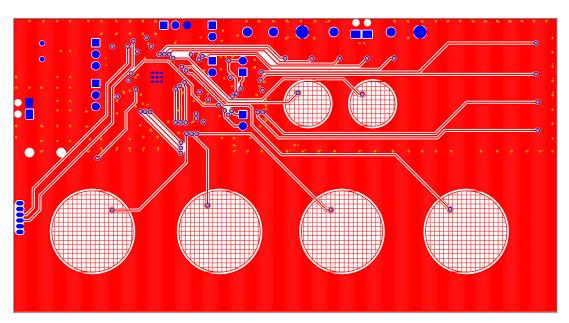


Figure 30. Bottom Copper

Bill of Materials www.ti.com

Bill of Materials 9

ITEM	MANU PARTNUM	QTY	REF DESIGNATORS	VENDOR PARTNUM	DESCRIPTION	MANUFACTURER
	<u> </u>			SEMICONDUCTORS		
1	DRV2605YZF	1	U1	DRV2605YZF	HAPTIC DRIVER AUTO DETECT FOR LRA AND ERM WCSP9-YZF ROHS	TEXAS INSTRUMENTS
2	TXS0102DCTR	1	U4	296-21978-1	2-BIT BIDIR LEVEL TRANSLATOR SSOP8-DCT ROHS	TEXAS INSTRUMENTS
3	MSP430G2553IRHB32T	1	U2	595-P430G2553IRHB32T	MIXED SIGNAL MICRO 16KB FLASH 512B RAM QFN32-RHB ROHS	TEXAS INSTRUMENTS
4	TPS73633MDBVREP	1	U3	296-21283-1	VOLT REG 3.3V 400MA LDO CAP FREE NMOS SOT23-DBV5 ROHS	TEXAS INSTRUMENTS
5	TS5A12301EYFPR	1	U5	296-23757-1-ND	IEC LEVEL 4 ESD-PROTECTED 0.75- OHM ANALOG SWITCH WCSP6-YFP ROHS	TEXAS INSTRUMENTS
6	LTST-C190KGKT	2	5V,ACTIVE	160-1435-1-ND	LED,GREEN,2.0V,SMD0603,ROHS	LITE-ON INC.
7	LNJ037X8ARA	5	M0,M1,M2,M3,M4	LNJ037X8ARACT-ND	LED, WHITE 2.9V SMD0805 ROHS	PANASONIC
8	SML-LXT0805SRW-TR	1	B1	67-1555-1	LED, RED 2.0V SMD0805 ROHS	LUMEX OPTO
9	SML-LXT0805GW-TR	1	B2	67-1553-1	LED, GREEN 2.0V SMD0805 ROHS	LUMEX OPTO
10	SML-LXT0805YW-TR	1	B3	67-1554-1	LED, YELLOW 2.0V SMD0805 ROHS	LUMEX OPTO
11	LTST-C171TBKT	1	B4	160-1645-1-ND	LED, BLUE 3.3V SMD0805 ROHS	LITE-ON INC.
	1		"	CAPACITORS		
12	GRM155R71C104KA88D	3	C1,C2,C12	490-3261-1-ND	CAP SMD0402 CERM 0.1UFD 16V X7R 10% ROHS	MURATA
13	C1005X5R0J104K	3	C8,C9,C10	445-1266-1	CAP SMD0402 CERM 0.1UFD 6.3V 10% X5R ROHS	TDK CORP
14	0805YD106KAT2A	1	C6	478-5165-1	CAP SMD0805 CERM 10UFD 16V X5R 10% ROHS	AVX
15	GRM155R60J105KE19D	1	C7	490-1320-1	CAP SMD0402 CERM 1.0UFD 6.3V X5R 10% ROHS	MURATA
16	C1005X5R0J104K	1	C11	445-1266-1	CAP SMD0402 CERM 0.1UFD 6.3V 10% X5R ROHS	TDK CORP
17	C0402C471K5RACTU	2	C14,C15	399-1025-1	CAP SMD0402 CERM 470PFD 50V 10% X7R ROHS	KEMET
18	TCTAL0J107M8R	1	C5	511-1498-1-ND	CAP TANT1206 100UFD 6.3V 20% TCT SERIES ROHS	ROHM
	•			RESISTORS		
19	ERJ-2RKF9761X	1	R7	P9.76KLCT-ND	RESISTOR SMD0402 THICK FILM 9.76K OHMS 1/10W 1% ROHS	PANASONIC
20	RMCF0402ZT0R00	5	R8,R32,R33,R34,R36	RMCF0402ZT0R00CT	ZERO OHM JUMPER SMT 0402 0 OHM 1/16W,5% ROHS	STACKPOLE ELECTRONICS

Bill of Materials www.ti.com

ITEM	MANU PARTNUM	QTY	REF DESIGNATORS	VENDOR PARTNUM	DESCRIPTION	MANUFACTURER
21	RC0402FR-07511RL	5	R9,R11,R12,R13,R14	311-511LRCT-ND	RESISTOR SMD0402 THICK FILM 511 OHMS 1% 1/16W ROHS	YAGEO
22	ERJ-2GEJ152	1	R26		RESISTOR,SMT,0402,THICK FILM,5%,1/16W,1.5K	Panasonic
23	RMCF0603ZT0R00	1	R5	RMCF0603ZT0R00CT- ND	RESISTOR SMD0603 ZERO OHMS 1/10W ROHS	STACKPOLE ELECTRONICS
24	ERJ-2RKF2490X	5	R15,R16,R17,R18,R19	P249LTR-ND	RESISTOR,SMT,0402,249 OHM,1%,1/16W	Panasonic
25	CRCW04020000Z0ED	2	R40,R43	541-0.0JCT	ZERO OHM JUMPER SMT 0402 0 OHM 1/16W,5% ROHS	VISHAY
26	ERJ-2GEJ104	2	R50,R51	P100KJCT	RESISTOR SMD0402 THICK FILM 100K OHMS 1/16W 5% ROHS	PANASONIC
	'	•	·	FERRITE BEADS		
27	MPZ2012S601A	2	FB1,FB2	445-2206-1	FERRITE BEAD SMD0805 600 Ohms 2A ROHS	TDK
	-	-	HEA	ADERS, JACKS, AND SH	UNTS	
28	LPPB061NGCN-RC	1	SBW	S9010E-06	HEADER THRU FEMALE 1X6-RA 50LS GOLD ROHS	SULLINS
29	PBC03SAAN	3	DRV,I2C,MSP	S1011E-03-ND	HEADER THRU MALE 3 PIN 100LS GOLD ROHS	SULLINS
30	PBC02SAAN	1	JP2	S1011E-02	HEADER THRU MALE 2 PIN 100LS GOLD ROHS	SULLINS
31	PBC02SAAN	3	JP1,JP3,JP4		HEADER THRU MALE 2 PIN 100LS GOLD ROHS	SULLINS
32	UX60-MB-5ST	1	USB	H2959CT	JACK USB MINIB SMT-RA 5PIN ROHS	HIROSE
33	SJ-3523-SMT	1	Audio	CP-3523SJCT-ND	JACK AUDIO-STEREO MINI(3.5MM ,3-COND SMT-RA ROHS	CUI STACK
34	SPC02SYAN	6	MSP (2-3), DRV (2-3), JP1, JP2, JP3, JP4	S9001-ND	SHUNT BLACK AU FLASH 0.100LS CLOSED TOP ROHS	SULLINS
35	1725656	2	OUT,VBAT	277-1273	TERMINAL BLOCK MPT COMBICON 2PIN 6A/125V GREEN 100LS ROHS	PHOENIX CONTACT
	!	<u> </u>	, T	ESTPOINTS AND SWITCH	HES	1
36	5011	2	GND,TP1 ((Solder so that color ring is secured)	5011K	PC TESTPOINT BLACK 063 HOLE ROHS	KEYSTONE ELECTRONICS
37	5003	4	PWM,ENIN,OUT+,OUT- ((Solder so that color ring is secured)	5003K	PC TESTPOINT, ORANGE, ROHS	KEYSTONE ELECTRONICS

Bill of Materials www.ti.com

ITEM	MANU PARTNUM	QTY	REF DESIGNATORS	VENDOR PARTNUM	DESCRIPTION	MANUFACTURER
38	NRS-2574	1	AVM1	NRS-2574	ACUTATOR VIBRATION MOTOR 1,3V 9000 RPM ROHS	SANYO
39	ELV1036A	1	-	-	ACTUATOR - LINEAR VIBRATOR, 2VRMS	AAC
40	-	1	-	-	Metal Block (Custom Block, Heavy Metal, See metal block spec)	Heavy Metal
41	3-5-468MP	1	-	3M9724-ND	TAPE TRANSFER ADHESIVE 3" X 5YD	ЗМ
42	2-5-4466W	1	-	3M9962-ND	TAPE POLY FOAM 2" x 5YD	3M
		<u> </u>	COI	MPONENTS NOT ASSEMI	BLED	
43	TestPoint_SMD- Square_2.0mm	2	LRA_OUT+,LRA_OUT-		TESTPOINT SMD SQUARE 2.0mm	
44	R0402_DNP	9	R20,R21,R22,R23,R24,R 25,R30,R31,R35		R0402_DNP	
45	R0603_DNP	1	R4	RMCF0603ZT0R00CT- ND	R0603_DNP	STACKPOLE ELECTRONICS
46	R0402_DNP	1	R41	P4.99KLCT-ND	R0402_DNP	PANASONIC
47	R0402_DNP	1	R42	541-0.0JCT	R0402_DNP	VISHAY

EVALUATION BOARD/KIT/MODULE (EVM) ADDITIONAL TERMS

Texas Instruments (TI) provides the enclosed Evaluation Board/Kit/Module (EVM) under the following conditions:

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims arising from the handling or use of the goods.

Should this evaluation board/kit not meet the specifications indicated in the User's Guide, the board/kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING LIMITED WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

Please read the User's Guide and, specifically, the Warnings and Restrictions notice in the User's Guide prior to handling the product. This notice contains important safety information about temperatures and voltages. For additional information on TI's environmental and/or safety programs, please visit www.ti.com/esh or contact TI.

No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which such TI products or services might be or are used. TI currently deals with a variety of customers for products, and therefore our arrangement with the user is not exclusive. TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein.

REGULATORY COMPLIANCE INFORMATION

As noted in the EVM User's Guide and/or EVM itself, this EVM and/or accompanying hardware may or may not be subject to the Federal Communications Commission (FCC) and Industry Canada (IC) rules.

For EVMs **not** subject to the above rules, this evaluation board/kit/module is intended for use for ENGINEERING DEVELOPMENT, DEMONSTRATION OR EVALUATION PURPOSES ONLY and is not considered by TI to be a finished end product fit for general consumer use. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC or ICES-003 rules, which are designed to provide reasonable protection against radio frequency interference. Operation of the equipment may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference.

General Statement for EVMs including a radio

User Power/Frequency Use Obligations: This radio is intended for development/professional use only in legally allocated frequency and power limits. Any use of radio frequencies and/or power availability of this EVM and its development application(s) must comply with local laws governing radio spectrum allocation and power limits for this evaluation module. It is the user's sole responsibility to only operate this radio in legally acceptable frequency space and within legally mandated power limitations. Any exceptions to this are strictly prohibited and unauthorized by Texas Instruments unless user has obtained appropriate experimental/development licenses from local regulatory authorities, which is responsibility of user including its acceptable authorization.

For EVMs annotated as FCC - FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant

Caution

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

FCC Interference Statement for Class A EVM devices

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

FCC Interference Statement for Class B EVM devices

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- · Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- · Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

For EVMs annotated as IC - INDUSTRY CANADA Compliant

This Class A or B digital apparatus complies with Canadian ICES-003.

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

Concerning EVMs including radio transmitters

This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Concerning EVMs including detachable antennas

Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication.

This radio transmitter has been approved by Industry Canada to operate with the antenna types listed in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.

Cet appareil numérique de la classe A ou B est conforme à la norme NMB-003 du Canada.

Les changements ou les modifications pas expressément approuvés par la partie responsable de la conformité ont pu vider l'autorité de l'utilisateur pour actionner l'équipement.

Concernant les EVMs avec appareils radio

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes : (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

Concernant les EVMs avec antennes détachables

Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et d'un gain maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante.

Le présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d'antenne énumérés dans le manuel d'usage et ayant un gain admissible maximal et l'impédance requise pour chaque type d'antenne. Les types d'antenne non inclus dans cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l'exploitation de l'émetteur.

[Important Notice for Users of this Product in Japan]

This development kit is NOT certified as Confirming to Technical Regulations of Radio Law of Japan

If you use this product in Japan, you are required by Radio Law of Japan to follow the instructions below with respect to this product:

- Use this product in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal Affairs and Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry's Rule for Enforcement of Radio Law of Japan,
- 2. Use this product only after you obtained the license of Test Radio Station as provided in Radio Law of Japan with respect to this product, or
- 3. Use of this product only after you obtained the Technical Regulations Conformity Certification as provided in Radio Law of Japan with respect to this product. Also, please do not transfer this product, unless you give the same notice above to the transferee. Please note that if you could not follow the instructions above, you will be subject to penalties of Radio Law of Japan.

Texas Instruments Japan Limited (address) 24-1, Nishi-Shinjuku 6 chome, Shinjuku-ku, Tokyo, Japan

http://www.tij.co.jp

【ご使用にあたっての注】

本開発キットは技術基準適合証明を受けておりません。

本製品のご使用に際しては、電波法遵守のため、以下のいずれかの措置を取っていただく必要がありますのでご注意ください。

- 1. 電波法施行規則第6条第1項第1号に基づく平成18年3月28日総務省告示第173号で定められた電波暗室等の試験設備でご使用いただく。
- 2. 実験局の免許を取得後ご使用いただく。
- 3. 技術基準適合証明を取得後ご使用いただく。

なお、本製品は、上記の「ご使用にあたっての注意」を譲渡先、移転先に通知しない限り、譲渡、移転できないものとします。

上記を遵守頂けない場合は、電波法の罰則が適用される可能性があることをご留意ください。

日本テキサス・インスツルメンツ株式会社 東京都新宿区西新宿6丁目24番1号

西新宿三井ビル

http://www.tij.co.jp

EVALUATION BOARD/KIT/MODULE (EVM) WARNINGS, RESTRICTIONS AND DISCLAIMERS

For Feasibility Evaluation Only, in Laboratory/Development Environments. Unless otherwise indicated, this EVM is not a finished electrical equipment and not intended for consumer use. It is intended solely for use for preliminary feasibility evaluation in laboratory/development environments by technically qualified electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems and subsystems. It should not be used as all or part of a finished end product

Your Sole Responsibility and Risk. You acknowledge, represent and agree that:

- 1. You have unique knowledge concerning Federal, State and local regulatory requirements (including but not limited to Food and Drug Administration regulations, if applicable) which relate to your products and which relate to your use (and/or that of your employees, affiliates, contractors or designees) of the EVM for evaluation, testing and other purposes.
- 2. You have full and exclusive responsibility to assure the safety and compliance of your products with all such laws and other applicable regulatory requirements, and also to assure the safety of any activities to be conducted by you and/or your employees, affiliates, contractors or designees, using the EVM. Further, you are responsible to assure that any interfaces (electronic and/or mechanical) between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard.
- 3. You will employ reasonable safeguards to ensure that your use of the EVM will not result in any property damage, injury or death, even if the EVM should fail to perform as described or expected.
- 4. You will take care of proper disposal and recycling of the EVM's electronic components and packing materials.

Certain Instructions. It is important to operate this EVM within TI's recommended specifications and environmental considerations per the user guidelines. Exceeding the specified EVM ratings (including but not limited to input and output voltage, current, power, and environmental ranges) may cause property damage, personal injury or death. If there are questions concerning these ratings please contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or interface electronics. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, some circuit components may have case temperatures greater than 60°C as long as the input and output are maintained at a normal ambient operating temperature. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors which can be identified using the EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during normal operation, please be aware that these devices may be very warm to the touch. As with all electronic evaluation tools, only qualified personnel knowledgeable in electronic measurement and diagnostics normally found in development environments should use these EVMs.

Agreement to Defend, Indemnify and Hold Harmless. You agree to defend, indemnify and hold TI, its licensors and their representatives harmless from and against any and all claims, damages, losses, expenses, costs and liabilities (collectively, "Claims") arising out of or in connection with any use of the EVM that is not in accordance with the terms of the agreement. This obligation shall apply whether Claims arise under law of tort or contract or any other legal theory, and even if the EVM fails to perform as described or expected.

Safety-Critical or Life-Critical Applications. If you intend to evaluate the components for possible use in safety critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, such as devices which are classified as FDA Class III or similar classification, then you must specifically notify TI of such intent and enter into a separate Assurance and Indemnity Agreement.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers <u>microcontroller.ti.com</u> Video and Imaging <u>www.ti.com/video</u>

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>