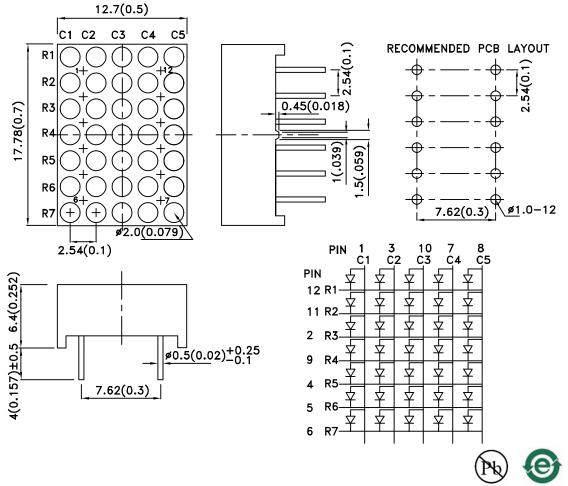


18mm (0.7 INCH) SINGLE COLOR DOT MATRIX DISPLAY

Part Number: TA07-11EWA High Efficiency Red


Features

- 0.7 inch matrix height.
- Dot size 2mm.
- Low current operation.
- Stackable vertically and horizontally.
- Easy mounting on P.C. boards or sockets.
- Mechanically rugged.
- Standard: gray face, white dot.
- RoHS compliant.

Description

The High Efficiency Red source color devices are made with Gallium Arsenide Phosphide on Gallium Phosphide Orange Light Emitting Diode.

Package Dimensions& Internal Circuit Diagram

Notes:

- 1. All dimensions are in millimeters (inches), Tolerance is ±0.25(0.01")unless otherwise noted.
- 2. The specifications, characteristics and technical data described in the datasheet are subject to change without prior notice.

 SPEC NO: DSAB6914
 REV NO: V.15A
 DATE: NOV/17/2012
 PAGE: 1 OF 6

 APPROVED: WYNEC
 CHECKED: Joe Lee
 DRAWN: F.Cui
 ERP: 1332000018

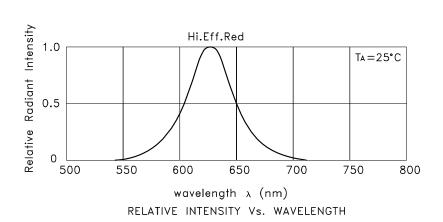
Selection Guide

Part No.	Dice	Lens Type	Iv (ucd) [1] @ 10mA		Description
			Min.	Тур.	•
TA07-11EWA	High Efficiency Red (GaAsP/GaP)	White Diffused	3600	8200	Column Anode
			*1400	*2500	Column Anode

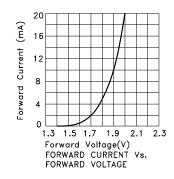
Electrical / Optical Characteristics at TA=25°C

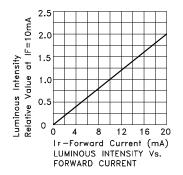
Symbol	Parameter	Device	Тур.		Max.	Units	Test Conditions
λpeak	Peak Wavelength	High Efficiency Red	627	*627		nm	IF=20mA
λD [1]	Dominant Wavelength	High Efficiency Red	625	*617		nm	IF=20mA
Δλ1/2	Spectral Line Half-width	High Efficiency Red	45			nm	I=20mA
С	Capacitance	High Efficiency Red	15			pF	VF=0V;f=1MHz
VF [2]	Forward Voltage	High Efficiency Red	2.0		2.5	V	I=20mA
lr	Reverse Current	High Efficiency Red			10	uA	V _R =5V

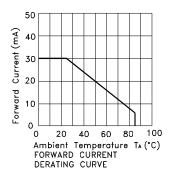
Absolute Maximum Ratings at TA=25°C

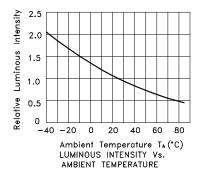

Parameter	High Efficiency Red	Units
Power dissipation	75	mW
DC Forward Current	30	mA
Peak Forward Current [1]	160	mA
Reverse Voltage	5	V
Operating / Storage Temperature -40°C To +85°C		
Lead Solder Temperature[2]	260°C For 3-5 Seconds	

1. 1/10 Duty Cycle, 0.1ms Pulse Width.
2. 2mm below package base.

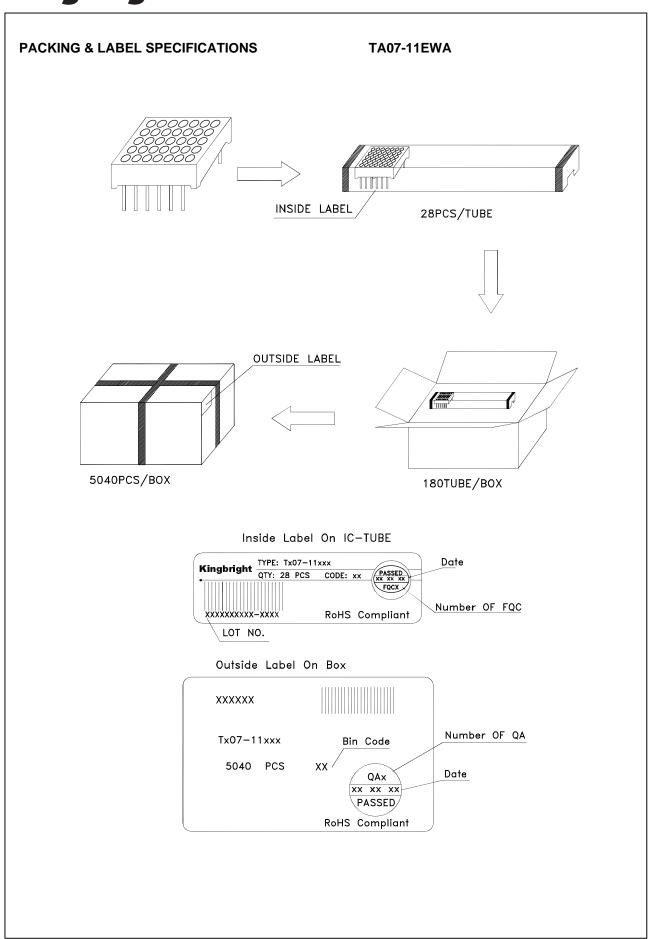

SPEC NO: DSAB6914 **REV NO: V.15A** DATE: NOV/17/2012 PAGE: 2 OF 6 APPROVED: WYNEC **CHECKED:** Joe Lee DRAWN: F.Cui ERP: 1332000018


^{1.} Luminous intensity/ luminous Flux: +/-15%.
*Luminous intensity value is traceable to the CIE127-2007 compliant national standards.


^{1.}Wavelength: +/-1nm.
2. Forward Voltage: +/-0.1V.
*Wavelength value is traceable to the CIE127-2007 compliant national standards.

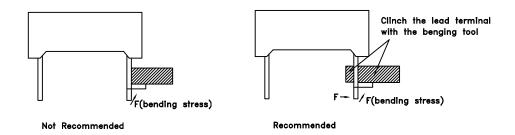


High Efficiency Red TA07-11EWA



 SPEC NO: DSAB6914
 REV NO: V.15A
 DATE: NOV/17/2012
 PAGE: 3 OF 6

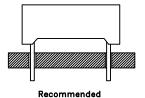
 APPROVED: WYNEC
 CHECKED: Joe Lee
 DRAWN: F.Cui
 ERP: 1332000018



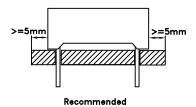
SPEC NO: DSAB6914 APPROVED: WYNEC REV NO: V.15A CHECKED: Joe Lee DATE: NOV/17/2012 DRAWN: F.Cui PAGE: 4 OF 6 ERP: 1332000018

THROUGH HOLE DISPLAY MOUNTING METHOD

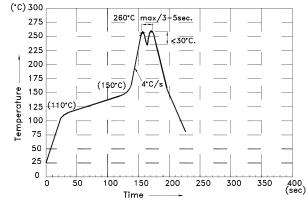
Lead Forming


Do not bend the component leads by hand without proper tools. The leads should be bent by clinching the upper part of the lead firmly such that the bending force is not exerted on the plastic body.

Installation


- 1. The installation process should not apply stress to the lead terminals.
- 2. When inserting for assembly, ensure the terminal pitch matches the substrate board's hole pitch to prevent spreading or pinching the lead terminals.

3. The component shall be placed at least 5mm from edge of PCB to avoid damage caused excessive heat during wave soldering.



SPEC NO: DSAB6914 APPROVED: WYNEC REV NO: V.15A CHECKED: Joe Lee DATE: NOV/17/2012 DRAWN: F.Cui PAGE: 5 OF 6 ERP: 1332000018

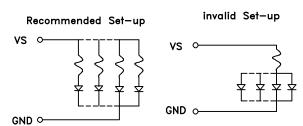
DISPLAY SOLDERING CONDITIONS

Wave Soldering Profile For Lead-free Through-hole LED.

NOTES:

- 1.Recommend the wave temperature 245°C \sim 260°C.The maximum soldering temperature should be less than 260°C.
- 2.Do not apply stress on epoxy resins when temperature is over 85°C.
- 3. The soldering profile apply to the lead free soldering (Sn/Cu/Ag alloy).
- 4.During wave soldering , the PCB top-surface temperature should be kept below 105°C
- 5.No more than once.

Soldering General Notes:


- 1. Through—hole displays are incompatible with reflow soldering.
- 2. If components will undergo multiple soldering processes, or other processes where the components may be subjected to intense heat, please check with Kingbright for compatibility.

CLEANING

- 1.Mild "no-clean" fluxes are recommended for use in soldering.
- 2. If cleaning is required, Kingbright recommends to wash components with water only. Do not use harsh organic solvents for cleaning, because they may damage the plastic parts .And the devices should not be washed for more than one minute.

CIRCUIT DESIGN NOTES

- 1.Protective current—limiting resistors may be necessary to operate the Displays.
- 2.LEDs mounted in parallel should each be placed in series with its own current—limiting resistor.

Detailed application notes are listed on our website. http://www.kingbright.com/application notes

 SPEC NO: DSAB6914
 REV NO: V.15A
 DATE: NOV/17/2012
 PAGE: 6 OF 6

 APPROVED: WYNEC
 CHECKED: Joe Lee
 DRAWN: F.Cui
 ERP: 1332000018