

Micriµm
Empowering Embedded Systems

µC/Shell
V1.03.00

User Manual

www.Micrium.com

Disclaimer
Specifications written in this manual are believed to be accurate, but are not guaranteed to

be entirely free of error. Specifications in this manual may be changed for functional or

performance improvements without notice. Please make sure your manual is the latest

edition. While the information herein is assumed to be accurate, Micrium assumes no

responsibility for any errors or omissions and makes no warranties. Micrium specifically

disclaims any implied warranty of fitness for a particular purpose.

Copyright notice
You may not extract portions of this manual or modify the PDF file in any way without the

prior written permission of Micrium. The software described in this document is furnished

under a license and may only be used or copied in accordance with the terms of such a

license.

© 2007-2010; Micriµm, Weston, Florida 33327-1848, U.S.A.

Trademarks
Names mentioned in this manual may be trademarks of their respective companies. Brand

and product names are trademarks or registered trademarks of their respective holders.

Registration
Please register the software via email. This way we can make sure you will receive updates

or notifications of updates as soon as they become available. For registration please

provide the following information:

• Your full name and the name of your supervisor

• Your company name

• Your job title

• Your email address and telephone number

• Company name and address

• Your company's main phone number

• Your company's web site address

• Name and version of the product

Please send this information to: licensing@micrium.com

Contact address

Micrium

949 Crestview Circle

Weston, FL 33327-1848

U.S.A.

Phone : +1 954 217 2036

FAX : +1 954 217 2037

WEB : www.micrium.com

Email : support@micrium.com

Manual versions
If you find any errors in this document, please inform us and we will make the appropriate

corrections for future releases.

Manual Version Date By Description
V1.00 2007/08/30 SR Released first version.

V1.01 2010/04/02 ITJ

V1.02.00 2011/07/12 FBJ

V1.03.00 2011/10/04 FBJ

Table Of Contents

 Table of Contents ... iv

1 Introduction ... 1
1.01 Required modules ... 1

2 Directories and Files ... 2

3 Using µC/Shell ... 4
3.01 Commands, callbacks, and data types .. 5
3.02 µC/Shell startup code ... 6

3.03 µC/Shell example use ... 9

3.04 µC/Shell module configuration .. 10

3.05 µC/Shell internal details ... 11

4 µC/Shell API Reference ... 13

5 µC/Shell Callback Functions Reference .. 20

A µC/Shell Licensing Policy .. 23

B References .. 24

 1

Chapter 1

Introduction
µC/Shell is a stand-alone module allowing a string containing a command and its argument to be parsed and

executed. Though not directly tied with µC/TELNETs, it has been developed in order to provide a shell for this

product. However, it could be used with other applications.

This document describes how to configure and use the µC/Shell module in a µC/OS-II environment.

1.01 Required modules

The current version of µC/Shell requires the µC/LIB module. Please refer to the release notes document for

version information.

 2

Chapter 2

Directories and Files

The code and documentation of the µC/Shell module are organized in a directory structure according to

“AN-2002, µC/OS-II Directory Structure”. Specifically, the files may be found in the following directories:

\Micrium\Software\uC-Shell

This is the main directory for µC/Shell.

\Micrium\Software\uC-Shell\Doc

This directory contains the µC/Shell documentation files, including this one.

\Micrium\Software\uC-Shell\Cfg\Template

 This directory contains a template of µC/Shell configuration.

\Micrium\Software\uC-Shell\Source

This directory contains the µC/Shell source code. This protocol is implemented in two OS independent

files:

shell.c
shell.h

 3

The location of the directory containing the example sample code application is dependent of the evaluation board

and contains those files:

app.c

 Application code.

shell_cfg.h

 Example configuration file.

includes.h

 Master include file used by the application.

net_cfg.h

 µC/TCP-IP configuration file.

os_cfg.h

 µC/OS-II configuration file.

cpu_cfg.h

 µC/CPU configuration file.

 4

Chapter 3

Using µC/Shell

Before going into an example of µC/Shell usage, a few design concepts have to be explained. Since µC/Shell is

not associated with any particular product, modules in need of a shell facility (such as µC/TELNETs) interact

with it by means of an application callback function. This way, those modules are able to use or not to use the shell

in a totally transparent manner.

From the caller point of view, once the commands have been developed and the initialization performed, all that is

needed to do is a call the main µC/Shell execution function:

CPU_INT16S Shell_Exec (CPU_CHAR *in,

 SHELL_OUT_FNCT out_fnct,

 SHELL_CMD_PARAM *pcmd_param,

 SHELL_ERR *perr);

This function parses the ‘in’ parameter, a NUL terminated string containing a complete command line (command

name, followed by possible arguments being separated by spaces), just like this one:

App_Test –a –b –c readme.txt

Once parsed, that is once the command name and its arguments have been extracted, µC/Shell looks into its

command tables for a command match (in this case App_Test is the name of the command), and invokes it.

Note that the Shell_Exec() function also has a ‘out_fnct’ argument, which is a pointer to a callback that

handles the details of responding to the requester. In other words, if called by µC/TELNETs, then

µC/TELNETs has to provide the details of the response; if called by a UART, the UART should handle the

response. Finally, the ‘pcmd_param’ is a pointer to a structure containing additional parameters for the command

to use.

For more details on this function, please proceed with the next section.

 5

3.01 Commands, callbacks, and data types

µC/Shell commands (i.e. commands placed in a ‘command table’) all have this prototype:

CPU_INT16S My_Cmd (CPU_INT16U argc,

 CPU_CHAR *argv[],

 SHELL_OUT_FNCT out_fnct,

 SHELL_CMD_PARAM *pcmd_param);

where ‘argc’ is a count of the arguments supplied and ‘argv’, an array of pointers to the strings which

are those arguments. As for the return value, it is command specific, and will be used as the return value

for the Shell_Exec() function. However, in case of an error, SHELL_EXEC_ERR should be returned.

Commands are also defined by the SHELL_CMD_FNCT data type:

typedef CPU_INT16S (*SHELL_CMD_FNCT)(CPU_INT16U ,

 CPU_CHAR **,

 SHELL_OUT_FNCT ,

 SHELL_CMD_PARAM *);

As mentioned in the preceding section, each command is responsible for responding to its requester, and this is done

with the help of the last parameter: the pointer to the output function. This function has the following prototype:

CPU_INT16S My_Out_Fnct (CPU_CHAR *pbuf,

 CPU_INT16U buf_len,

 void *popt);

where ‘pbuf’ is a pointer to a response buffer having a length of ‘buf_len’. The third parameter,

‘popt’, is an optional argument used to provide implementation specific information (port number, UART

identification, etc.). As for the return value, it is suggested to return the number of data octets transmitted,

SHELL_OUT_RTN_CODE_CONN_CLOSED if the link has been closed, and SHELL_OUT_ERR for any

other error.

The output function is also defined by a data type, SHELL_OUT_FNCT:

typedef CPU_INT16S (*SHELL_OUT_FNCT)(CPU_CHAR *,

 CPU_INT16U ,

 void *);

Finally the ‘pcmd_param’ is used to pass additional information to the command. The current implementation has

provision for the current working directory, as well as an option parameter used by the output function :

typedef struct shell_cmd_param {

 void *pcur_working_dir;

 void *pout_opt;

 CPU_BOOLEAN *psession_active;

} SHELL_CMD_PARAM;

Note that future implementation could add members to this structure to support more parameters.

 6

3.02 µC/Shell startup code

We provide you with an example (i.e the application code) use of µC/Shell which is found in app.c and it was

written to provide a startup example on how to use the capabilities of the µC/Shell module. app.c simply

initializes µC/OS-II, µC/TCP-IP and µC/Shell, and creates a few tasks and other kernel objects that will give

the user information about the state of the system. Note that you DO NOT need an RTOS like µC/OS-II or a

TCP/IP stack like µC/TCP-IP to use µC/Shell.

Before you can use µC/Shell, the following has to be performed:

1. Develop/create your command(s)

2. Implement output functions (if needed)

3. Initialize µC/Shell

This section of the manual will give you some examples of the above steps. Note that some sections of the source

code have been removed or modified to help focus on the µC/Shell module use.

Listing 3-1 - Output function
CPU_INT16S App_TestShellOut (CPU_CHAR *pbuf, (1)

 CPU_INT16U buf_len,

 void *popt)

{

 APP_TRACE_DEBUG((pbuf)); (2)

 APP_TRACE_DEBUG((" executed.\n\r"));

 return (buf_len); (3)

}

L3-1(1) Function implementing the ‘output’ facility. This function MUST have the prototype specified in

section 2.01.

L3-1(2) This implementation simply outputs ‘pbuf’, using the trace mechanism (typically the console output).

L3-1(3) Returns the number of positive data octets transmitted (no error).

 7

Listing 3-2 - Command
CPU_INT16S App_TestCmd (CPU_INT16U argc, (1)

 CPU_CHAR *argv[],

 SHELL_OUT_FNCT out_fnct,

 SHELL_CMD_PARAM *pcmd_param)

{

 CPU_INT16U cmd_namd_len;

 CPU_INT16S output;

 CPU_INT16S ret_val;

 cmd_namd_len = Str_Len(argv[0]);

 output = out_fnct(argv[0], (2)

 cmd_namd_len,

 pcmd_param->pout_opt);

 switch (output) {

 case SHELL_OUT_RTN_CODE_CONN_CLOSED:

 case SHELL_OUT_ERR:

 ret_val = SHELL_EXEC_ERR;

 break;

 default:

 ret_val = output;

 }

 return (ret_val); (3)

}

L3-2(1) Function implementing a test command.

L3-2(2) Use the output function to display the command name.

L3-2(3) The return value is command specific, with the exception of SHELL_EXEC_ERR in case of an error.

 8

Listing 3-3 - Initialization of module
static SHELL_CMD AppShellCmdTbl[] = (1)

{

 {"App_test", App_TestCmd},

 {0, 0 }

};

void App_InitShell (void)

{

 CPU_BOOLEAN success;

 SHELL_ERR err;

 APP_TRACE_DEBUG(("Initialize Shell ... "));

 success = Shell_Init(); (2)

 if (success == DEF_OK) {

 APP_TRACE_DEBUG(("done.\n\r"));

 } else {

 APP_TRACE_DEBUG(("failed.\n\r"));

 return;

 }

 APP_TRACE_DEBUG(("Adding Shell command table ... "));

 Shell_CmdTblAdd("App", App_ShellAppCmdTbl, &err); (3)

 if (err == SHELL_ERR_NONE) {

 APP_TRACE_DEBUG(("done.\n\r"));

 } else {

 APP_TRACE_DEBUG(("failed.\n\r"));

 }

}

L3-3(1) Declare and populate a SHELL_CMD structure table that will hold the ‘App’ shell commands. The

first member of this structure is the command name, and the other member a pointer to a function

implementing the command itself.

 This command table MUST have its last entry set to ‘0’.

L3-3(2) Initializes µC/Shell internal variables.

L3-3(3) Add the AppShellCmdTbl module command table to the Shell.

 9

3.03 µC/Shell example use

Once µC/Shell has been initialized, the only thing left to do it to call the Shell_Exec() function, like depicted

above.

Listing 3-4 - Example use
void App_TestShell (void)

{

 SHELL_ERR err;

 SHELL_CMD_PARAM cmd_param;

#if APP_FS_EN

 FS_DIR *pdir;

#endif

 APP_TRACE_DEBUG(("Testing Shell, executing command ...\n\r"));

#if APP_FS_EN

 pdir = FS_OpenDir("");

 cmd_param.pcur_working_dir = (void *)pdir;

#else

 cmd_param.pcur_working_dir = (void *)0;

#endif

 cmd_param.pout_opt = (void *)0;

 Shell_Exec("App_test -a -b -c", &App_TestShellOut, &err); (1)

 switch (err) {

 case SHELL_ERR_NONE:

 APP_TRACE_DEBUG(("Command executed, no error.\n\r"));

 break;

 case SHELL_ERR_NULL_PTR:

 APP_TRACE_DEBUG(("Error, NULL pointer passed.\n\r"));

 break;

 case SHELL_ERR_CMD_NOT_FOUND:

 APP_TRACE_DEBUG(("Error, command NOT found.\n\r"));

 break;

 case SHELL_ERR_CMD_SEARCH:

 APP_TRACE_DEBUG(("Error, searching command.\n\r"));

 break;

 case SHELL_ERR_ARG_TBL_FULL:

 APP_TRACE_DEBUG(("Error, too many arguments\n\r"));

 break;

 default:

 break;

 }

}

L3-4(1) Invoke the Shell_Exec() function responsible for parsing and calling the specified command. In

this case, passing ‘App_Test’ will result in the function App_TestCmd() to be called (see

L2-3(1)).

 10

3.04 µC/Shell module configuration

The µC/Shell module has to be configured according to your specific needs. A template configuration file

(shell_cfg.h) is included in the module package (see Chapter 1, Directories and Files), and this file should be

copied and added to your project. Here is the list of the values and description for each of the configuration

variable. However, keep in mind that future releases of this module might include more configuration options.

#define SHELL_CFG_CMD_TBL_SIZE 3

Size of the command module table. Once this table is full, it is not possible to add any more command

module table, unless Shell_CmdTblRem() is called. This should be defined to the total amount of

module registering command table in µC/Shell.

#define SHELL_CFG_CMD_ARG_NBR_MAX 5

Maximum number or argument(s) a command may pass on the string holding the complete command.

#define SHELL_CFG_MODULE_CMD_NAME_LEN_MAX 6

Maximum length for module command name, including the termination NUL character.

 11

3.05 µC/Shell internal details

At initialization time, that is when the Shell_Init() function is called, two module command pools are being

created: the free and the used. Right after initialization, no module command are being used, so all of the

SHELL_CFG_CMD_TBL_SIZE module command are located into the free pool, and the used pool is empty, like

displayed below (SHELL_CFG_CMD_TBL_SIZE set to 3 in this example).

Figure 3-1 - Pools after initialization

Adding module command tables to the shell with Shell_CmdTblAdd() results in a free module command being

taken from that pool, initialized, and taken into the used pool. Below is a representation of the pools after two

module command tables have been inserted.

Figure 3-2 - Pools after modules insertion

Shell_ModuleCmdFreePoolPtr

Name

NextModuleCmdPtr

CmdTblPtr

"OS"

NextModuleCmdPtr

CmdTblPtr

NULL

"Net"

NextModuleCmdPtr

CmdTblPtr

Shell_ModuleCmdUsedPoolPtr NULL

OsCmdTbl NetCmdTbl

Shell_ModuleCmdFreePoolPtr

Name

NextModuleCmdPtr

CmdTblPtr

Name

NextModuleCmdPtr

CmdTblPtr

NULL

NULL

Name

NextModuleCmdPtr

CmdTblPtr

Shell_ModuleCmdFreePoolPtr

 12

When the Shell_Exec() function is being called in order to parse a line and execute a command, the lists of

module commands have to be searched to find a match. Since the module command tables are inserted in a way

analog to a stack, the search begins with the last addition. For instance, if the ‘OS’ table has been inserted just after

the ‘Net’ one, command search will always look at the ‘OS’ command table, then proceed with the ‘Net’

command table if a match has not been found.

Two searches are necessary to locate a command. First, the correct module command table has to be found based on

the command prefix, and then the corresponding command inside that table is looked for. The second search also

starts with index ‘0’ of the command table, and increments that index by ‘1’ until a match is found.

As mentionned at the beginning of this chapter, the command name and arguments passed on the command line are

separated by space characters. It is the responsibility of the commands to interpret and extract those arguments. For

instance, this command:

App_Test –a

would result in ‘-a’ to be passed as the argument for the ‘App_Test’ command. If the dash needs to be removed,

it has to be performed by the command itself. Note however, that µC/LIB functions are available to assist with

that.

 13

Chapter 4

µC/Shell API Reference

This chapter provides a reference to the µC/Shell API. Each of the user-accessible services is presented in

alphabetical order. The following information is provided for each of those services:

• A brief description

• The function prototype

• The filename of the source code

• A description of the arguments passed to the function

• A description of the returned value(s)

• Specific notes and warnings on using the service

• A usage example

 14

Shell_CmdTblAdd()
void Shell_CmdTblAdd (CPU_CHAR *cmd_tbl_name,
 SHELL_CMD cmd_tbl[],
 SHELL_ERR *perr);

File Called from

shell.c Application

Allocates and initializes a module command, and inserts a command table into it.

Arguments

cmd_tbl_name Pointer to character string representing the name of the command table.

cmd_tbl Command table to add.

perr Pointer to variable that will receive the return error code from this function :

SHELL_ERR_NONE No error.

SHELL_ERR_NULL_PTR Argument 'cmd_tbl' passed a

NULL pointer.

SHELL_ERR_MODULE_CMD_EMPTY Command table empty.

SHELL_ERR_MODULE_CMD_ALREADY_IN Command table already added, or

command table name already used.

SHELL_ERR_MODULE_CMD_NONE_AVAIL NO available module command to

allocate.

SHELL_ERR_MODULE_CMD_NAME_NONE No module command name found.

SHELL_ERR_MODULE_CMD_NAME_TOO_LONG Module command name too long.

SHELL_ERR_MODULE_CMD_NAME_COPY Copy error.

Returned Values

None.

Notes/Warnings

The 'cmd_tbl_ame' argument is the prefix of the commands in 'cmd_tbl'. In order to speed up the command

search, the shell first locate the appropriate table based on the prefix of the command. Hence, it is recommended

that all commands in a table be named with the same prefix. For instance, µC/TCP-IP related command

displaying statistics could look like :
Net_stats

while a file system command listing the current directory would be :
FS_ls

The names of those module commands are respectively 'Net' and 'FS'.

 15

Example

static SHELL_CMD App_ShellAppCmdTbl[] = {

 {"App_test", App_TestShellCmd},

 {0, 0}

};

void App_CmdTblAdd (void)

{

 SHELL_ERR err;

 APP_TRACE_DEBUG(("Adding Shell command table ... "));

 Shell_CmdTblAdd("App", App_ShellAppCmdTbl, &err);

 if (err == SHELL_ERR_NONE) {

 APP_TRACE_DEBUG(("done.\n\r"));

 } else {

 APP_TRACE_DEBUG(("failed.\n\r"));

 }

}

 16

Shell_CmdTblRem()
void Shell_CmdTblRem (CPU_CHAR *cmd_tbl_name,
 SHELL_ERR *perr);

File Called from

shell.c Application

Removes a command table from the shell.

Arguments

cmd_tbl_name Pointer to character string representing the name of the command table.

perr Pointer to variable that will receive the return error code from this function :

SHELL_ERR_NONE No error.

SHELL_ERR_NULL_PTR Argument 'cmd_tbl_name' passed a

NULL pointer.

SHELL_ERR_MODULE_CMD_NOT_FOUND Module command NOT found.

Returned Values

None.

Notes/Warnings

None.

Example

void App_CmdTblRem (void)

{

 SHELL_ERR err;

 APP_TRACE_DEBUG(("Removing Shell command table ... "));

 Shell_CmdTblRem("App", &err);

 if (err == SHELL_ERR_NONE) {

 APP_TRACE_DEBUG(("done.\n\r"));

 } else {

 APP_TRACE_DEBUG(("failed.\n\r"));

 }

}

 17

Shell_Exec()
CPU_INT16S Shell_Exec (CPU_CHAR *in,

 SHELL_OUT_FNCT out_fnct,

File Called from

shell.c Application

Parses and executes the command passed in parameter.

Arguments

in Pointer to a CPU_CHAR string holding a complete command and its argument(s).

out_fnct Pointer to 'output' function used by command.

perr Pointer to variable that will receive the return error code from this function :

SHELL_ERR_NONE No error.

SHELL_ERR_NULL_PTR Argument 'in' passed a NULL pointer.

SHELL_ERR_CMD_NOT_FOUND Command NOT found.

SHELL_ERR_CMD_SEARCH Error searching for command.

SHELL_ERR_CMD_EXEC Error executing command.

SHELL_ERR_ARG_TBL_FULL Argument table full and token still to be

parsed.

Returned Values

SHELL_EXEC_ERR If command executing error.

Command specific return value Otherwise.

Notes/Warnings

The command may generate some output that should be transmitted to some device (socket, RS-232 link, ...). The

caller of this function is hence responsible for the implementation of such function, if output is desired..

 18

Example

void App_Exec (void)

{

 SHELL_ERR err;

 APP_TRACE_DEBUG(("Testing Shell, executing command ...\n\r"));

 Shell_Exec("App_test -a -b -c", &App_TestShellOut, &err);

 switch (err) {

 case SHELL_ERR_NONE:

 APP_TRACE_DEBUG(("Command executed, no error.\n\r"));

 break;

 case SHELL_ERR_NULL_PTR:

 APP_TRACE_DEBUG(("Error, NULL pointer passed.\n\r"));

 break;

 case SHELL_ERR_CMD_NOT_FOUND:

 APP_TRACE_DEBUG(("Error, command NOT found.\n\r"));

 break;

 case SHELL_ERR_CMD_SEARCH:

 APP_TRACE_DEBUG(("Error, searching command.\n\r"));

 break;

 case SHELL_ERR_ARG_TBL_FULL:

 APP_TRACE_DEBUG(("Error, too many arguments\n\r"));

 break;

 case SHELL_ERR_CMD_EXEC:

 APP_TRACE_DEBUG(("Error, executing command.\n\r"));

 break;

 default:

 break;

 }

}

 19

Shell_Init()
CPU_BOOLEAN Shell_Init (void);

File Called from

shell.c Application

Initializes the shell.

Arguments

None

Returned Values

DEF_OK Shell initialization successful.

DEF_FAIL Otherwise.

Notes/Warnings

The Shell_Init() function must be called before the other Shell function are invoked. Shell_Init() must

also only be called once from product's application.

Example

void App_Init (void)

{

 CPU_BOOLEAN success;

 SHELL_ERR err;

 APP_TRACE_DEBUG(("Initialize shell ... "));

 Success = Shell_Init();

 if (success == DEF_OK) {

 APP_TRACE_DEBUG(("done.\n\r"));

 } else {

 APP_TRACE_DEBUG(("failed.\n\r"));

 }

}

 20

Chapter 5

µC/Shell Callback Functions Reference

This chapter provides a reference to the µC/Shell callback functions. The following information is provided for

each of those functions:

• A brief description

• The function prototype

• The filename of the source code

• A description of the arguments passed to the function

• A description of the returned value(s)

• Specific notes and warnings on using the service

Remember that those functions are referenced by pointers, so their naming convention is left to the developer.

 21

Shell Output Function
CPU_INT16U Shell_OutFnct (CPU_CHAR *pbuf,

 CPU_INT16U buf_len,

 void *popt);

File Called from

Application Command

User implemented output facility for the shell.

Arguments

pbuf Pointer to buffer to output.

buf_len Length of buffer

popt Pointer to implementation specific additional parameter

Returned Values

The number of positive data octets transmitted if no error

SHELL_OUT_RTN_CODE_CONN_CLOSED if link connection closed

SHELL_OUT_ERR otherwise

Notes/Warnings

None.

 22

Shell Command Function
CPU_INT16S Shell_CmdFnct (CPU_INT16U argc,

 CPU_CHAR *argv[],

 SHELL_OUT_FNCT out_fnct)

File Called from

Application Command

User implemented shell command.

Arguments

argc Argument count supplied to the function via argv.

argv Array of pointer to the strings which are those arguments.

out_fnct Pointer to 'output' function.

Returned Values

SHELL_EXEC_ERR if an error occurred

Any other value otherwise

Notes/Warnings

The return value for the command will indeed be used as the one for the Shell_Exec() function..

 23

Appendix A

µC/Shell Licensing Policy

You need to obtain an 'Object Code Distribution License' to embed µC/Shell in a product that is sold with the

intent to make a profit. Each 'different' product (i.e. your product) requires its own license, but the license allows

you to distribute an unlimited number of units for the life of your product. Please indicate the processor type(s) (i.e.

ARM7, ARM9, MCF5272, MicroBlaze, Nios II, PPC, etc.) that you intend to use.

For licensing details, contact us at:

Micrium
949 Crestview Circle

Weston, FL 33327-1848

U.S.A.

Phone : +1 954 217 2036

FAX : +1 954 217 2037

WEB : www.micrium.com

Email : licensing@micrium.com

 24

Appendix B

References

µC/OS-II, The Real-Time Kernel, 2
nd

Edition
Jean J. Labrosse

CMP Books, 2002

ISBN 1-57820-103-9

Embedded Systems Building Blocks
Jean J. Labrosse

R&D Technical Books, 2000

ISBN 0-87930-604-1

