Silicon Carbide Power
Schottky Diode

Features
- 3300 V Schottky rectifier
- 175 °C maximum operating temperature
- Electrically isolated base-plate
- Positive temperature coefficient of V_F
- Fast switching speeds
- Superior figure of merit Q_C/IF

Package
- RoHS Compliant

TO – 220FP (Isolated Base-plate Package)

Advantages
- Improved circuit efficiency (Lower overall cost)
- Significantly reduced switching losses compare to Si PIN diodes
- Ease of paralleling devices without thermal runaway
- Smaller heat sink requirements
- Low reverse recovery current
- Low device capacitance

Applications
- Down Hole Oil Drilling, Geothermal Instrumentation
- High Voltage Multipliers
- Military Power Supplies

Maximum Ratings at Tj = 175 °C, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Values</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repetitive peak reverse voltage</td>
<td>V_RRM</td>
<td></td>
<td>3300 V</td>
<td>V</td>
</tr>
<tr>
<td>Continuous forward current</td>
<td>I_F</td>
<td>T_C ≤ 125 °C</td>
<td>0.3 A</td>
<td>A</td>
</tr>
<tr>
<td>RMS forward current</td>
<td>I_F(RMS)</td>
<td>T_C ≤ 125 °C</td>
<td>0.35 A</td>
<td>A</td>
</tr>
<tr>
<td>Surge non-repetitive forward current, Half Sine Wave</td>
<td>I_F,SM</td>
<td>T_C = 25 °C, t_R = 10 ms</td>
<td>tbd</td>
<td>A</td>
</tr>
<tr>
<td>Non-repetitive peak forward current</td>
<td>I_F,MAX</td>
<td>T_C = 25 °C, t_R = 10 µs</td>
<td>tbd</td>
<td>A</td>
</tr>
<tr>
<td>F’t value</td>
<td>J^2 dt</td>
<td>T_C = 25 °C, t_R = 10 ms</td>
<td>tbd</td>
<td>A^S</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P_d</td>
<td>T_C = 25 °C</td>
<td>25 W</td>
<td>W</td>
</tr>
<tr>
<td>Operating and storage temperature</td>
<td>T_j , T_stg</td>
<td></td>
<td>-55 to 175 °C</td>
<td>°C</td>
</tr>
</tbody>
</table>

Electrical Characteristics at Tj = 175 °C, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Diode forward voltage</td>
<td>V_F</td>
<td>I_R = 0.3 A, T_j = 25 °C</td>
<td>1.7</td>
<td>V</td>
</tr>
<tr>
<td>Reverse current</td>
<td>I_R</td>
<td>V_R = 3300 V, T_j = 25 °C</td>
<td>1.3</td>
<td>µA</td>
</tr>
<tr>
<td>Total capacitive charge</td>
<td>Q_C</td>
<td>I_R ≥ I_R,MAX dI/dt = 35 A/µs, T_j = 175 °C</td>
<td>52 nC</td>
<td>nC</td>
</tr>
<tr>
<td>Switching time</td>
<td>t_s</td>
<td>V_R = 1500 V</td>
<td>< 60 ns</td>
<td></td>
</tr>
<tr>
<td>Total capacitance</td>
<td>C</td>
<td>V_R = 1 V, f = 1 MHz, T_j = 25 °C</td>
<td>42 pF</td>
<td>pF</td>
</tr>
</tbody>
</table>

Thermal Characteristics
- Thermal resistance, junction – Cu lead frame R_RJC | 1.42 °C/W

Mechanical Properties
- Mounting torque, M3 screw M | 0.6 Nm
Figure 1: Typical Forward Characteristics

Figure 2: Typical Reverse Characteristics

Figure 3: Power Derating Curve

Figure 4: Current Derating Curves ($D = \frac{I}{T}$, $t_p = 400 \mu s$) (Considering worst case Zth conditions)

Figure 5: Typical Junction Capacitance vs Reverse Voltage Characteristics

Figure 6: Typical Switching Energy vs Reverse Voltage Characteristics
Figure 7: Current vs Pulse Duration Curves at $T_c = 150 \, ^\circ C$

Figure 8: Transient Thermal Impedance

Package Dimensions:

TO-220FP

PACKAGE OUTLINE

NOTE

1. CONTROLLED DIMENSION IS INCH. DIMENSION IN BRACKET IS MILLIMETER.
2. DIMENSIONS DO NOT INCLUDE END FLASH, MOLD FLASH, MATERIAL PROTRUSIONS
3. CONTROLLED LEAD COPLANARITY <D> 0.004 INCH MAXIMUM

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision</th>
<th>Comments</th>
<th>Supersedes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013/03/22</td>
<td>1</td>
<td>Added Thermal Characteristics</td>
<td></td>
</tr>
<tr>
<td>2013/01/23</td>
<td>0</td>
<td>Initial Release</td>
<td></td>
</tr>
</tbody>
</table>

Published by
GeneSiC Semiconductor, Inc.
43670 Trade Center Place Suite 155
Dulles, VA 20166

GeneSiC Semiconductor, Inc. reserves right to make changes to the product specifications and data in this document without notice.

GeneSiC disclaims all and any warranty and liability arising out of use or application of any product. No license, express or implied to any intellectual property rights is granted by this document.

Unless otherwise expressly indicated, GeneSiC products are not designed, tested or authorized for use in life-saving, medical, aircraft navigation, communication, air traffic control and weapons systems, nor in applications where their failure may result in death, personal injury and/or property damage.