

In-Home Display with HTTP gateway

Introduction

In this period of energy optimization and metering, there is an ever increasing demand for the possibility to perform in-house monitoring and management of energy use.

For this reason, STMicroelectronics offers a system which allows the monitoring and management of home energy consumption.

This system, "In-Home Display gateway", is made up of three main components:

- The STM322xG-EVAL demonstration board connected to an Ethernet network
- The STEVAL-IDZ001V1 adapter board connected on top of the STM322xG-EVAL board
- Remote web server.

Through this infrastructure, the system has the ability to publish the home automation device (i.e. smartplugs) energy data to a remote web server. The user can consult the energy consumption data on the web server from wherever they are, and at home, they can manage the entire system directly through an LCD touch panel.

This application note describes a smartplugW network system managed through the STM322xG-EVAL board.

The firmware and board allow the possibility to manage a ZigBee[®] network system, collecting ZigBee device information, and managing it through the LCD, touchscreen, pushbutton and joystick, and publishing the collected data to a HTTP server over the Internet by means of an Ethernet interface.

- Section 1 describes the document and library rules.
- Section 2 highlights the features of the ZigBee smartplug and explains its hardware interface with the microcontroller (STM32).
- Section 3 describes briefly the "Multi-Input Embedded GUI Library".
- Section 4 describes the relevant blocks of the STM322xG-EVAL demonstration board.
- *Section 5* shows the demonstration firmware/board system setup.
- Section 6 describes how the "In-Home Display" firmware is structured, its architecture and its exported APIs in detail.
- Section 7 explains how to get started with the system, how to configure and use the IAR workspace, and it contains an example application source code.
- Section 8 illustrates how the "In-Home Display" GUI application works.
- Section 10 illustrates the hardware schematics.

Contents

1	Docu	ament and library rules	6
	1.1	Acronyms	6
2	Syste	em description	7
3	ZigB	ee smartplug	8
	3.1	Smartplug description	8
	3.2	ZigBee module SPZB32W1x2.1	9
4	Multi	i-Input Embedded GUI Library	10
	4.1	Description	10
5	STM	3220G-EVAL demonstration board	11
	5.1	Features	
	5.2	Hardware layout and configuration	
	5.3	Power supply	
	5.4	Boot option	
	5.5	Clock source	
	5.6	Reset source	
	5.7	EEPROM	
	5.8	Ethernet	
	5.9	SRAM	
	5.10	Development and debug support	20
	5.11	Display and input devices	20
	5.12	Daughterboard extension connector CN1, 2, 3 and CN4	
	5.13	Ethernet RJ45 connector CN7	
	5.14	JTAG debugging connector CN14	
	5.15	Power connector CN18	
	5.16	TFT LCD connector CN19	30
6	In-Ho	ome Display with HTTP gateway firmware	31
	6.1	Firmware structure	31
	6.2	main.c	
2/81		Doc ID 022809 Rev 2	577

		6.2.1	demo_initTask	33
	6.3	web_clie	ent.c	35
		6.3.1	Web_Get_Task	35
	6.4	tasks_m	isc.c	37
		6.4.1	GraphicLibTask	37
		6.4.2	ZigNetMgmtTask	38
		6.4.3	CalendarTask	39
		6.4.4	SPSamplingTask	42
		6.4.5	ToggleLed Task	45
7	Gettin	ng starte	ed with the system	47
	7.1	Hardwa	re requirements	47
	7.2	STM322	2xG-EVAL demonstration board setup	47
	7.3	STM322	exG-EVAL and ZigBee adapter pins mapping	47
	7.4	Program	n/update dual interface EEPROM with network parameters	48
	7.5	Configu	re IAR tool for building, debugging, and programming application	49
	7.6	Example	e application - main.c	51
8	In-Ho	me Disp	blay with HTTP gateway GUI application	56
	8.1	Applicat	ion user interface	56
9	Web s	server h	osting energy consumption data	65
	9.1	Features	s overview	65
	9.2	Accessi	ng the website	65
	9.3	Browsin	g reporting data	66
10	Scher	natics		68
11	Refer	ences .	······································	79
12	Revis	ion hist	ory	80

List of tables

Table 1.	List of acronyms
Table 2.	Power related jumpers and solder bridges 16
Table 3.	Boot related switch
Table 4.	EEPROM related jumper and solder bridge 18
Table 5.	Ethernet related jumpers and solder bridges 18
Table 6.	SRAM related jumpers
Table 7.	LCD modules
Table 8.	Daughterboard extension connector CN1 22
Table 9.	Daughterboard extension connector CN2 24
Table 10.	Daughterboard extension connector CN3 25
Table 11.	Daughterboard extension connector CN4 27
Table 12.	Ethernet connector pinout
Table 13.	JTAG debugging connector CN14 29
Table 14.	Function description format
Table 15.	demo_initTask task
Table 16.	Web_Get_Task task
Table 17.	GraphicLibTask task
Table 18.	ZigNetMgmtTask task
Table 19.	CalendarTask task
Table 20.	SPsamplingTask task
Table 21.	ToggleLed Task
Table 22.	ZigBee adapter pinout description47
Table 23.	Document revision history

List of figures

Figure 1.	STM322xG-EVAL board and a smartplug node block diagram	7
Figure 2.	Block diagram	8
Figure 3.	STM3220G-EVAL board	. 11
Figure 4.	STM3220G-EVAL board hardware block diagram	. 13
Figure 5.	STM3220G-EVAL demonstration board layout	. 14
Figure 6.	ZigBee adapter layout description	. 15
Figure 7.	Ethernet RJ45 connector CN7	. 28
Figure 8.	JTAG debugging connector CN14	. 29
Figure 9.	Power supply connector CN18	. 30
Figure 10.	Firmware architecture	. 31
Figure 11.	System architecture and hardware block interaction	. 32
Figure 12.	M24LRxx application software	. 49
Figure 13.	Application project files	. 50
Figure 14.	IAR embedded workbench main window	. 50
Figure 15.	IAR embedded workbench debugger options	. 51
Figure 16.	Home screen	. 56
Figure 17.	Home screen after ZigBee network initialization done	. 56
Figure 18.	No plug detected.	. 57
Figure 19.	Setup ZigBee network	. 57
Figure 20.	Setting ZigBee network up	. 58
Figure 21.	Reinitializing ZigBee network	. 58
Figure 22		59
Figure 23	l abel changing	59
Figure 24	Smartplug management	60
Figure 25	Identify	60
Figure 26	Smartplug statistics	61
Figure 27	Energy consumption	61
Figure 28	Global energy consumption	62
Figure 29	Power consumption	62
Figure 30	Global power consumption	63
Figure 31.	Demo scenario	. 63
Figure 32.	Set timer	. 64
Figure 33	Activate timer	64
Figure 34		65
Figure 35	Device selection page	66
Figure 36	Energy data table page	66
Figure 37	Export data page	67
Figure 38	Plotting data page	67
Figure 39	ZigBee and dual Interface FEPBOM adapter for STM322xG-EVAI	68
Figure 40	STM3220-21-45-46G-EVAI	69
Figure 41	STM3220-21-45-46G-EVAL_MCU	70
Figure 42	STM3220-21-45-46G-EVAL_thernet	71
Figure 43	STM3220-21-45-46G-EVAL_CD	72
Figure 44	I CD module with both SPI and 16-bit interface	73
Figure 45	STM3220-21-45-46G-EVAL I/O peripherals	74
Figure 46	STM3220-21-45-46G-EVAL I/O Expander	75
Figure 47	STM3220-21-45-46G-EVAL JTAG and trace	76
Figure 48	STM3220-21-45-46G-EVAL Power	77
Figure 49	STM3220-21-45-46G-EVAL Extension connector	 78
		0

1 Document and library rules

This document uses the conventions described in the sections below.

1.1 Acronyms

Table 1 lists the acronyms used in this document.

Meaning
Application programming interface
Hardware abstraction layer
Microcontroller unit
Inter-integrated circuit
Serial to parallel interface
Universal asynchronous receiver-transmitter
HyperText transfer protocol

Table 1. List of acronyms

2 System description

The network configuration parameters (IP address, subnet mask, and default gateway) of the board as well as the IP address of the web server are stored in the dual interface EEPROM "M24LR64r" onboard, accessible from both the STM32W108CB and the STM32F2x7x via the I²C interface and remotely by means of an RF reader. Therefore, it is possible to read and update parameters from inside (I²C) and outside (RF) the application. In this way, an operator can easily change the network configuration of the board without any programming skills, and using just an RF reader.

In order to use the STM322xG-EVAL board to interface with the ZigBee coordinator, a specific adapter has been developed. The ZigBee coordinator is connected to the demonstration board through the adapter that allows the UART communication. The two peers use a serial protocol to exchange data and commands.

The STM32W108CB is used as a co-processor of the STM32F2x7x, so the STM32F2x7x runs the application while the STM32W108CB runs the ZigBee stack and protocol. The two microcontrollers communicate by means of a UART interface.

An embedded graphical user interface (GUI) based on the "Multi-Input Embedded GUI Library 2.1" described in the document AN3128, and working on an LCD TFT 320 x 240 display and 5-position joystick, allows the user to interact with the smartplugW system made up of one coordinator and two smartplugs connected.

In *Figure 1* it is possible to take a quick look of the STM322xG-EVAL board and a smartplug node block diagram.

Figure 1. STM322xG-EVAL board and a smartplug node block diagram

3 ZigBee smartplug

3.1 Smartplug description

The smartplug coordinator is connected via UART to the STM322xG-EVAL through an "adhoc" adapter. The adapter is connected to the extended connectors CN2, CN3 and CN4 on the STM322xG-EVAL (for more detailed information, please refer to the UM1065 user manual); it allows the connection of a ZigBee coordinator and the I2C/RF dual interface EEPROM M24LR64-r. The Gerber files of the adapter board are included in the setup package of this project.

The ZigBee smartplug board can be used as a guide to build a home/building automation subsystem for energy management. In a typical application, the board is plugged into an electrical wall socket and supplies an electrical load, monitoring the energy consumption; using several smartplugs it is possible to monitor and control the home/building energy consumption socket by socket.

Figure 2. Block diagram

The STEVAL-IHP004V1 is a smartplug board based on an STM32W108CB microcontroller, a SPZB32W1x2.1 module, and an STPM10 energy metering IC.

It implements a ZigBee metering node which allows the final user to monitor and manage energy consumption.

The board has been developed to provide a guide to build a home/building automation subsystem for energy management. In a typical home system implementation, the board is plugged into an electrical wall socket and supplies a home appliance or other generic electrical load.

3.2 ZigBee module SPZB32W1x2.1

ZigBee communication is based on the SPZB32W module. The SPZB32W is a low power consumption ZigBee module optimized for embedded applications. It enables OEMs to easily add wireless capability to electronic devices.

The module is FCC compliant (FCC ID: S9NZB32C2) and it is based on the STM32W108CB MCU which integrates a 2.4 GHz IEEE 802.15.4-compliant SMD module based on the ST single-chip STM32W108CB featuring:

- Integrated 2.4 GHz transceiver
- PHY and MAC IEEE 802.15.4 features
- Integrated ARM[®] Cortex-M3 core
- Integrated 128 kB embedded Flash and 8 kB embedded RAM
- Integrated encryption (AES-128) accelerator
- +3 dBm output power (+8 dBm in Boost mode)
- -99 dBm receiver sensitivity.

The module is controlled by means of a standard serial interface (SPI) allowing connection to a variety of host microcontrollers.

For further details, please refer to the SPZB32W module and the STM32W108CB datasheet.

For more information, see the user manual, the STEVAL-IHP004V1 schematics diagram, and the ZigBee smartplug firmware user manual.

4 Multi-Input Embedded GUI Library

4.1 Description

This solution enables users, comfortable with the use of standard microcontrollers, to create higher-end "look and feel" human interfaces by replacing conventional electromechanical switches with touch-sensing controls.

The user can combine touch-sensing functions using multiple configurations (touchscreen, joystick, and keys) with traditional MCU features (communication, LED control, beeper, LCD control, etc.).

The E-multi-input graphic library is part of the application firmware.

The graphic objects are a set of controls that can be printed on the screen and associated to an action when pressed.

The library has been developed and tested on an LCD panel of QWGA resolution (320x240) which is the default, but the library is independent of the LCD resolution, although it has not been tested with others.

The library supports touchscreen features and includes a low level driver which handles the analog input (for 12-bit ADC), and a function for the touchscreen calibration based on an algorithm that uses 5 points.

The Multi-Input Embedded GUI Library is fully developed in 'ANSI-C' following an OOP approach. This means that the final application uses instances of page and graphic objects, according to their public methods and properties. In the end, the PageObj is a structure containing public properties (data fields) and methods (functions pointers). The OOP encapsulation feature is assured. The library has been developed and tested on the STMicroelectronics demonstration boards.

The library can be included in the final application as a library file (multi-input embedded GUI Library.a) and used as a black box through its exported public API, or can be included in the final application as source files (.c and .h) if the user wants to debug the library itself, or if they want to change the HAL functions in order to port the library on a different LCD (in model and resolution) from the one attached to the ST demonstration board.

For more information on the graphic library, see the AN3128 rev.4 application note.

The calibration process is part of the post-processing layer. The touchscreen must be calibrated at first power-on and/or upon user request.

Once the calibration is done, final adjustments on future power-on of the board are not necessary because the calibration parameters are saved on the Flash memory.

AN4049

5 STM3220G-EVAL demonstration board

Figure 3. STM3220G-EVAL board

The STM3220G-EVAL demonstration board is a complete evaluation and development platform for the STM32 F-2 series and includes an embedded in STM32F207IGH6 high-performance ARM[®] Cortex[™]-M3 32-bit microcontroller.

The full range of hardware features on the board is provided to help the user evaluate all peripherals (USB OTG HS, USB OTG FS, Ethernet, motor control, CAN, MicroSD card, smartcard, USART, audio DAC, RS-232, IrDA, SRAM, MEMS, EEPROM... etc.) and develop their own applications. Extension headers make it possible to easily connect a daughterboard or wrapping board for specific applications.

The in-circuit ST-LINK tool can be easily used for JTAG and SWD interface debugging and programming.

5.1 Features

- STM32F207IGH6 microcontroller
- 16 Mbit SRAM
- 1 GByte or more MicroSD card
- Boot from user Flash, system memory or SRAM
- Both ISO/IEC 14443 type A and B smartcards support
- I²C compatible serial interface 8 Kbytes EEPROM, MEMS and I/O expander
- IEEE 802.3-2002 compliant Ethernet connector
- Two CAN 2.0 A/B channels on the same DB connector
- RS-232 communication
- IrDA transceiver
- USB OTG (HS and FS) with Micro-AB connector
- Inductor motor control connector
- I2S audio DAC, stereo audio jack for headset
- 3.2" 240x320 TFT color LCD with touchscreen
- 4 color LEDs
- Camera module and extension connector for ST camera plug-in
- Joystick with 4-direction control and selector
- Reset, wakeup, tamper and user button
- RTC with backup battery
- Extension connector for daughterboard or wrapping board
- JTAG, SW and trace debug support
- Embedded ST-LINK/V2
- Five 5 V power supply options: Power jack, USB FS connector, USB HS connector, ST-LINK/V2 or daughterboard
- MCU consumption measurement circuit.

5.2 Hardware layout and configuration

The STM3220G-EVAL demonstration board is designed around the in STM32F207IGH6 microcontroller in the UFBGA176 package. The hardware block diagram, *Figure 2*, illustrates the connection between the in STM32F207IGH6 and peripherals (camera module, LCD, SRAM, EEPROM, MEMS, USART, IrDA, USB OTG HS, USB OTG FS, Ethernet, audio, CAN bus, smartcard, MicroSD card and motor control) and *Figure 3* helps to locate these features on the actual demonstration board.

57

Figure 4. STM3220G-EVAL board hardware block diagram

Figure 5. STM3220G-EVAL demonstration board layout

Figure 6. ZigBee adapter layout description

5.3 Power supply

The STM322xG-EVAL demonstration board is designed to be powered by a 5 V DC power supply and to be protected by PolyZen from a wrong power plug-in event. It is possible to configure the demonstration board to use any of the following five sources for the power supply:

- 5 V DC power adapter connected to JP18, the power jack on the board
- 5 V DC power with 500 mA limitation from CN8, the USB OTG FS Micro-AB connector
- 5 V DC power with 500 mA limitation from CN9, the USB OTG HS Micro-AB connector
- 5 V DC power with 500 mA limitation from CN21, the ST-LINK/V2 USB connector
- 5 V DC power from both CN1 and CN3, the extension connector for the daughterboard (DTB for daughterboard on silkscreen).

The power supply is configured by setting the related jumpers JP4, JP32, JP18 and JP19, as described in *Table 1*.

Jumper	Description		
JP4	Jumper reserved for future use (RFU). Default setting: fitted		
JP32	MCU_VDD is connected to 3.3 V power when JP32 is closed and MCU current consumption measurement can be done manually by multi-meter when JP32 is open. Default setting: fitted		
	JP18 is used to select one of the four possible power supply sources. To select the ST-LINK/V2 USB connector (CN21) power supply, set JP18 as shown: (default setting)	HS FS DTB PSU STIk	
	For power supply jack (CN18) to the STM322xG-EVAL, JP18 is set as shown on the right setting)	: (default	••
		FS DTB PSU STIk	
	To select daughterboard connector (CN1 and CN3) power supply, set JP18 as shown:		
		HS FS DTB PSU STIk	
JP18	To select USB OTG FS (CN8) power supply, set JP18 as shown:		
		HS FS DTB PSU STIk	
	To select USB OTG HS (CN9) power supply, set JP18 as shown:		
		HS FS DTB PSU STIk	
	To select power supply jack (CN18) power supply to both STM322xG-EVAL and daughter connected on CN1 and CN3, set JP18 as shown	board	
	Warning: daughterboard must not have its own power supply conr	nected	
		HS FS DTB PSU STIk	

 Table 2.
 Power related jumpers and solder bridges

	· · · · · · · · · · · · · · · · · · ·	
Jumper	Description	
	To connect Vbat to the battery, set JP19 as shown:	1 2 3 ● ● ●
JP19	To connect Vbat to 3.3 V power, set JP19 as shown: (default setting)	123 ●●

 Table 2.
 Power related jumpers and solder bridges (continued)

Note: The LED LD9 is lit when the STM322xG-EVAL demonstration board is powered by the 5 V correctly.

5.4 Boot option

The STM322xG-EVAL demonstration board is able to boot from:

- Embedded user Flash
- System memory with boot loader for ISP
- Embedded SRAM for debugging.

The boot option is configured by setting switch SW1 (BOOT1) and SW2 (BOOT0). The BOOT0 can be configured also via RS232 connector CN16.

Table 3. Boot related switch

BOOT	BOOT1	Boot source
0	Do not care	STM322xG-EVAL boots from user Flash (default setting)
1	1	STM322xG-EVAL boots from embedded SRAM
1	0	STM322xG-EVAL boots from system memory

5.5 Clock source

Four clock sources are available on the STM3220G-EVAL demonstration board for the STM32F207IFT6 and RTC embedded.

- X1, 25 MHz crystal for Ethernet PHY with socket. It can be removed when clock is provided by the MCO pin of the MCU
- X2, 26 MHz crystal for USB OTG HS PHY
- X3, 32 kHz crystal for embedded RTC
- X4, 25 MHz crystal with socket for the in STM32F207IGH6 microcontroller (it can be removed from socket when internal RC clock is used).

5.6 Reset source

The reset signal of the STM322xG-EVAL demonstration board is low active and the reset sources include:

- Reset button B1
- Debugging tools from JTAG connector CN14 and trace connector CN13
- Daughterboard from CN3
- RS232 connector CN16 for ISP
- ST-LINK/V2.

5.7 EEPROM

A 64 KBit EEPROM is connected to the I2C1 bus of the in STM32F207IGH6.

Table 4. EEPROM related	jumper and solder bridge
-------------------------	--------------------------

Jumper	Description
JP24	The EEPROM is in Write Protection mode when JP24 is fitted. Default setting: not fitted

5.8 Ethernet

The STM322xG-EVAL demonstration board supports 10M/100M Ethernet communication by a PHY DP83848CVV (U5) and integrated RJ45 connector (CN7). Both MII and RMII interfaces can be selected by setting jumpers JP5, JP6 and JP8, as listed below:

|--|

Jumper	Description	
JP8	JP8 is used to select MII or RMII interface mode. To enable MII, JP8 is not fitted. To enable RMII interface mode, JP8 is fitted. Default setting: not fitted	
IDC	To enable MII interface mode, set JP6 as shown (default setting):	1 2 3 ● ● ●
JP6	To enable RMII interface mode, set JP6 as shown:	1 2 3 • •

	Ethemet related jumpers and solder bridges (continued)		
Jumper	Description		
IDE	To provide 25 MHz clock for MII or 50 MHz clock for RMII by MCO at PA8, set JP5 as shown (default setting): To provide 25 MHz clock by external crystal X1 (for MII interface	1 2 3 ● ● ●	
JP5	mode only) set JP5 as shown:	1 2 3 ●●	
	When clock is provided by external oscillator U3, JP5 must not be fitted (default setting).		
SB1	SB1 is used to select clock source only for RMII mode. To connect the clock from MCO to RMII_REF_CLK, close SB1. The resistor R212 must be removed in this case. Default setting: open		

 Table 5.
 Ethernet related jumpers and solder bridges (continued)

Note: 1 A test point (TP2) is available on the board for the PTP_PPS feature test.

- 2 The Ethernet PHYU5 can be powered down by regulating PB14.
- 3 In RMII mode it is not possible to use MCO to output the 50 MHz clock to PHY due to the PLL limitation explained in chapter 2.6.5 of STM32F2x7x and STM32F2x7x errata sheet (ES0005). In such a case it is possible to provide the 50 MHz clock by soldering a 50 MHz oscillator (ref SM7745HEV-50.0M or equivalent) on the U3 footprint located under CN3 and also removing jumper on JP5. This oscillator is not provided with the board.

5.9 SRAM

The 16 Mbit SRAM is connected to the FSMC bus of the in STM32F207IGH6 which shares the same I/Os with the CAN1 bus. JP3 and JP10 must not be fitted for SRAM and LCD application.

Jumper	Description	
JP1	Connect PE4 to SRAM as A20 by setting JP1 as shown (default setting):	
		1 2 3 ● ● ●
	Connect PE4 to trace connector CN13 as TRACE_D1 by setting JP1 as show	wn:
		123 ••

Table 6.SRAM related jumpers

Jumper	Description		
JP2	Connect PE3 to SRAM as A19 by setting JP2 as shown (default setting):		
	123		
	Connect PE3 to trace connector CN13 as TRACE_D0 by setting JP2 as shown:		
	1 2 3 ● ●		

 Table 6.
 SRAM related jumpers (continued)

5.10 Development and debug support

The version 2 of the ST-LINK, called ST-LINK/V2, is embedded on the board. This tool allows onboard program loading and debugging of the STM32F using the JTAG or SWD interface.

Third-party debug tools are also supported by the JTAG (CN14) or trace (CN13) connectors.

To communicate with the embedded ST-LINK/V2, a specific driver needs to be installed on the PC. To download and install this driver, refer to the software and development tools page for the STM32F family available on www.st.com (the install shield is called ST-LINK_V2_USBdriver.exe).

The embedded ST-LINK/V2 connects to the PC via a standard USB cable from connector CN21. The bicolor LED LD10 (COM) indicates the status of the communication as follows:

- Slow blinking red/off: at power-on before USB initialization
- Fast blinking red/off: after the first correct communication between PC and ST-LINK/V2 (enumeration)
- Red LED on: when initialization between PC and ST-LINK/V2 is successfully finished
- Green LED on: after successful target communication initialization
- Blinking red/green: during communication with target
- Green on: communication finished and OK
- Orange on: communication failure.
- Note: It is possible to power the board via CN21 (embedded ST-LINK/V2 USB connector) even if an external tool is connected to CN13 (trace) or CN14 (external JTAG and SWD).

5.11 Display and input devices

The 3.2" TFT color LCD connected to the FSMC bus and 4 general purpose color LEDs (LED 1, 2, 3, 4) are available as display devices. A touchscreen connected to an I/O expander (U24), 4-direction joystick with selection key, general purpose button (B4), wakeup button (B2) and tamper detection button (B3) are available as input devices.

3.2" TFT LCD with touchscreen (CN19)			
Pin on CN19	Pin name	Pin connection	
1	CS	FSMC_NE3 (PG10)	
2	RS	FSMC_A0	
3	WR/SCL	FSMC_NWE	
4	RD	FSMC_NOE	
5	RESET	RESET#	
6	PD1	FSMC_D0	
7	PD2	FSMC_D1	
8	PD3	FSMC_D2	
9	PD4	FSMC_D3	
10	PD5	FSMC_D4	
11	PD6	FSMC_D5	
12	PD7	FSMC_D6	
13	PD8	FSMC_D7	
14	PD10	FSMC_D8	
15	PD11	FSMC_D9	
16	PD12	FSMC_D10	
17	PD13	FSMC_D11	
18	PD14	FSMC_D12	
19	PD15	FSMC_D13	
20	PD16	FSMC_D14	
21	PD17	FSMC_D15	
22	BL_GND	GND	
23	BL_Control	+5 V	
24	VDD	+3.3 V	
25	VCI	+3V3	
26	GND	GND	
27	GND	GND	
28	BL_VDD	+5V	
29	SDO	NC	
30	SDI	NC	
31	XL	IO expander U24	
32	XR	IO expander U24	

Table 7.LCD modules

3.2" TFT LCD with touchscreen (CN19)			
Pin on CN19	Pin name	Pin connection	
33	YD	IO expander U24	
34	YU	IO expander U24	

Table 7. LCD modules (continued)

5.12 Daughterboard extension connector CN1, 2, 3 and CN4

Four male headers CN1, 2, 3 and CN4 can be used to connect the daughterboard or the standard wrapping board to the STM322xG-EVAL demonstration board. A total number of 140 GPIOs is available on the board.

Each pin on CN1, 2, 3 and 4 can be used by a daughterboard after disconnecting it from the corresponding function block on the STM322xG-EVAL demonstration board.

The ZigBee adapter is connected to the extended connectors CN2 and CN4 on the STM322xG-EVAL (for more detailed information, please refer to *Table 8* to *Table 10*), it allows the communication between the STM32F2x7x on the eval board, the ZigBee smartplug coordinator (STM32W108CB) and the I2C/RF dual interface EEPROM M24LR64-r on the ZigBee adapter.

Pin	Description	Alternative function	How to disconnect with function block on STM322xG-EVAL board
1	GND	-	-
3	PE3	Trace_D0 and FSMC_A19	Keep JP2 on 2< ⁻ >3
5	PE5	Trace_D2	
7	PI8	LCD_HSYNC	-
9	PC14	OSC32_IN	Remove R84, SB4 closed
11	PC15	OSC32_OUT	Remove R85, SB5 closed
13	PI10	MII_RX_ER	Remove RS3
15	PF0	FSMC_A0	-
17	PF2	FSMC_A2	-
19	GND	-	-
21	PF5	FSMC_A5	-
23	PF7	SmartCard_RST	-
25	PF9	Potentiometer	Remove R151
27	PH0	OSC_IN	SB6 open
29	PC0	ULPI_STP	-
31	PC1	MII_MDC	SB11 open
33	PC3	MII_TX_CLK	Remove R51

 Table 8.
 Daughterboard extension connector CN1

onnect with function M322xG-EVAL board move R139	Alternative function	Description	
move R139		Description	Pin
	WakeUP	PA0	35
-	MII_MDIO	PA2	37
-	-	GND	39
emove R61	ULPI_NXT	PH4	41
-	-	NC	43
-	-	NC	45
-	-	EMU_3V3	47
-	-	EMU_5V	49
-	Trace_CLK	PE2	2
JP1 on 2<->3	Trace_D1 & FSMC_A20	PE4	4
-	Trace_D3	PE6	6
move R143	Anti-Tamper	PC13	8
-	-	GND	10
move R141	LED3	PI9	12
emove R62	ULPI_DIR	PI11	14
-	FSMC_A1	PF1	16
-	FSMC_A3	PF3	18
-	FSMC_A4	PF4	20
move R126	SmartCard_OFF	PF6	22
	LCD_CS	PF8	24
move R196	Audio_IN	PF10	26
R86, SB7 closed	OSC_OUT	PH1	28
-	-	GND	30
B12 open	MII_TXD2 & MC	PC2	32
-	-	VREF+	34
JP6 open	MII_RX_CLK	PA1	36
emove RS3	MII_CRS	PH2	38
emove RS3	MII_COL	PH3	40
emove R18	OTG_FS_PowerSwitchOn	PH5	42
-	-	NC	44
-	-	NC	46
-	-	APP_3V3	48
-	-	GND	50
- move R143 - move R141 emove R62 move R126 move R126 move R196 R86, SB7 closed - B12 open - B12 open - JP6 open emove RS3 emove RS3 emove R18	Trace_D3 Anti-Tamper LED3 ULPI_DIR FSMC_A1 FSMC_A3 FSMC_A4 SmartCard_OFF LCD_CS Audio_IN OSC_OUT - MII_TXD2 & MC - MII_RX_CLK MII_CRS MII_CRS MII_COL OTG_FS_PowerSwitchOn	PE6 PC13 GND PI9 PI11 PF1 PF3 PF4 PF6 PF8 PF10 PH1 GND PC2 VREF+ PA1 PH2 PH2 PH3 PH2 PH3 PH5 NC NC NC APP_3V3 GND	4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

 Table 8.
 Daughterboard extension connector CN1 (continued)

Pin	Description	Alternative function	How to disconnect with function block on STM322xG-EVAL board
1	GND	-	-
3	PA3	ULPI_D0	-
5	PA5	ULPI_CLK	Remove R69
7	PA7	MII_RX_DV	Remove RS2, JP8 open
9	PC5	MII_RXD1	Remove R58
11	PB0	ULPI_D1	-
13	PB2	BOOT1	-
15	PF12	FSMC_A6	-
17	PF14	FSMC_A8	-
19	GND	-	-
21	PG1	FSMC_A11	-
23	PE8	FSMC_D5	-
25	PE10	FSMC_D7	-
27	PE12	FSMC_D9	-
29	PE14	FSMC_D11	-
31	PE15	FSMC_D12	-
33	PB11	ULPI_D4	-
35	PH7	MII_RXD3	Remove RS3
37	PH9	DCMI_D0	Remove camera module from CN15
39	GND	-	-
2	APP_VCC	-	-
4	PA4	Audio_DAC_OUT	Remove R115
6	PA6	DCMI_PIXCK	Remove camera module from CN15
8	PC4	MII_RXD0	Remove RS2
10	GND	-	-
12	PB1	ULPI_D2	-
14	PF11	OTG_FS_Overcurrent	Remove R15
16	PF13	FSMC_A7	-
18	PF15	FSMC_A9	-
20	PG0	FSMC_A10	-
22	PE7	FSMC_D4	-
24	PE9	FSMC_D6	-
26	PE11	FSMC_D8	-

 Table 9.
 Daughterboard extension connector CN2

	-		
Pin	Description	Alternative function	How to disconnect with function block on STM322xG-EVAL board
28	PE13	FSMC_D10	-
30	GND	-	-
32	PB10	ULPI_D3	-
34	PH6	MII_RXD2	Remove RS5
36	PH8	DCMI_HSYNC & MC	Remove camera module from CN15. Disconnect motor control board from CN5
38	PH10	DCMI_D1 &MC	Remove camera module from CN15. Disconnect motor control board from CN5
40	PH11	DCMI_D2 &MC	Remove camera module from CN15. Disconnect motor control board from CN5

Table 9.Daughterboard extension connector CN2 (continued)

Table 10. Daughterboard extension connector CN3

Pin	Description	Alternative function	How to disconnect with function block on STM322xG-EVAL board
1	GND	-	-
3	PI1	I2S_CK	-
5	PH15	SmartCard_3/5 V & MC	Disconnect motor control board from CN5
7	PH13	MicroSDCard_defect & MC	Remove MicroSD card from CN6. Disconnect motor control board from CN5
9	PC13	Anti-Tamper	Remove R143
11	RESET#	Reset button	-
13	PA11	OTG_FS_DM	Remove R17
15	PA9	VBUS_FS	Remove USB cable from CN8 Remove R18
17	PC9	MicroSDCard_D1 & I2S_CKIN	Keep JP16 on open
19	EMU_5V	-	-
21	PC6	I2S_MCK & SmartCard_IO	JP21 open
23	PG7	SmartCard_CLK	-
25	PG5	FSMC_A15	-
27	PG3	FSMC_A13	-
29	PD15	FSMC_D1	-
31	PD14	FSMC_D0	-

Pin

33

35

37

39

41

Description

PD12

PD10

PD8

GND

PB13

How to di	sconnect with function block on STM322xG-EVAL board
	SB15 open
	-
	-
	-
	-
Remo Disconn	ve camera module from CN15. ect motor control board from CN5

Daughterboard extension connector C Table 10.

Alternative function

FSMC_A17

FSMC_D15

FSMC_D13

-ULPI_D6 &

CAN2_TX

43	PH12	DCMI_D3 & MC	Disconnect motor control board from CN5
45	NC	-	-
47	EMU_3V3	-	-
49	EMU_5V	-	-
2	PI2	IO_Expandor_INT	Remove R136
4	PI0	I2S_CMD	-
6	PH14	DCMI_D4 & MC	Remove camera module from CN15. Disconnect motor control board from CN5
8	PA13	TMS/SWDIO	-
10	GND	-	-
12	PA12	OTG_FS_DP	Remove R19
14	PA10	OTG_FS_ID	Remove R21
16	PA8	MCO	JP5 open
18	PC8	MicroSDCard_D0 & MC	Remove MicroSD card from CN6 disconnect motor control board from CN5
20	PC7	LED4	Remove R140
22	PG8	LED2	Remove R154
24	PG6	LED1	Remove R155
26	PG4	FSMC_A14	-
28	PG2	FSMC_A12	-
30	GND	-	-
32	PD13	FSMC/MC	SB14 open. Disconnect motor control board from CN5.
34	PD11	FSMC_A16	-
36	PD9	FSMC_D14	-
38	PB15	OneNAND_INT	Remove R53
40	PB14	MII_INT	Remove R41
42	PB12	ULPI_D5	-

Table To. Daughterboard extension connector CN3 (continued)			
Pin	Description	Alternative function	How to disconnect with function block on STM322xG-EVAL board
44	NC	-	-
46	NC	-	-
48	APP_3V3	-	-
50	GND	-	-

 Table 10.
 Daughterboard extension connector CN3 (continued)

 Table 11.
 Daughterboard extension connector CN4

Pin	Description	Alternative function	How to disconnect with function block on STM322xG-EVAL board	
1	GND	-	-	
3	Pl6	DCMI_D6 & MC	Remove camera module from CN15 Disconnect motor control board from CN5	
5	Pl4	DCMI_D5 & MC	Remove camera module from CN15 SB16 open	
7	PE0	FSMC_BL0	-	
9	PB8	MII_TXD3 & MC	Remove RS5 SB10 open Disconnect motor control board from CN5	
11	BOOT0	BOOT0	-	
13	PB6	I2C1_SCK	Remove R103	
15	PB4	TRST	-	
17	PG15	User button	Remove R150	
19	GND	-	-	
21	PG12	Smartcard_CMDVCC & CLD_VSYNC	Remove R128	
23	PG10	FSMC_NE3	Remove LCD board MB785 from CN19	
25	PD7	FSMC_NE1	Remove R52	
27	PD5	FSMC_NWE	-	
29	PD3	FSMC_CLK	-	
31	PD2	MicroSDCard_CMD	-	
33	PD0	FSMC_D2 & CAN1_RX	JP10 open	
35	PC11	MicroSDCard_D3 & RS232/IrDA_RX	JP22 open. Remove MicroSD card from CN6	
37	PA15	TDI	-	
39	GND	-	-	

AN4049

Pin	Description	Alternative function	How to disconnect with function block on STM322xG-EVAL board	
2	PI7	DCMI_D7 & MC	Remove camera module from CN15. Disconnect motor control board from CN5	
4	PI5	DCMI_VSYNC & MC	Remove camera module from CN15. Disconnect motor control board from CN5	
6	PE1	FSMC_BL1	-	
8	PB9	I2C1_SDA	Remove R111	
10	GND	-	-	
12	PB7	FSMC_NL	-	
14	PB5	ULPI_D7 & CAN2_RX	JP10 open	
16	PB3	TDO/SWO	-	
18	PG14	MII_TXD1	Remove RS6	
20	PG13	MII_TXD0	Remove RS6	
22	PG11	MII_TX_EN	Remove RS6	
24	PG9	FSMC_NE2	Remove R47	
26	PD6	FSMC_NWAIT	Remove R54	
28	PD4	FSMC_NOE	-	
30	GND	-	-	
32	PD1	FSMC_D3 &CAN1_TX	JP3 open	
34	PC12	MicroSDCard_CLK	Remove MicroSD card from CN6	
36	PC10	MicroSDCard_D2 & RS232/IrDA_TX	Remove MicroSD card from CN6	
38	PA14	TCK/SWCLK	-	
40	PI3	I2S_DIN	-	

 Table 11.
 Daughterboard extension connector CN4 (continued)

5.13 Ethernet RJ45 connector CN7

Figure 7. Ethernet RJ45 connector CN7

•			
Pin number	Description	Pin number	Description
1	TxData+	2	TxData-
3	RxData+	4	Shield
5	Shield	6	RxData-
7	Shield	8	Shield

Table 12. Ethernet connector pinout

5.14 JTAG debugging connector CN14

Table 13. JTAG debugging connector CN14

Pin number	Description	Pin number	Description
1	3.3 V power	2	3.3 V power
3	PB4	4	GND
5	PA15	6	GND
7	PA13	8	GND
9	PA14	10	GND
11	RTCK	12	GND
13	PB3	14	GND
15	RESET#	16	GND
17	DBGRQ	18	GND
19	DBGACK	20	GND

5.15 Power connector CN18

The STM322xG-EVAL demonstration board can be powered from a DC 5 V power supply via the external power supply jack (CN18) shown in *Figure 6*. The central pin of CN18 must be positive.

5.16 TFT LCD connector CN19

One 34-pin male header CN19 is available on the board for connecting the LCD module board MB785. Please refer to *Section 5.11* for details.

6 In-Home Display with HTTP gateway firmware

6.1 Firmware structure

Figure 10 shows the layers architecture of the firmware implementation.

Figure 10. Firmware architecture

Figure 11. System architecture and hardware block interaction

This section describes the firmware implementation. The tasks/functions are described in the following format:

Table 14. Function description format

Function name	The name of the function	
Function prototype	Prototype declaration of the function	
Behavior description	Brief explanation of how the function is executed	
Input parameter {x}	Description of the input parameters	
Output parameter {x}	Description of the output parameters	
Return value	Value returned by the function	
Required preconditions	Requirements before calling the function	
Called functions	Other library functions called	

6.2 main.c

6.2.1 demo_initTask

Table 15 describes the demo_initTask task:

Table 15. demo_initTa	sk	task
-----------------------	----	------

Function name	demo_initTask
Function prototype	void demo_initTask (void *pvParameters)
Behavior description	Initialize the visualization environment, the RTC and check the touchscreen for the calibration
Input parameter {x}	None
Output parameter {x}	None
Return value	None
Required preconditions	None
Called functions	No API/HAL layer functions;

Example:

```
static void demo_initTask (void *pvParameters)
{
  #if TOUCH_SCREEN_CAPABILITY
    /* Check if Calibration has been done*/
   TS_CheckCalibration();
  #endif
  CursorInit(GL_NULL);
  /* Set the LCD Back Color */
  GL_SetBackColor(GL_White);
  /* Set the Font Text Color */
  GL_SetTextColor(GL_Black);
  GL_Clear(GL_White);
  GL_DrawButtonBMP( 210, 110,
                   (LCD_Height/10)*2 + 100,
                   (LCD_Height/10)*2,
                   (uint8_t*) STM32Logo);
  GL_DisplayAdjStringLine(3*(LCD_Height/5),(LCD_Width/3)*2 + 6,
                          "Loading.", GL_FALSE);
```

GL_Delay(30);


```
GL_DisplayAdjStringLine(3*(LCD_Height/5), (LCD_Width/3)*2 + 6,
                        "Loading..", GL_FALSE);
GL_Delay(30);
GL_DisplayAdjStringLine(3*(LCD_Height/5), (LCD_Width/3)*2 + 6,
                        "Loading...", GL_FALSE);
GL_Delay(30);
GL_DisplayAdjStringLine(3*(LCD_Height/5), (LCD_Width/3)*2 + 6,
                        "Loading. ", GL_FALSE);
GL_Delay(30);
GL_DisplayAdjStringLine(3*(LCD_Height/5), (LCD_Width/3)*2 + 6,
                       "Loading..", GL_FALSE);
GL_Delay(30);
GL_DisplayAdjStringLine(3*(LCD_Height/5), (LCD_Width/3)*2 + 6,
                        "Loading...", GL_FALSE);
GL_Delay(20);
RTC_Settings();
CursorShow(195, 50);
vTaskResume(xGraphLibTaskHandle);
while(!RTC_ClockIsSet)
 vTaskDelay(25);
vTaskResume(xWEB_GetTaskHandle);
vTaskResume(xZigNetMgmtHandle);
vTaskResume(xCalendarTaskHandle);
vTaskResume(xSmartPlugSamplingHandle);
vTaskResume(xLedTaskHandle);
vTaskSuspend(NULL);
```

}

6.3 web_client.c

6.3.1 Web_Get_Task

Table 16 describes the Web_Get_Task task:

Table 16. Web_Get_Task task

Function name	Web_Get_Task
Function prototype	void Web_Get_Task (void *pvParameters)
Behavior description	Start the WEB GET task: Upload the smartplug sampling data on the web server where they are stored in an SQL database.
Input parameter {x}	None
Output parameter {x}	None
Return value	None
Required preconditions	None
Called functions	No API/HAL layer functions;

Example:

{

void Web_Get_Task(void *pvParameters)

```
struct netconn *conn;
int ret = 0;
int len = 0;
int nErr = 0;
vTaskSuspend( NULL );
/* Create a new connection identifier. */
conn = netconn_new(NETCONN_TCP);
/* Bind the connection to WEB server port */
ret = netconn_connect(conn, &WEB_SERVER_IP, WEB_SERVER_PORT);
/* Infinite main loop -----*/
while (1)
{
 if(SendToWeb == 1)
  {
   /* Check if the conn allocation has been successed */
   if (conn == 0)
    {
     /* Delete the current session data */
     netconn_delete(conn);
     /* Create a new connection identifier. */
```



```
conn = netconn_new(NETCONN_TCP);
  /* Start the connection */
  do
  {
    /* Bind the connection to WEB server port */
    ret = netconn_connect(conn, &WEB_SERVER_IP, WEB_SERVER_PORT);
    /* Check if the Connection Binding has been successed */
    if (ret == ERR_MEM || ret == ERR_BUF || ret == ERR_VAL || ret == ERR_ARG )
    {
      /* Delete the current session data */
      netconn_delete(conn);
      /* Create a new connection identifier. */
      conn = netconn_new(NETCONN_TCP);
      vTaskDelay(700);
    }
  }while(ret!=0);
}
/* Write the GET request to the buffer to be sent to WEB server */
len = strlen((char*)buf);
/* Send application data to be encrypted */
ret = netconn_write(conn, buf, len, NETCONN_NOFLAG);
if(ret < 0)
{
  /* Write to WEB server failed */
  /\,{}^{\star} Bind the connection to WEB server port {}^{\star}/
  ret = netconn_connect(conn, &WEB_SERVER_IP, WEB_SERVER_PORT);
  /* Check if the Connection Binding has been successes */
  if ( ret < 0 )
  {
    /* Delete the current session data */
    netconn_delete(conn);
    /* Create a new connection identifier. */
    conn = netconn_new(NETCONN_TCP);
    do {
        /* Bind the connection to WEB server port */
       ret = netconn_connect(conn, &WEB_SERVER_IP, WEB_SERVER_PORT);
        /* Send application data to be encrypted */
        ret = netconn_write(conn, buf, len, NETCONN_NOFLAG);
    }while(ret<0);</pre>
```

Doc ID 022809 Rev 2


```
}
}
SendToWeb = 0;
}
/* Insert 10 s delay */
vTaskDelay(700);
}
```

6.4 tasks_misc.c

}

6.4.1 GraphicLibTask

Table 17 describes the GraphicLibTask task:

Function name	GraphicLibTask
Function prototype	void GraphicLibTask (void *pvParameters)
Behavior description	Manage the graphic library layer and input events
Input parameter {x}	None
Output parameter {x}	None
Return value	None
Required preconditions	None
Called functions	No API/HAL layer functions;

Example:


```
TimeOutCalculate();
CatchInputEvents();
vTaskDelay(3);
```

ZigNetMgmtTask 6.4.2

}

}

Table 18 describes the ZigNetMgmtTask task:

Function name	ZigNetMgmtTask
Function prototype	void ZigNetMgmtTask (void *pvParameters)
Behavior description	Initialize ZigBee network add nodes sending DeviceAnnounce request
Input parameter {x}	None
Output parameter {x}	None
Return value	None
Required preconditions	None
Called functions	No API/HAL layer functions;

Table 18. ZigNetMgmtTask task

Example:

{

```
void ZigNetMgmtTask( void *pvParameters)
   vTaskSuspend( NULL );
   uint8_t NewDevFlag = 1;
   /* Load Device List stored into the Dual Interface EEPROM */
   if( Load_HA_DevList() == 0 && HA_DeviceCount > 0)
   {
       ZigBeeNet_InitDone = 1;
       ShowNetworkStatus();
       CursorShow(195, 50);
       vTaskResume(xWEB_GetTaskHandle);
   }
   /* Infinite main loop -----*/
   while (1)
   {
      USART_ITConfig(HA_USART, USART_IT_RXNE, ENABLE);
      while( (HA_DevAnn == 1) && (ZigBeeNet_InitDone == 1) )
```

Doc ID 022809 Rev 2


```
{
         NewDevFlag = 1;
         for(uint8_t i=0; i<HA_DeviceCount; i++)</pre>
           if(ppHAdeviceList[i]->NetworkID == HA_NodeID)
           {
              NewDevFlag = 0;
              break;
           }
         /* Adding the new device to the device list */
         if(NewDevFlag == 1)
         {
            ppHAdeviceList[HA_DeviceCount++] = NewHA_Device(0, HA_NodeID);
            Add_HA_DeviceToCombo(GL_FALSE,0);
         }
         HA_DevAnn = 0; /* Reset the FLAG to accept new device join */
       }
       vTaskDelay(20);
    }
}
```

6.4.3 CalendarTask

Table 19 describes the CalendarTask task:

Table 19. CalendarTask task

Function name	CalendarTask
Function prototype	void CalendarTask (void *pvParameters)
Behavior description	Simulate the scenario over 24 hours switching on/off the devices according to their timer
Input parameter {x}	None
Output parameter {x}	None
Return value	None
Required preconditions	None
Called functions	No API/HAL layer functions;

Example:

void CalendarTask(void *pvParameters)

{


```
vTaskSuspend( NULL );
uint8_t * NodePower[16];
uint8_t NodeLabel[20];
/* Infinite main loop -----*/
while (1) {
  if(HA_TimerActivated == 1){
    if(ppHAdeviceList[0]->Timer == HA_TIMER_ON)
    {
      if((ppHAdeviceList[0]->StartTime == HA_HourCounter) &&
         (ppHAdeviceList[0]->Status == 0))
      {
         SwitchDeviceON(ppHAdeviceList[0]->NetworkID);
         ppHAdeviceList[0]->Status = 1;
      }
      if((ppHAdeviceList[0]->StopTime <= HA_HourCounter) &&
          (ppHAdeviceList[0]->Status == 1))
      {
         SwitchDeviceOFF(ppHAdeviceList[0]->NetworkID);
         ppHAdeviceList[0]->Status = 0;
      }
      if(ppHAdeviceList[0]->Status == 1)
      {
         sprintf((char*)NodeLabel, "%s", ppHAdeviceList[0]->Label);
         if(strcmp((char*)NodeLabel, "WASHING_MACHINE") == 0)
           sprintf((char*)NodeLabel, "WashMach Status ON ");
         else
           sprintf((char*)NodeLabel, "%s Status ON ", NodeLabel);
         Set_Label( &pageS1E, 0x68, NodeLabel );
         sprintf((char*)NodePower, "Power %d Watt ", ppHAdeviceList[0]->Power);
      }
      else
      {
         sprintf((char*)NodeLabel, "%s", ppHAdeviceList[0]->Label);
         if(strcmp((char*)NodeLabel, "WASHING_MACHINE") == 0)
           sprintf((char*)NodeLabel, "WashMach Status OFF");
         else
           sprintf((char*)NodeLabel, "%s Status OFF", NodeLabel);
         Set_Label( &pageS1E, 0x68, NodeLabel );
         sprintf((char*)NodePower, "Power 0 Watt ");
```


}

{

```
}
   Set_Label( &pageS1E, 0x71, (uint8_t*)NodePower );
   RefreshPageControl( &pageS1E, 0x68 );
   RefreshPageControl( &pageS1E, 0x71 );
if(ppHAdeviceList[1]->Timer == HA_TIMER_ON)
    if((ppHAdeviceList[1]->StartTime == HA_HourCounter) &&
       (ppHAdeviceList[1]->Status == 0))
    {
       SwitchDeviceON(ppHAdeviceList[1]->NetworkID);
       ppHAdeviceList[1]->Status = 1;
    }
    if((ppHAdeviceList[1]->StopTime <= HA_HourCounter) &&
       (ppHAdeviceList[1]->Status == 1))
    {
       SwitchDeviceOFF(ppHAdeviceList[1]->NetworkID);
       ppHAdeviceList[1]->Status = 0;
    }
    if(ppHAdeviceList[1]->Timer == HA_TIMER_ON)
    {
      if(ppHAdeviceList[1]->Status == 1)
      {
         sprintf((char*)NodeLabel, "%s", ppHAdeviceList[1]->Label);
         if(strcmp((char*)NodeLabel, "WASHING_MACHINE") == 0)
            sprintf((char*)NodeLabel, "WashMach Status ON ");
         else
            sprintf((char*)NodeLabel, "%s Status ON ", NodeLabel);
         Set_Label( &pageS1E, 0x69, NodeLabel );
         sprintf((char*)NodePower, "Power %d Watt ", ppHAdeviceList[1]->Power);
      }
      else
      {
        sprintf((char*)NodeLabel, "%s", ppHAdeviceList[1]->Label);
        if(strcmp((char*)NodeLabel, "WASHING_MACHINE") == 0)
            sprintf((char*)NodeLabel, "WashMach Status OFF");
        else
            sprintf((char*)NodeLabel, "%s Status OFF", NodeLabel);
        Set_Label( &pageS1E, 0x69, NodeLabel );
        sprintf((char*)NodePower, "Power 0 Watt ");
      }
```



```
Set_Label( &pageS1E, 0x72, (uint8_t*)NodePower );
RefreshPageControl( &pageS1E, 0x69 );
RefreshPageControl( &pageS1E, 0x72 );
}
}
RTC_TimeStampShow();
}
vTaskDelay(90);
}
```

6.4.4 SPSamplingTask

}

Table 20 describes the SPsamplingTask task:

Table 20. SPsamplingTask task

Function name	SPsamplingTask
Function prototype	void SPsamplingTask (void *pvParameters)
Behavior description	Read and sample the plug consumption values
Input parameter {x}	None
Output parameter {x}	None
Return value	None
Required preconditions	None
Called functions	No API/HAL layer functions;

Example:


```
if(HA_NodeID == ppHAdeviceList[index]->NetworkID)
    break;
}
if(index == 0)
{
  if ( ppHAdeviceList[0]->Status == 1 )
  {
    if(HA_Attribute == 0x0000) /* Type of data = Energy */
    {
      smart_points1[i%N_SAMPLES] = ppHAdeviceList[0]->Energy;
     i++;
    }
    else if(HA_Attribute == 0x0400)/* Type of data = Power */
    {
      smart_points1B[i%N_SAMPLES] = ppHAdeviceList[0]->Power;
     j++;
    }
    sendData_ToWeb(ppHAdeviceList[0]->NetworkID, ppHAdeviceList[0]->Label,
                   ppHAdeviceList[0]->Power, ppHAdeviceList[0]->Energy);
  }
  else
  {
    smart_points1[i%N_SAMPLES] = 0;
    smart_points1B[j%N_SAMPLES] = 0;
    i++;
    j++;
  }
}
else if(index == 1)
{
  if ( ppHAdeviceList[1]->Status == 1 )
  {
    if(HA_Attribute == 0x0000) /* Type of data = Energy */
    {
      smart_points2[f%N_SAMPLES] = ppHAdeviceList[1]->Energy;
     f++;
    }
    else if(HA_Attribute == 0x0400)/* Type of data = Power */
    {
      smart_points2B[g%N_SAMPLES] = ppHAdeviceList[1]->Power;
```


Doc ID 022809 Rev 2

```
g++;
      }
      sendData_ToWeb(ppHAdeviceList[1]->NetworkID, ppHAdeviceList[1]->Label,
                     ppHAdeviceList[1]->Power, ppHAdeviceList[1]->Energy);
    }
    else
    {
      smart_points2[f%N_SAMPLES] = 0;
      smart_points2B[g%N_SAMPLES] = 0;
      f++;
      g++;
    }
  }
 else if(ppHAdeviceList[index] && HA_NodeID == ppHAdeviceList[index]->NetworkID)
   sendData_ToWeb(ppHAdeviceList[index]->NetworkID,ppHAdeviceList[index]->Label,
                  ppHAdeviceList[index]->Power, ppHAdeviceList[index]->Energy);
 if((i == N_SAMPLES) || (j == N_SAMPLES) || (f == N_SAMPLES) || (g == N_SAMPLES))
  {
    i=0;
    j=0;
    f=0;
    g=0;
    for(uint8_t k=0; k<N_SAMPLES; k++)</pre>
    {
      smart_points1[k] = 0;
      smart_points1B[k] = 0;
      smart_points2[k] = 0;
      smart_points2B[k] = 0;
    }
  }
}
index = 0;
USART_ITConfig(HA_USART, USART_IT_RXNE, ENABLE);
vTaskDelay(100);
```

Doc ID 022809 Rev 2

}

6.4.5 ToggleLed Task

Table 21.

Table 21 describes the ToggleLed Task:

ToggleLed Task

Function name	ToggleLed
Function prototype	void ToggleLed (void *pvParameters)
Behavior description	Start toggle Led task: Toggle LED 1, 2 and 3 every 200 ms
Input parameter {x}	None
Output parameter {x}	None
Return value	None
Required preconditions	None
Called functions	No API/HAL layer functions

Example:

```
void ToggleLed( void *pvParameters)
{
  vTaskSuspend( NULL );
  portTickType xLastWakeTime;
  const portTickType xFrequency = 200;
  /\,{}^{\star} Initialize the xLastWakeTime variable with the current time {}^{\star}/
  xLastWakeTime = xTaskGetTickCount();
  /* Infinite loop */
  for( ;; )
  {
      STM_EVAL_LEDToggle(LED1);
      /* Insert 12 ms delay */
      vTaskDelay(12);
      STM_EVAL_LEDToggle(LED1);
      /* Insert 12 ms delay */
      vTaskDelay(12);
      STM_EVAL_LEDToggle(LED2);
      /* Insert 10 ms delay */
      vTaskDelay(12);
      STM_EVAL_LEDToggle(LED2);
      /* Insert 12 ms delay */
```


}

```
vTaskDelay(12);
STM_EVAL_LEDToggle(LED3);
/* Insert 12 ms delay */
vTaskDelay(12);
STM_EVAL_LEDToggle(LED3);
/* Insert 12 ms delay */
vTaskDelay(12);
STM_EVAL_LEDToggle(LED2);
/* Insert 12 ms delay */
vTaskDelay(12);
STM_EVAL_LEDToggle(LED2);
vTaskDelayUntil(&xLastWakeTime, xFrequency);
```


7 Getting started with the system

7.1 Hardware requirements

- ZigBee adapter board with the ZigBee module SPZB32W onboard
- STM322xG-EVAL board with the jumpers set as described in Section 7.2
- VDC / 2 A isolated power supply is recommended
- One JTAG programmer/debugger dongle (J-Link from SEGGER or IAR Systems[™] is recommended). It is unnecessary if no modifications to the firmware code have been performed.

7.2 STM322xG-EVAL demonstration board setup

Set up the STM322xG-EVAL board as follows:

- Keep jumper JP16, JP21 and JP22 not fitted
- Set JP5 in 1-2 position, and JP6 in 2-3 position
- Disconnect motor control board from CN5
- Remove MicroSD card from CN6
- Remove R115 and R140.

Set up the STEVAL-IDZ001V1 adapter as follows:

- Place the adapter on the STM322xG-EVAL board so that it is well fixed on connectors CN2, CN3 and CN4
- Set JP3 and JP4 in 1-2 position in order to set the communication between STM32W108CB and STM32F2x7x via UART
- Set JP1 and JP2 in position 1-2 to assign 0xA6 as I²C address for the dual interface EEPROM (M24LR64r).

7.3 STM322xG-EVAL and ZigBee adapter pins mapping

The connections between the MCU and the ZigBee module + EEPROM dual interface are shown in *Table 12*.

STM32 pin name	STM322xG-EVAL I/O assignment	Extension connector pin. no	ZigBee adapter I/O assignment
-	APP_3V3	CN3	VCC_3V3
-	GND	CN3	GND
PA4	Audio_DAC_OUT (remove R115)	CN2 -Pin 4	ZIG_SS (SPI3)
PC10	MicroSDCard_D2 & RS232-IrDA_TX (remove MicroSD card from CN6)	CN4	ZIG_SCLK (SPI3)
PC11	MicroSDCard_D3 & RS232-IrDA_RX (JP22 open, remove MicroSD card from CN6)	CN4 -Pin 35	ZIG_MISO (SPI3)

Table 22. ZigBee adapter pinout description

STM32 pin name	n STM322xG-EVAL I/O assignment co		ZigBee adapter I/O assignment
PC12	MicroSDCard_CLK (remove MicroSD card from CN6)	CN4 -Pin 34	ZIG_MOSI (SPI3)
PA8	MCO (JP5 open)	CN3	I2C3_SCK
PC9	MicroSDCard_D1 & I2S_CKIN (keep JP16 on open)	CN3	I2C3_SDA
PD2	MicroSDCard_CMD	CN4	ZIG_HOST_INT
PC8	MicroSDCard_D0 & MC (remove MicroSD card from CN6, disconnect motor control board from CN5)	CN3 -Pin 18	ZIG_RSTB
PH13	MicroSDCard_detect & MC (remove MicroSD card from CN6, disconnect motor control board from CN5)	CN3	ZIG_WAKE
PH15	SmartCard_3/5V & MC (disconnect motor control board from CN5)	CN3 -Pin 5	VCC-GPIO (for M24LR64-r)
PC6	I2S_MCK & SmartCard_IO (JP21 open)	CN3	USART6_TX
PC7	LED4 (Remove R140)	CN3	USART6_RX

Table 22. ZigBee adapter pinout description (continued)

7.4 Program/update dual interface EEPROM with network parameters

The dual interface EEPROM M24LR64-r stores the network parameters of the STM322xG-EVAL board inside the first 3 blocks of the sector 1 and the IP address of the web server at the fourth block of the sector 1, where each block is 4 bytes. The schema is the following:

- Block 0000: IP address
- Block 0001: subnet mask
- Block 0002: default gateway
- Block 0003: web server IP address.

Figure 12 shows a screenshot of the "M24LRxx application software", the GUI application that allows the user to program the M24LR64-r memory through an RF reader (i.e. FEIG) included in the demo kit (USB based) of the dual interface EEPROM:

7 M24LRxx Application Software Reader Application Image Transfer Application Demo STM32-PRIMER2 Demo Datu	alogger RFID products Tools Help	
DUAL INTERFACE EEPROM - M24LR64		×
Show I2C Commands	ser Interface	show RF Transfer File tools
Read multiple read Get Multiple Block Security Status From [0000 to [0000] Write 00 00 00 00 Pill with	MEMORY scen by RF Sector Block data sss 00 0000 CO AS 0.1.32 SS 00 0000 CO AS 0.1.01 XX	Present password Write password Look sector
Inventory 1000 Г UID DSFID E0022E5498967567 FF Memory size Block size IC reference		<u>Warning</u> There is no way to retreive RF or I2C password. If you change a Password, please don't forget it.
C Non-oddressed mode Select mode Select STAY QUIET RESET to READY Write AFI O Lock AFI		DUAL INTERFACE
Write DSFID 00 Lock DSFID		
FETA USB DEADED CONNECTED	version 1.7	TMigroelectropics

Figure 12. M24LRxx application software

For more information on the M24LRxx application software, see the UM0853 user manual, the GUI application is available from the ST website:

http://www.st.com/internet/com/SOFTWARE_RESOURCES/SW_COMPONENT/SW_FUN CTION/m24Ir_application_software.zip.

7.5 Configure IAR tool for building, debugging, and programming application

Together with the firmware library package, an example application is delivered in order to provide the final user with a real example of the "In-Home Display with HTTP gateway" application usage.

The delivered example application has been written and developed using IAR EWARM 6.30 IDE and can be built for the STM32F2x7x microcontroller.

The workspace is created using the IAR embedded workbench 6.30 IDE, using the ARM[®]-based 32-bit STM32F2x7x firmware library (ver. 1.0.0), CMSIS compliant, and in C language.

The tree structure of the project is organized separating and grouping the source files with the header files, both for the project files and the library files, as shown in *Figure 13*.

Figure 13. Application project files

In order to load the project, click on File\Open\Workspace and in the window that appears select, in \project folder\EWARM, the file "Project.eww".

On the main node, where the program name located in the files window is shown, right click and select Options. In the window which appears, select the Debugger item in the Category list box, and select the proper debugging tool in the Driver list box, then press the OK button. In the proposed example the J-Link dongle is used (*Figure 15*).

Press the "Make" icon or click on "Project \ Rebuild All". Any error or warning should appear once the compiling has completed. Connect the J-Link tool to the USB port of the PC, and connect the flat cable with the programming adapter. Plug the adapter into the dongle connector. Press the Debug icon, CTRL+D or click Project\Debug. The debugger starts to download the firmware to the dongle through the J-Link debugger\programmer. Press the Go button, F5 or click Debug\Go in order to execute the firmware in Debug mode. To run the dongle in Standalone mode, press the Stop Debugging icon, CTRL+SHIFT+D or click AN4049

Debug\Stop Debugging. Then remove the J-Link adapter from the dongle and reset the board by unplugging and plugging the power cable back in.

Options for node "Pr Category:	oject"	
General Options C/C++ Compiler Assembler Output Converter Custom Build Build Actions Linker Debugger Simulator Angel GOB Server IAR ROM-monitor J-Link/J-Trace LMI FTDI Macraigor RDI ST-Link Third-Party Driver	Setup Download Extra Options Plugins Driver Run to J-Link/J-Trace main Device description main Device description file main Override default stoonFiG\debugger\ST\vostm3210xxE.ddf	
	OK Cancel	AM1 [.]

Figure 15. IAR embedded workbench debugger options

In order to use the application project, it is necessary to:

- Include all the firmware delivered in the In-Home Display with HTTP gateway package containing the FreeRTOS core files, see *Figure 13*.
- Create the desired menu application functions in the file menu.c.
- Put inside "picture.c" the HEX dump of the pictures to be used with the application GUI.
- Implement a main function as described in the following section.

7.6 Example application - main.c

An example of a main application is reported below. The main function contains an example of the In-Home Display with HTTP gateway application initialization/configuration and implements the classic operations:

/* Includes*/
#include "main.h"
#include "touchscreen.h"
#ifdef USE_FREERTOS
#include "FreeRTOS.h"
#include "task.h"
#endif
/* Private typedef*/
/* Private define*/


```
/*-----*/ Tasks Priority -----*/
#define WEB_TASK_PRIO ( configMAX_PRIORITIES - 3 )
#define LED_TASK_PRIO ( tskIDLE_PRIORITY + 1 )
/* Private macro -----*/
/* Private variables -----*/
/* Task Handles */
xTaskHandle xSmartPlugSamplingHandle, xWEB_GetTaskHandle, xGraphLibTaskHandle,
          xLedTaskHandle, xCalendarTaskHandle, xZigNetMgmtHandle;
 /* Static IP Address */
uint8_t IP_ADDR0;
uint8_t IP_ADDR1;
uint8_t IP_ADDR2;
uint8_t IP_ADDR3;
 /* Subnet Mask */
uint8_t NETMASK_ADDR0;
uint8_t NETMASK_ADDR1;
uint8_t NETMASK_ADDR2;
uint8_t NETMASK_ADDR3;
 /* Default Gateway */
uint8_t GW_ADDR0;
uint8_t GW_ADDR1;
uint8_t GW_ADDR2;
uint8_t GW_ADDR3;
 /* Web Server Static IP Address */
uint8_t WEB_SERVER_IP_ADDR0;
uint8_t WEB_SERVER_IP_ADDR1;
uint8_t WEB_SERVER_IP_ADDR2;
uint8_t WEB_SERVER_IP_ADDR3;
extern uint8_t RTC_ClockIsSet;
/* Private function prototypes -----*/
static void demo_initTask( void *pvParameters );
extern void (*pDelayFunc)(uint32_t nTime);
extern void (*pSysTickFunc)(void);
```



```
extern void DelayCounter(uint32_t nTime);
extern void DelayRTOS(uint32_t nTime);
#ifdef __GNUC__
/* With GCC/RAISONANCE, small printf (option LD Linker->Libraries->Small printf
   set to 'Yes') calls __io_putchar() */
#define PUTCHAR_PROTOTYPE int __io_putchar(int ch)
#else
#define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f)
#endif /* __GNUC__ */
/* Private functions -----*/
/**
  * @brief Main program.
  * @param None
  * @retval None
  */
int main(void)
{
  pDelayFunc = DelayCounter;
  /*!< At this stage the microcontroller clock setting is already configured to
      120 MHz, this is done through SystemInit() function which is called from
      startup file (startup_stm32f2xx.s) before to branch to application main.
      To reconfigure the default setting of SystemInit() function, refer to
      system_stm32f2xx.c file
   */
  /* Setup STM32 system (USART, RNG, HASH, CRYP) and STM322xG-EVAL resources */
  System_Setup();
  EEprom_NetConfigReadFunc();
  /* Configure Ethernet (GPIOs, clocks, MAC, DMA) */
  ETH_BSP_Config();
  /* Initialize the LwIP stack */
  LwIP_Init();
 portBASE_TYPE res = xTaskCreate(demo_initTask, "DEMO_INIT",
                                 configMINIMAL_STACK_SIZE*12, NULL,
                                 configMAX_PRIORITIES-1, NULL);
```



```
/* Start the WEB GET task: Update the SmartPlug data on the WebServer */
res = xTaskCreate(Web_Get_Task, "WEB_GET", configMINIMAL_STACK_SIZE*22, NULL,
                  tskIDLE_PRIORITY+4, &xWEB_GetTaskHandle);
/* Start the Graphic Library task: Check the Touchscreen, Joystick, Button user
  interaction */
res = xTaskCreate(GraphicLibTask, (signed portCHAR *) "GraphicLibrary",
                  configMINIMAL_STACK_SIZE*16, NULL, tskIDLE_PRIORITY+6,
                  &xGraphLibTaskHandle);
/* Start the ZigBee Network Management task: manage the whole ZigBee network and
  keep trace of the alive Nodes */
res = xTaskCreate(ZigNetMgmtTask, (signed portCHAR *) "ZigNetMgmt",
                  configMINIMAL_STACK_SIZE*4, NULL, tskIDLE_PRIORITY+2,
                  &xZigNetMgmtHandle);
/* Start the Calendar task: Update the date/time and show it on the LCD */
res = xTaskCreate(CalendarTask, (signed portCHAR *) "Calendar",
                  configMINIMAL_STACK_SIZE*4, NULL, tskIDLE_PRIORITY+2,
                  &xCalendarTaskHandle);
/* Start the SmartPlug Measurement Sampling task: Sample the measured power/energy
   of each Node */
res = xTaskCreate(SPsamplingTask, (signed portCHAR *) "SmartPlugSampling",
                  configMINIMAL_STACK_SIZE*6, NULL, tskIDLE_PRIORITY+3,
                  &xSmartPlugSamplingHandle);
/* Start toggleLed task: Toggle LED 1, 2 and 3 every 200ms */
res = xTaskCreate(ToggleLed, "LED", configMINIMAL_STACK_SIZE/4, NULL, LED_TASK_PRIO,
                  &xLedTaskHandle);
pDelayFunc = DelayRTOS;
/* Start the scheduler */
vTaskStartScheduler();
/* We should never get here as control is now taken by the scheduler */
for( ;; );
```

The initialization process is charged with preparing the basic mechanism of the system:

- Hardware peripheral configuration and initialization
- ZigBee stack initialization
- FreeRTOS task creation
- Starting system.

}

The clock distribution and the interrupt settings are two components which are strongly dependent on the target project. An example of clock rate may be 72 MHz as the maximum

speed of the current STM32 microcontroller. It can be decreased to reduce the power consumption. The clock rate assumptions are:

- System HCLK 72 MHz
- Low speed peripheral PCLK1 72 MHz
- High speed peripheral PCLK2 36 MHz
- Analog-to-digital converter ADCCLK 36 MHz.

The interrupt setting situation is very similar to clock distribution. The library functions involved with interrupt managing do not take the priorities into account; they only perform very necessary and absolutely common settings to make them serviceable.

8 In-Home Display with HTTP gateway GUI application

8.1 Application user interface

After a board reset, if the firmware is correctly loaded into the Flash memory and the board power is correctly supplied, the main screen is displayed, as shown in *Figure 16*.

Figure 16. Home screen

If the network has already been set up in the past, after some seconds, when the ZigBee network initialization is complete, the home screen looks like that in *Figure 17*.

Figure 17. Home screen after ZigBee network initialization done

At this point, the ZigBee nodes can be switched on and joined to the ZigBee network just created. The default channel is 16, so set it on the ZigBee nodes accordingly.

If "Management" is chosen, two situations are possible:

a) If no plug is connected to the smartplug coordinator, the following screen is shown:

SmartPlug Management
No Plug Detected
<back home="" net<="" set="" td="" zigb=""></back>
AM11988v1

Figure 18. No plug detected

From this screen it is possible to run the ZigBee network setup by which a new ZigBee network is formed. The screen in *Figure 19* is shown:

Figure 19. Setup ZigBee network

SmartPlug Management
Do you want to setup a new ZigBee Network?
YES, DO IT!
<back home="" net<="" set="" td="" zigb=""></back>

If no network already exists with the current coordinator, the screen in *Figure 20* is shown:

Figure 20. Setting ZigBee network up

If a ZigBee network had already been set up, it must be reinitialized, so the screen in *Figure 21* is shown:

Figure 21. Reinitializing ZigBee network

b) If one or more plugs are detected the following screen is shown:

Figure 22. Plug detected

There are three main buttons: modify, control and identify. They allow the management of the smartplug device.

If "Modify" is chosen, the user can change the label of the selected plug, through the screen shown in *Figure 23*, choosing the new label from a list contained in a combobox.

Figure 23. Label changing

The user should scroll the list of the labels and select the "Apply" button in order to save the information and set the label also in the plug device via ZigBee protocol.

When "Control" is chosen, it is possible to switch on/off the smartplug device. The following screen shows the scenario:

When "Identify" is chosen, the system shows the network ID of the selected node, which is a 16-bit number shown in hexadecimal format. *Figure 25* below shows the respective screen:

In the home screen, by clicking on "Statistics" it is possible to see the electrical consumption of the single smartplug device or the total consumption related to all plugs connected to the smartplug coordinator.

The following screen is shown:

When energy is chosen, the following screen, representing the energy consumption of the selected smartplug device, is shown:

When global energy is chosen, the following screen, representing the energy consumption of the whole smartplug network, is shown:

When power is chosen, the following screen, representing the power consumption of the selected smartplug device, is shown:

Figure 29. Power consumption

When global power is chosen, the following screen, representing the power consumption of the whole smartplug network, is shown:

When the refresh button is chosen, it is possible to make a refresh of the graph chart in relation to the sampled points of the power consumption.

When the home button is chosen, it returns to the home screen.

On the home screen, by clicking on "Demo Scenario" it is possible to set a configuration for the nodes in order to enable automatic timers.

Only the first two nodes can be configured for the demo scenario.

The following screen is shown:

When the "Set Timer" button is chosen, a new screen is shown where the user can set up the parameter for the timer related to a smartplug node.

-								
De	mo	Se	Cenario	57				
Start Time	~	^	01:00					
Stop Time	~	^	01:00					
Priority	~	^	LOW					
Priority	~	^	LOW					
Save Parameters								
<back< td=""><td></td><td>Ho</td><td>ome</td><td></td><td></td><td></td></back<>		Ho	ome					
						AM12002v1		

Figure 32. Set timer

After setting up the parameters, the user must choose "Save Parameters" in order to apply the changes. Then, the user must choose "Back", bringing up the previous screen so that the timer can be activated with the respective button. Before activating the timer, the user can set it for another smartplug, so that the timer scenario is activated for 2 devices (the maximum allowed for the demo).

Clicking on the "Activate" button, the following screen is shown:

Figure 33. Activate timer

In this way, the demo scenario is running and the node for which the timer is activated is switched on and off according to the timer parameters set in the previous screen. In this screen the user can visualize the current date and time, the node status (off or on) and the instant power consumption. If the timer is activated also for a second node, its status and power consumption are shown after those of the first node.

When the home button is selected, it returns to the home screen.

9 Web server hosting energy consumption data

9.1 Features overview

Each time a smartplug node joins the network and its load type is configured through the GUI interface, it starts reporting power and energy consumption measured values.

These data are received from the coordinator board and routed via Ethernet to the web server.

The user can browse these data from another PC connecting to the web server and logging in with a username and password. Then, the user can look at the reporting table, export data to an Excel file or plot them to graphical charts.

9.2 Accessing the website

The following image shows the login page of the web server:

🔄 ZigBee HA System Management - Microsoft Internet Explorer
File Edit View Favorites Tools Help
🚱 Back 🔹 🌍 - 🖹 😰 🏠 🔎 Search 👷 Favorites 🚱 🖕
Address 🛃 http://127.0.0.1/
STMicroelectronics Systems Lab and Technical Marketing ZigBee HA System Authentication
Login guest Password ••••• Submit
er Loone Litternet

Figure 34. Login page

For example, the user can log in using "guest" as both username and password.

9.3 Browsing reporting data

After login, the browser is redirected to the following page where the user can choose the smartplug of which they want to query the reporting data. It can be selected from a combobox containing a list of all the smartplugs that have sent reports. From this page on, the user can always return using the specific "Back" button.

Edit View Favorites Tools Help	<u> </u>
Back • 🜍 • 💌 🔊 🏠 Search 🎌 Favorites 🚱 👙	
sss 🔕 http://127.0.0.1/stats.php	💌 🄁 😡
STMicroelectronics Systems Lab and Technical Marketing	
ZigBee HA System Statistics	
ZigBee HA Device History	
Select HA Device : COMPUTER Submit	
	7/2

Figure 35. Device selection page

After selecting the smartplug device, the following page is displayed:

Figure 36. Energy data table page

57

At this point, the user can:

1. Export the table of data to an Excel file, clicking on the "Export to Excel" button. See the following image:

Figure 37. Export data page

							~
	Sear		vorites 🍖				
Address en http://127.0.0.1/statistic	s.php						
STMicroelectronics	Zig	Sy: Bee F	stems L IA Sys	ab and T tem Stat	echnical Mar tistics	keting	
	File Downlo	ad				$\overline{\mathbf{X}}$	
	Do you wa	nt to open	or save this	s file?			
_		Name: sta Type: Mic From: 12	tistics.xls rosoft Office 7.0.0.1 Open	Excel 97-2003 W	orksheet		
	99 😵 Wh 99 sav	le files from t n your comp e this file. W	he Internet ca uter. If you do hat's the risk?	an be useful, som not trust the sou	e files can potentially rce, do not open or	:46:14	
0xD1	99 COMPUT	EK SP	89	190	2012-03-07	18:46:02	
0xD1	99 COMPUT	ER SP	73	185	2012-03-07	18:45:50	
0xD1	99 COMPUT	ER SP	73	163	2012-03-07	18:45:39	
0xD1	99 COMPUT	ER SP	40	152	2012-03-07	18:45:20	
0xD1	99 COMPUT	ER SP	40	141	2012-03-07	18:45:09	
0xD1	99 COMPUT	ER SP	24	130	2012-03-07	18:44:58	
0xD1	99 COMPUT	ER SP	7	119	2012-03-07	18:44:46	
		on on	-	07	2012 02 07	10 44 25	

2. Plot the data to graphical charts, where the user can select the day for which to plot the data, as shown from the following screen:

3. Return in order to select another smartplug device using the "Back" button.

10 Schematics

Figure 39. ZigBee and dual Interface EEPROM adapter for STM322xG-EVAL

Doc ID 022809 Rev 2

57

70/81

Doc ID 022809 Rev 2

57

57

Figure 42. STM3220-21-45-46G-EVAL_Ethernet

Doc ID 022809 Rev 2

Figure 43. STM3220-21-45-46G-EVAL LCD

Doc ID 022809 Rev 2

Figure 44. LCD module with both SPI and 16-bit interface

Figure 45. STM3220-21-45-46G-EVAL I/O peripherals

Figure 46. STM3220-21-45-46G-EVAL I/O_Expander

Figure 47. STM3220-21-45-46G-EVAL JTAG and trace

Figure 48. STM3220-21-45-46G-EVAL_Power

Figure 49. STM3220-21-45-46G-EVAL_Extension connector

11 References

- 1. STEVAL-IHP004V1 schematics diagram
- 2. M24LR64, datasheet
- 3. STM322xG-EVAL evaluation board UM1057, user manual
- 4. AN3128, application note
- 5. ZigBee-Dual IFs EEPROM Adapter for STM322xG-EVAL UM1519, user manual
- 6. SPZB32W1A2.1 module, datasheet
- 7. UM0853, user manual

12 Revision history

Table 23.Document revision history

Date	Revision	Changes
24-Jul-2012	1	Initial release.
12-Oct-2012	2	Modified: code in the Section 6.3.1

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

